钙钛矿太阳能电池中结构表征检测方案(其它显微镜)

收藏
检测样品: 太阳能电池
检测项目: 结构表征
浏览次数: 284
发布时间: 2022-06-22
关联设备: 2种 查看全部
获取电话
留言咨询
方案下载

QUANTUM量子科学仪器贸易(北京)有限公司

金牌18年

解决方案总数: 136 方案总浏览次数:
方案详情 产品配置单
在绿色能源的发展得到各国越来越多的重视与青睐的今天,光伏科技和太阳能电池的产业成长与技术研发成为了工业界和学术界共同的焦点。而这其中被广泛关注的当属使用具有钙钛矿结构的材料所合成的太阳能电池。钙钛矿结构是具有通式ABX3结构的一类化合物,除了CaTiO3外,还有BiFeO3、CsPbI3也具有这一结构。基于钙钛矿结构材料所合成的电池则一般被统称为有机-无机杂化钙钛矿太阳能电池(PVSCs)。在光伏领域的研究中,钙钛矿太阳能电池因其能量转化率在近几年的飞速提高而备受关注。其中的佼佼者更是可以达到25%的能量转化率。 然而,在我们期待上述的有机-无机杂化钙钛矿太阳能电池从实验室走向工业应用的时候,一个无法回避的问题出现在了研究者的面前:这种电池的环境敏感性非常之高。在电池的使用过程中,其性能稳定性和使用寿命很容易被环境湿度,环境热度,环境光照所影响,且这种影响多为负面影响。也就是说,要想让PVSCs能够被大规模应用,其环境耐性必须得到改进。 针对上述问题,香港城市大学Fengzhu Li于今年(2022年)4月在Advance Energy Materials中发表了等离激元局域光热现象调控钙钛矿太阳能电池应力以提升效率和稳定性的研究工作。该课题组发现二氧化硅包覆的金纳米管(GNR@SiO2)可有效提高钙钛矿太阳能电池的性能,尤其通过减小材料生成过程中所产生的残留应变,在维持电池高效转化率(23%)的前提下,大幅提高了电池的工作稳定性。这种GNR@SiO2有着8.2 nm的平均直径和40 nm的平均长度。其中的二氧化硅外壳结构的厚度在15 nm左右。

方案详情

QuantumDesign Quantum Design 中国子公司www.qd-china.com neaSNOM:10纳米分辨的近场光学显微成像nano-FTIR:10纳米分辨的傅里叶红外光谱仪 其特点包括: ·专利保护的散射式近场光学测量技术;-独有的极高空间分辨率10nm。 ·采用双光束设计,极高的光学接入角; -水平方向180°& 垂直方向60° 。专利保护的反射式光学系统;-兼容可见、红外、太赫兹光源。 ·专利保护的干涉式近场信号探测单元; ·基于高稳定性的 AFM 系统,优化了光学测量; ·流程化导航式软件设计、仪器操作简单; ·样品准备简单-常规的AFM 样品准备过程; ·适用于有机、无机、半导体、生物等样品研究。 德国 neaspec 公司利用其独有的散射型近场光学技术发展出来的 neaSNOM 超高分辨近场光学显微镜和 nano-FTIR纳米傅里叶红外光谱技术,使得纳米尺度化学鉴定和成像成为可能。这一技术综合了原子力显微镜的高空间分辨率,和傅里叶红外光谱的高化学敏感度,因此可以在纳米尺度下实现对几乎所有材料的化学分辨。 THz-neaSNOM:纳米级近场太赫兹成像和光谱系统 THz-neaSNOM 是德国 neaspec 公司在其独有的散射型近场光学技术基础上,发展出来的可应用于太赫兹波段的散射式近场光学成像和光谱系统,实现了一款纳米级的太赫兹近场仪器。 主要参数: 优于30nm 的空间分辨率; . 常用 THz 光范围:0.1-3THz; ·专利设计的宽波段抛面镜; ani·THz-TDS使用飞秒激光光源。hC neaSNOM-可拓展的针尖增强拉曼 (TERS) 功能: ·专利的双光路设计,易于拓展到拉曼功能, 自自动激光聚焦的功能,易于实现TERS 操作; ·近场成像+TERS,多角度样品分析+高空间分辨拉曼光谱。     在绿色能源的发展得到世界各国越来越多的重视与青睐的今天,光伏科技和太阳能电池的产业成长与技术研发成为了工业界和学术界共同的焦点。而这其中最被广泛关注的当属使用具有钙钛矿结构的材料所合成的太阳能电池。钙钛矿结构是具有通式ABX3结构的一类化合物,除了CaTiO3外,还有BiFeO3、CsPbI3也具有这一结构。基于钙钛矿结构材料所合成的电池则一般被统称为有机-无机杂化钙钛矿太阳能电池(PVSCs)。在光伏领域的研究中,钙钛矿太阳能电池因其能量转化率在近几年的飞速提高而备受关注。其中的佼佼者更是可以达到25%的能量转化率。    然而,在我们期待上述的有机-无机杂化钙钛矿太阳能电池从实验室走向工业应用的时候,一个无法回避的问题出现在了研究者的面前:这种电池的环境敏感性非常之高。在电池的使用过程中,其性能稳定性和使用寿命很容易被环境湿度,环境热度,环境光照所影响,且这种影响多为负面影响。也就是说,要想让PVSCs能够被大规模应用,其环境耐性必须得到改进。    针对上述问题,香港城市大学Fengzhu Li于今年(2022年)4月在Advance Energy Materials中发表了等离激元局域光热现象调控钙钛矿太阳能电池应力以提升效率和稳定性的研究工作。该课题组发现二氧化硅包覆的金纳米管(GNR@SiO2)可有效提高钙钛矿太阳能电池的性能,尤其通过减小材料生成过程中所产生的残留应变,在维持电池高效转化率(23%)的前提下,大幅提高了电池的工作稳定性。这种GNR@SiO2有着8.2 nm的平均直径和40 nm的平均长度。其中的二氧化硅外壳结构的厚度在15 nm左右。图1. 作者所生成的GNR@SiO2的 (a) TEM与EDS扫描图样  (b)直径和长度的分布统计    在通过标准流程测得生成的太阳能电池的能量转化效率可以达到23%之后,接下来研究者的关注点则聚焦到了GNR@SiO2对电池稳定性——也就是钙钛矿材料层的稳定性的提高之上。在此研究中,Neaspec研发的近场光学显微镜起到了至关重要的作用。科研者利用此设备获取了相关材料基于中红外激光吸收的形貌图(光学成像)和与之对应的纳米傅里叶红外光谱结果。实验使用了一台相干宽波长中红外激光器,通过Neaspec近场光学显微镜将激光聚焦于镀铂金AFM针尖,从而表征了四组参照薄膜材料:(a)新生成的钙钛矿结构材料(PVK)(b)新生村的掺杂了GNR@SiO2的PVK(c)经过疲劳测试的PVK(d)经过疲劳测试的GNR@SiO2的PVK。图2 实验原理示意图和Neaspec近场光学显微镜AFM顶照摄像头在测试四组材料时的光学镜头成像。    在PVK所对应的中红外成像和纳米傅里叶红外光谱中,信号的产生主要源自材料里的甲脒结构中的非对称碳氮键的拉伸模式的变化。所有之后的分析都是基于上述四种材料所产生的这种信号(对应材料中甲脒的浓度也就是材料的降解程度)。下图a-d对应四种材料的1700  cm–1 中红外激光成像结果。而为了研究疲劳测试对材料稳定性的影响,研究者在每个结果中都选取了5个数据点,直接进行纳米傅里叶红外光谱的测试 (下图 e-h)。研究者通过对比发现,在没有掺杂GNR@SiO2的PVK中,疲劳测试使得材料的甲脒含量降到了原来的45%。而通过掺杂GNR@SiO2,PVK中的则能维持在原来的75%。可见,掺杂GNR@SiO2有效地减慢了PVK薄膜材料的降解和损耗速度。而使得这一结果得以获得的,正是Neaspec的近场光学显微镜可以同时对样品进行中红外成像和纳米傅里叶红外吸收谱分析的这一特性。图3 四组参照薄膜材料的中红外成像结果以及对应图上5个数据点的纳米傅里叶红外光谱结果参考文献:[1]. Fengzhu Li, Tsz Wing Lo, Xiang Deng, Siqi Li, Yulong Fan, Francis R. Lin, Yuanhang Cheng, Zonglong Zhu, Dangyuan Lei*, Alex K.-Y. Jen*, Plasmonic Local Heating Induced Strain Modulation for Enhanced Efficiency and Stability of Perovskite Solar Cells, Advanced Energy Materials,DOI: 10.1002/aenm.202200186
确定

还剩1页未读,是否继续阅读?

不看了,直接下载
继续免费阅读全文

该文件无法预览

请直接下载查看

QUANTUM量子科学仪器贸易(北京)有限公司为您提供《钙钛矿太阳能电池中结构表征检测方案(其它显微镜)》,该方案主要用于太阳能电池中结构表征检测,参考标准--,《钙钛矿太阳能电池中结构表征检测方案(其它显微镜)》用到的仪器有超高分辨散射式近场光学显微镜-neaSNOM、neaSCOPE纳米光谱与成像系统