土壤中有机污染物检测

解决方案

标准解读

参考标准:

全部 GB/T 14552-93水和土壤质量有机磷农药的测定 气相色谱法 HJ 743-2015土壤和沉积物 多氯联苯的测定 气相色谱-质谱法 HJ 742-2015土壤和沉积物 挥发性芳香烃的测定 顶空/气相色谱法 HJ 741-2015土壤和沉积物 挥发性有机物的测定 顶空/气相色谱法 HJ 736-2015土壤和沉积物 挥发性卤代烃的测定 顶空/气相色谱-质谱法 HJ 735-2015土壤和沉积物 挥发性卤代烃的测定 吹扫捕集/气相色谱-质谱法 HJ 703-2014土壤和沉积物 酚类化合物的测定 气相色谱法 HJ 679-2013土壤和沉积物 丙烯醛、丙烯腈、乙腈的测定 顶空-气相色谱法 HJ 650-2013土壤、沉积物 二噁英类的测定 同位素稀释/高分辨气相色谱-低分辨质谱法 HJ 642—2013土壤和沉积物 挥发性有机物的测定 顶空/气相色谱-质谱法 HJ 605-2011土壤和沉积物 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法 HJ 77.4-2008土壤和沉积物 二噁英类的测定 同位素稀释高分辨气相色谱-高分辨质谱法 GB/T 14550-93土壤质量 六六六和滴滴涕的测定 气相色谱法(已废止) HJ 783-2016 土壤和沉积物 有机物的提取 加压流体萃取法 HJ 784-2016 土壤和沉积物 多环芳烃的测定 高效液相色谱法 HJ 805-2016 土壤和沉积物 多环芳烃的测定 气相色谱-质谱法 HJ 834-2017 土壤和沉积物 半挥发性有机物的测定 气相色谱-质谱法 HJ 835-2017 土壤和沉积物 有机氯农药的测定 气相色谱-质谱法 HJ 890-2017 土壤和沉积物 多氯联苯混合物的测定 气相色谱法 HJ 911-2017 土壤和沉积物 有机物的提取 超声波萃取法 HJ 916-2017 环境二噁英类监测技术规范 HJ 921-2017 土壤和沉积物 有机氯农药的测定 气相色谱法 HJ 922-2017 土壤和沉积物 多氯联苯的测定 气相色谱法 GB/T 14550-2003 土壤中六六六和滴滴涕测定的气相色谱法 GB/T 14552-2003 水、土中有机磷农药测定的气相色谱法 HJ 952-2018 土壤和沉积物 多溴二苯醚的测定 气相色谱-质谱法 HJ 961-2018 土壤和沉积物 氨基甲酸酯类农药的测定 高效液相色谱-三重四极杆质谱法 HJ 960-2018 土壤和沉积物 氨基甲酸酯类农药的测定 柱后衍生-高效液相色谱法 HJ 997-2018 土壤和沉积物 醛、酮类化合物的测定 高效液相色谱法 HJ 998-2018 土壤和沉积物 挥发酚的测定 4-氨基安替比林分光光度法 HJ 1019—2019 地块土壤和地下水中挥发性有机物采样技术导则 HJ 1020-2019 土壤和沉积物 石油烃(C6-C9)的测定 吹扫捕集/气相色谱法 HJ 1021-2019土壤和沉积物石油烃(C10-C40)的测定气相色谱法 HJ 1022-2019土壤和沉积物苯氧羧酸类农药的测定高效液相色谱法 HJ 1023-2019土壤和沉积物有机磷类和拟除虫菊酯类等47种农药的测定气相色谱-质谱法 HJ 1051-2019土壤 石油类的测定 红外分光光度法 HJ 1052-2019土壤和沉积物 11 种三嗪类农药的测定 高效液相色谱法 HJ 1053-2019 土壤和沉积物 8种酰胺类农药的测定 气相色谱-质谱法 HJ 1054-2019 土壤和沉积物 二硫代氨基甲酸酯(盐)类农药总量的测定 顶空/气相色谱法 HJ 1055-2019 土壤和沉积物 草甘膦的测定 高效液相色谱法 HJ 1210—2021 《土壤和沉积物 13 种苯胺类和 2 种联苯胺类化合物的测定 液相色谱-三重四极杆质谱法》 HJ 1184—2021 《土壤和沉积物 6 种邻苯二甲酸酯类化合物的测定 气相色谱-质谱法》 HJ 77.4-2008《土壤和沉积物 二噁英类的测定 同位素稀释高分辨气相色谱-高分辨质谱法》 HJ 605-2011《土壤和沉积物 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法》 HJ 650-2013《土壤、沉积物 二噁英类的测定 同位素稀释/高分辨气相色谱-低分辨质谱法》 HJ703-2014《土壤和沉积物 酚类化合物的测定 气相色谱法》 HJ 1051-2019《土壤 石油类的测定 红外分光光度法》 HJ 784-2016《土壤和沉积物 多环芳烃的测定 高效液相色谱法》 HJ 784-2016《土壤和沉积物 多环芳烃的测定 高效液相色谱法》 HJ 834-2017《土壤和沉积物 半挥发性有机物的测定 气相色谱-质谱法》 HJ 833-2017《土壤和沉积物 硫化物的测定 亚甲基蓝分光光度法》

陆地生态系统中温室气体通量检测方案(多气体分析仪)

微气象方法在陆地生态系统之上的微量气体通量测量中越来越重要。其能够在较长时间内测量较大尺度的平均气体通量,并具有较高的时间分辨率。应用最广泛的是涡动相关法(EC),其典型可测定面积(或“通量足迹”)可达几公顷。但由于缺乏快速响应的气体分析仪和较低的信噪比,仍然局限于测定少数气体种类。此外,EC对小分子的大气成分如氧化亚氮的适用性往往受到高功率消耗的限制。涡流累积是另一种湍流交换测量系统的代表,在1990年Businger和Oncley提出了一种使用恒定流量涡流积累的“松弛”版本(松弛涡流积累,REA)。 近年来,光腔衰荡光谱(CRDS)分析仪的发展为小分子大气组分的浓度测量提供便利,特别为通过REA技术测量气体流量开辟了机会。虽然通过慢响应分析仪进行气体分析相对容易,但开发一种精确、可靠且耐用的快速响应空气采样系统仍然是一种技术挑战。 为了可靠地估算区域一氧化二氮的排放,监测全区域的N2O通量具有重要意义,通常传统的EC和REA系统都可以提供这种类型的数据。然而,EC系统测定时初始成本高,能耗高,而且运输到偏远地区以及现场为系统供电相对困难。此外,为了使用EC系统测量陆地生态系统的温室气体通量,目前还没有快速响应气体分析仪可满足条件。然而,对于REA系统,光腔衰荡光谱仪(例如Picarro G2508)可以同时用于分析水蒸气、甲烷、二氧化碳和一氧化二氮。 本文提出了一个新的REA系统。该系统能可靠地测量多季节变化下的区域CO2、N2O、CH4和水汽的通量,并对其在2018和2020年季节变化下的测定性能进行了评估。
检测样品: 土壤
检测项: 有机污染物

北京世纪朝阳科技发展有限公司

查看联系电话
前往展位
< 1 ··· 2 3 4 5 6 ··· 21 > 前往 GO

仪器信息网行业应用栏目为您提供624篇土壤检测方案,可分别用于物理指标检测、营养盐检测、有机污染物检测、有机物综合指标检测、(类)金属及其化合物检测、无机阴离子检测、生物检测、其他检测、放射性检测、综合检测,参考标准主要有《HJ 642—2013土壤和沉积物 挥发性有机物的测定 顶空/气相色谱-质谱法》、《HJ 997-2018 土壤和沉积物 醛、酮类化合物的测定 高效液相色谱法》等