其他检测

解决方案

标准解读

检测项目类别:

推荐厂商:

天津语瓶仪器技术有限公司 语瓶仪器
可睦电子(上海)商贸有限公司-日本京都电子(KEM) 可睦电子(KEM)
岛津企业管理(中国)有限公司 岛津
施启乐(广州)仪器有限公司 施启乐
国仪量子上海新仪纽迈分析利曼中国
重置
全部品牌

检测项目:

参考标准:

盘芯喷嘴质量平衡中体积有效性判定检测方案(气溶胶)

The mass balance of orchard air-blast sprayers has historically been assessed using an array of samplers to capture airborne particles. However, these methods only provide an idea of flux with no other information which is pertinent to understand the movement of droplets and their potential to drift. While droplet analysis for agricultural sprayers has always been conducted in a laboratory setting with the use of laser devices, a new phase Doppler approach is being explored to assess droplet spectra, velocity, and flux in outdoor field conditions. Therefore it is the objective of this study to develop a methodology and the potential limitations for using a phase Doppler system while in a laboratory setting. Due to the expected variability of field conditions as well as the turbulence of orchard sprayers, a computational approach was sought to assess flux from a single scan of a conical spray plume's diameter. Using a constant scanning speed of 0.0079 m/s, a disc core (D1/DC33) hollow cone nozzle was examined at 310, 410, and 520 kPa pressure at five different heights (10, 20, 30, 40, and 50 cm). Computational flux was then compared to the actual flow rate, finding a 3.3% average error with a range of 16.9% and 4.7% illustrating a small underestimation of mass with the phase Doppler which was related to distance and droplet frequency. Further, comparisons were also assessed including pattern/symmetry, droplet spectra, velocity, and the overall number of samples. The proposed methodology indicates potential for the use of phase Doppler technology for in situ measurements of spray equipment using a conical-type spray nozzle, such as that of the orchard air-blast sprayer.
检测样品: 其他
检测项: 体积有效性判定

北京欧兰科技发展有限公司

查看联系电话
前往展位

云微观物理特性中液滴粒径,液滴速度,液态水含量检测方案(气溶胶)

High-level Nitrogen oxides (NOx) released to the atmosphere cause health and environmental hazards. Conventional power plants are required to have NOx emission control systems to abide by local environmental regulations. Com-mon post-combustion techniques include selective non-catalytic reduction (SNCR) or selective catalytic reduction (SCR) techniques. SNCR is a proven technology that can be implemented virtually without affecting existing indus-trial operations with low capital cost. SNCR is a method involving either aqueous ammonia or urea as the reagent injected into flue gas in the boiler/furnace within specific temperature range. This method commonly reduces the emission of NOx by 30-50%. However, high reductions can be achieved by system optimization. Placement within the proper temperature window, distribution within the cross section and residence time of reagent significantly in-fluence performance of an SNCR system. Therefore, spray lance and nozzle design is crucial for assurance of oper-ating efficiency and ammonia utilization. In this paper, an SNCR system in a circulating fluidized bed (CFB) boiler was studied with using Computational Fluid Dynamics (CFD) simulations, as it relates to spray technology. The simulation solves Navier-Stokes equa-tions with heat and mass transfer using ANSYS Fluent SNCR model with Lagrangian multiphase models and spe-cies transport model. CFD was used to diagnose the gas phase behavior and thermal distribution, to determine opti-mal spray placement and maximum penetration. The focus of this work was the parameters of the injection, which were determined based on test data acquired through in-house laboratory equipment. Temperature profile, pollutant reduction, ammonia slippage and wall impingement were used from the CFD results to assist determining the best spray design to achieve the greatest efficiency.
检测样品: 其他
检测项: 液滴粒径,液滴速度,液态水含量

北京欧兰科技发展有限公司

查看联系电话
前往展位

仪器信息网行业应用栏目为您提供2256篇其他检测方案,可分别用于,参考标准主要有《HJ 766-2015 固体废物 金属元素的测定 电感耦合等离子体质谱法》、《无水葡萄糖-2015年版药典标准》等