液体流体中流速检测方案(粒子图像测速)

收藏
检测样品: 其他
检测项目: 流速
浏览次数: 81
发布时间: 2008-06-17
关联设备: 3种 查看全部
获取电话
留言咨询

北京欧兰科技发展有限公司

金牌17年

解决方案总数: 752 方案总浏览次数:
方案详情 产品配置单
Two-phase annular flow is commonly used in both commercial and industrial heat transfer; however, we do not yet possess a thorough understanding of the nature of the fluid. Most analytical annular two-phase models are based on a relationship between the liquid film thickness, liquid film mass flux, and the axial pressure gradient or interfacial shear stress. The film thickness calculated from these models can then be utilized to determine the heat transfer coefficient of the flow. Although they are specific to certain flow regimes and fluids, empirical models remain more accurate than these analytical models. The key to understanding these flows lies with the liquid film. Therefore, to better understand the pressure drop and heat transfer of annular two-phase flow, this study involves the development of local, liquid velocity measurement techniques and their application to horizontal, wavy-annular two-phase flow. Two techniques, Bubble Streak Tracking (BST) and Thin Film Particle Image Velocimetry (TFPIV), have been developed in this study. Utilizing naturally occurring bubbles within the liquid film, the BST technique determines the liquid velocity by measuring reflected light streaks from the bubbles. A three-colored LED array creates directionally unambiguous streaks, while a strobe illuminates interfacial features that affect the liquid velocity. The TFPIV technique applies a typical micro-PIV system to a macroscopic flow with the addition of a non-trivial image processing algorithm. This algorithm successfully overcomes the image noise that occurs when applying PIV to a two-phase, thin film. Although difficulties arise when processing the BST data, the results of the BST and TFPIV methods are comparable, making BST an economical alternative to TFPIV for calculating liquid film velocities.

方案详情

确定

该文件无法预览

北京欧兰科技发展有限公司为您提供《液体流体中流速检测方案(粒子图像测速)》,该方案主要用于其他中流速检测,参考标准--,《液体流体中流速检测方案(粒子图像测速)》用到的仪器有德国LaVision PIV/PLIF粒子成像测速场仪、Imager sCMOS PIV相机、液体混合过程分析测试系统