其他检测

解决方案

标准解读

检测项目类别:

推荐厂商:

天津语瓶仪器技术有限公司 语瓶仪器
可睦电子(上海)商贸有限公司-日本京都电子(KEM) 可睦电子(KEM)
岛津企业管理(中国)有限公司 岛津
施启乐(广州)仪器有限公司 施启乐
国仪量子上海新仪纽迈分析利曼中国
重置
全部品牌

检测项目:

参考标准:

层流,界面混合中速度场,速度矢量场检测方案(粒子图像测速)

Stratified exchange flows driven by a density difference are found in many natural water bodies and in the atmosphere. A typical case in nature is the strait of Gibraltar, where the water of the Mediterranean Sea flows under the less saline water of the Atlantic Ocean. At the interface between the layers shear is responsible for instabilities (Kelvin-Helmholtz), which results in turbulent mixing and entrainment. Gaining deeper understanding of these processes is the main motivation for this thesis. An experimental study into the development of a mixing layer of a two layer stratified exchange flow is performed and an LIF measurement system was used to obtain the concentration fields. The main objectives of this study were to calibrate and understand the experimental set-up and to investigate the influence of four different parameters on the development of the mixing layer. The calibration of the experimental set-up has led to a simple calibration procedure, which was applied with success. To study the development of the mixing layer the influence of four different parameters was analyzed namely: the buoyant acceleration, the bottom friction, the water depth and the sill slope. After careful analysis of the experimental results it was observed that fluid from the upper layer was entrained into the lower layer in all the experiments. Analysis of the dye visualization showed that the large-scale structures, the Kelvin-Helmholtz instabilities, are mainly responsible for the mixing and entrainment. The overall conclusion was that the variation of geometric condition on the development of the mixing layer has a much stronger influence than the variation of the hydraulic conditions. An enhanced bottom friction affected the Kelvin-Helmholtz instabilities but the mechanism is not completely understood by the author.
检测样品: 其他
检测项: 速度场,速度矢量场

北京欧兰科技发展有限公司

查看联系电话
前往展位

横流扇,空气流,内部流场结构中速度矢量场,速度场,内部流场,流场结构检测方案(粒子图像测速)

室内机的流场结构会因为不同的压损值以及搭配的不同转速时会有所不同,主要分成兩种形式。当压损较小时,通过横流扇而被提供动能的流体,大多能沿著背板的几何形狀朝下游移动。若当压损逐渐提高,在低转速下的流场结构会产生明显的差異,在葉輪侧靠近出口处区域与舌部下方的之间,回流区范围有显著的扩大趋势,在靠近葉輪部分流体的运动方向可被观测出有被卷吸回葉輪的情形,大多是受到高速旋转的葉輪在通过舌部後,产生的低压结构所引致的现象。此时若提高葉輪的转速,将有助於提供流体更多的动量,可使舌部附近的回流区结构缩小,同时在横流扇入口上方的回流区结构也明显受到抑制。 然而,当压损值提高时,不同转速下的流场结构相当類似,葉輪上方的入风口处,都有明显的回流结构,部分情形下甚至可达近一半的入口面积。另外,出风口处的回流区结构相当大,速度较大的区域皆集中在弧形背板处,并且造成出口处的气流速度产生骤降的现象。当压损在特定范围以上时,本研究之横流扇的出风特性有明显的变化,即便再提高转速,仍无法提供流体产生足够的动量,以形成有效的气流流动,风扇运转已偏離有效操作点。 经由上述的实验结果中得知,此横流扇结构在低压损或是高转速下的出风流场结构多能沿著背板进而流至出风口。倘若压损提高或转速降低时,出口风速锐减,室内机的送风性能明显降低。因此,此室内机的几何形狀应针对不同的压损下的送风性能讨論,进行改良设计,本文以PIV进行量测,提供一种快速有效的研究方法。
检测样品: 其他
检测项: 速度矢量场,速度场,内部流场,流场结构

北京欧兰科技发展有限公司

查看联系电话
前往展位
< 1 ··· 7 8 9 10 11 ··· 75 > 前往 GO

仪器信息网行业应用栏目为您提供2245篇其他检测方案,可分别用于,参考标准主要有等