环境水(除海水)中有机污染物检测

解决方案

标准解读

参考标准:

全部 HJ 698-2014水质 百菌清和溴氰菊酯的测定 气相色谱法 HJ 699-2014 水质 有机氯农药和氯苯类化合物的测定 气相色谱-质谱法 GB/T 7492-87水质 六六六、滴滴涕的测定 气相色谱法 GB/T 9803-88水质 五氯酚的测定 藏红T分光光度法 GB/T 11895-89水质 苯并(a)芘的测定 乙酰化滤纸层析荧光分光光度法 GB/T 11890-89水质 苯系物的测定 气相色谱法(已废止) GB/T 11889-89水质 苯胺类化合物的测定 N-(1-萘基)乙二胺偶氮分光光度法 GB/T 13199-91水质 阴离子洗涤剂的测定 电位滴定法 GB/T 13194-91水质 硝基苯、硝基甲苯、硝基氯苯、二硝基甲苯的测定 气相色谱法(已废除) GB/T 14552-93水和土壤质量有机磷农药的测定 气相色谱法 GB/T 14378-93水质 二乙烯烷三胺的测定 水杨醛分光光度法 GB/T 14377-93水质 三乙胺的测定 溴酚蓝分光光度法 GB/T 14376-93水质 偏二甲基肼的测定 氨基亚铁氰化钠分光光度法 GB/T 15959-1995水质 可吸附有机卤素(AOX)的测定 微库仑法 HJ 715-2014 水质 多氯联苯的测定 气相色谱-质谱法 GB/T 16488-1996水质 石油类和动植物油的测定 红外光度法(已废止) HJ/T 83-2001水质 可吸附有机卤素(AOX)的测定 离子色谱法 HJ/T 50-1999水质 三氯乙醛的测定 吡唑啉酮分光光度法 HJ/T 74-2001水质 氯苯的测定 气相色谱法 HJ/T 72-2001水质 邻苯二甲酸二甲(二丁、二辛)酯的测定 液相色谱法 HJ 637-2012 石油类和动植物油类的测定(已废止) HJ 696-2014水质 松节油的测定 气相色谱法 HJ 686-2014水质 挥发性有机物的测定 吹扫捕集/气相色谱法 HJ 77.1-2008水质 二噁英类的测定 同位素稀释高分辨气相色谱-高分辨质谱法 HJ 503-2009水质 挥发酚的测定 4-氨基安替比林分光光度法 HJ 478-2009水质 多环芳烃的测定 液液萃取和固相萃取高效液相色谱法 HJ 591-2010 水质 五氯酚的测定 气相色谱法 HJ 587-2010水质 阿特拉津的测定 高效液相色谱法 HJ 621-2011水质 氯苯类化合物的测定 气相色谱法 HJ 620-2011水质 挥发性卤代烃的测定 顶空气相色谱法 HJ 601 -2011水质 甲醛的测定 乙酰丙酮分光光度法 HJ 639-2012水质 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法 HJ 648-2013水质 硝基苯类化合物的测定 液液萃取/固相萃取-气相色谱法 HJ 659-2013水质 氰化物等的测定 真空检测管-电子比色法 HJ 674-2013水质 肼和甲基肼的测定 对二甲氨基苯甲醛分光光度法 HJ 676-2013水质 酚类化合物的测定 液液萃取/气相色谱法 HJ 697-2014水质 丙烯酰胺的测定 气相色谱法 HJ 716—2014 水质 硝基苯类化合物的测定 气相色谱-质谱法 HJ 744-2015水质 酚类化合物的测定气相色谱-质谱法 HJ 753-2015 水质 百菌清及拟除虫菊酯类农药的测定 气相色谱—质谱法 GB/T 20466-2006 水中微囊藻毒素的测定 HJ 754—2015 水质 阿特拉津的测定 气相色谱法 GB/T 17130-1997水质 挥发性卤代烃的测定 顶空气相色谱法(自2011年11月1日起废止) GB/T 17131-1997水质 1,2-二氯苯、1,4-二氯苯、1,2,4-三氯苯的测定 气相色谱法(自2011年11月1日起废止) HJ 756-2015 水质 丁基黄原酸的测定 紫外分光光度法 GB/T 15507-1995水质 肼的测定 对二甲氨基甲醛分光光度法(已废止) GB/T 14375-93水质 一甲基肼的测定 对二甲氨基苯甲醛分光光度法(已于2014年2月1日起废止) HJ 758-2015 水质 卤代乙酸类化合物的测定 气相色谱法 HJ 770-2015 水质 苯氧羧酸类除草剂的测定 液相色谱串联质谱法 HJ 788-2016 水质 乙腈的测定 吹扫捕集气相色谱法 HJ 789-2016 水质 乙腈的测定 直接进样气相色谱法 HJ 806-2016 水质 丙烯腈和丙烯醛的测定 吹扫捕集气相色谱法 HJ 809-2016 水质 亚硝胺类化合物的测定 气相色谱法 HJ810-2016水质 挥发性有机物的测定顶空气相色谱-质谱法 HJ 822-2017水质 苯胺类化合物的测定 气相色谱-质谱法 HJ 825-2017 水质 挥发酚的测定 流动注射4氨基安替比林分光光度法 HJ 826-2017 水质 阴离子表面活性剂的测定 流动注射-亚甲基蓝分光光度法 HJ 827-2017 水质 氨基甲酸酯类农药的测定 超高效液相色谱-三重四极杆质谱法 HJ 849-2017水质 乙撑硫脲的测定 液相色谱法 HJ 850-2017水质 硝磺草酮的测定 液相色谱法 HJ 851-2017 水质 灭多威和灭多威肟的测定 液相色谱法 HJ 866-2017 水质 松节油的测定 吹扫捕集/气相色谱-质谱法 HJ 893-2017 水质 挥发性石油烃(C6-C9)的测定 吹扫捕集气相色谱法 HJ 894-2017 水质 可萃取性石油烃(C10-C40)的测定 气相色谱法 HJ 895-2017 水质 甲醇和丙酮的测定 顶空气相色谱法 HJ 896-2017 水质 丁基黄原酸的测定 吹扫捕集气相色谱-质谱法 HJ 909-2017 水质 多溴二苯醚的测定 气相色谱-质谱法 HJ 914-2017 水质 百草枯和杀草快的测定 固相萃取-高效液相色谱法 HJ 916-2017 环境二噁英类监测技术规范 GB/T 14552-2003 水、土中有机磷农药测定的气相色谱法 HJ 970 - 2018 水质 石油类的测定 紫外分光光度法(试行) HJ 1002-2018 水质 丁基黄原酸的测定 液相色谱-三重四极杆串联质谱法 HJ 1017-2019 水质 联苯胺的测定 高效液相色谱法 HJ 1018-2019 水质 磺酰脲类农药的测定 高效液相色谱法 HJ 1019—2019 地块土壤和地下水中挥发性有机物采样技术导则 HJ 1048-2019 水质17种苯胺类化合物的测定 液相色谱-三重四极杆质谱法 HJ 1049-2019 水质 4 种硝基酚类化合物的测定 液相色谱-三重四极杆质谱法 HJ 1067-2019 水质 苯系物的测定 顶空/气相色谱法 HJ 1070-2019 水质 15种氯代除草剂的测定 气相色谱法 HJ 1071-2019 水质 草甘膦的测定 高效液相色谱法 HJ 1072-2019 水质 吡啶的测定 顶空/气相色谱法 HJ 1073-2019 水质 萘酚的测定 高效液相色谱法 GB/T 26411-2010 海水中16种多环芳烃的测定 气相色谱-质谱法 GB/T 30739-2014 海洋沉积物中正构烷烃的测定 气相色谱-质谱法 HJ 1150-2020 水质 硝基酚类化合物的测定 气相色谱-质谱法 HJ 1267-2022 水质 6种苯氧羧酸类除草剂和麦草畏的测定 高效液相色谱法 HJ 1183—2021 《水质 氧化乐果、甲胺磷、乙酰甲胺磷、辛硫磷的测定 液相色谱-三重四极杆质谱法》 HJ1070-2019《水质 15种氯代除草剂的测定 气相色谱法》 HJ 1150-2020《水质 硝基酚类化合物的测定 气相色谱-质谱法》 HJ 77.1-2008《水质 二噁英类的测定 同位素稀释高分辨气相色谱-高分辨质谱法》 HJ 503-2009《水质 挥发酚的测定 4-氨基安替比林分光光度法 》 HJ 478—2009《水质 多环芳烃的测定 液液萃取和固相萃取高效液相色谱法》 HJ 591-2010《水质 五氯酚的测定 气相色谱法》 HJ 676-2013《水质 酚类化合物的测定 液液萃取/气相色谱法》 HJ 674-2013《水质 肼和甲基肼的测定 对二氨基苯甲醛分光光度法》 HJ 909-2017《水质 多溴二苯醚的测定 气相色谱-质谱法》 HJ701-2014《水质 黄磷的测定 气相色谱法》 HJ 909-2017《水质 多溴二苯醚的测定 气相色谱-质谱法》 HJ 895-2017 水质 甲醇和丙酮的测定 顶空/气相色谱法 HJ 894-2017《水质 可萃取性石油烃(C10-C40)的测定 气相色谱法》 HJ 893-2017《水质 挥发性石油烃(C6-C9)的测定 吹扫捕集/气相色谱法》 HJ 970-2018《水质 石油类的测定 紫外分光光度法(试行)》 HJ744-2015《水质 酚类化合物的测定 气相色谱-质谱法》 HJ 1150-2020《水质 硝基酚类化合物的测定 气相色谱-质谱法》

水中有机物检测方案(固相萃取仪)

固相萃取的应用优势 在什么项目的前处理适合使用固相萃取技术,即用固相萃取会比普通的溶剂萃取更理想,个人认为有以下几种情况: (一)水中有机物的前处理。 此类常规处理基本上是用与水不相溶的有机溶剂振荡萃取,用固相萃取的优势在于 (1)可以定量地重复前处理过程。 溶剂振荡的操作一般只能要求到控制时间的程度,却无法控制振荡频率,强度,动作,我们知道,每个人的振荡动作是不同的,就是同一个人,也很难保证始终划一的动作。所以说,溶液萃取的动作是不定量,不能重复的。 而在应用固相萃取时,比较容易保持过柱和洗脱速度的均一和稳定,因此,固相萃取的萃取过程是可以重复,可定量的。 (2)现场处理。 水中有机物的分析有一个长期困扰我们的瓶颈。即有机物在池塘水库等环境中能保持相对稳定,但是一旦进入采样瓶这个小环境中,就会迅速发生变化,所以很多水的有机物分析方法要求即采即分析,不能超过4个小时,可一般的情况是,从取水回到实验室的时间就远远不止4小时了,样品发生了变化,分析结果的可靠性可想而知。 如果引入固相萃取技术,由于其设备简单,体积小,易于携带,完全可以做到在现场一边采样,一边进行前处理。采样者带回实验室的是固相萃取柱,而不是水样。这样就能保证我们处理的是真正成份稳定的水样。 从实际应用来说,在水的检测中用固相萃取技术取代传统液液萃取还有相当的工作需要摸索,目前尚不能完全取代,但是其发展的前景很值得看好。 (3)有机试剂消耗量的减少。 在处理水样时,如果用固相萃取,则只需要在洗脱时用到有机溶剂,用量比传统液液萃取要少数十倍以上。对于实验者的人身保护和环境保护有着积极的意义。 二)批量生物材料的药物成分萃取 这是固相萃取在实际应用中比较成功的范例,主要是指在医院中检测血样和尿样时的前处理工作,由于对药物成份的吸附是固相萃取的优势,加上样品单一,组成固定,在确定方法后很适合大规模批量的净化操作。
检测样品: 环境水(除海水)
检测项: 有机污染物

杭州聚同电子有限公司

查看联系电话
前往展位

地表水、地下水、生活污水、工业废水和海水中有机氯农药和氯苯类化合物检测方案(气相色谱仪)

水是人类和其他生物生存所不可或缺的资源。水体污染危及地球上大多数生物和人类自身的生存。当前,我国一些地区水环境质量差、水生态受损重、环境隐患多等问题十分突出,影响并危及人类健康,不利于经济社会持续发展。 2015 年 4 月,国务院正式发布《水污染防治行动计划》(简称“水十条”),为当前和今后一个时期我国水污染防治指明了方向和奋斗目标。重点保护好饮水水源地、生态良好湖泊等高功能水体,消灭国控断面劣 V 类等污染严重水体。 针对水体中痕量挥发性有机物 VOC 监测,安捷伦科技为您提供全面的自动进样装置和捕集产品,使您能够针对应用选择最有效的进样方法:无论您需要的是简单高效的静态顶空进样,还是灵敏的吹扫捕集进样,或者是便捷的固相微萃取 (SPME)进样。同时,安捷伦科技的气质联用系统以其稳定的分析性能以及低至 ppb 和 ppt 级别的高灵敏度,为低浓度下半挥发性有机物 SVOC 的准确定量提供了可靠的保证。
检测样品: 环境水(除海水)
检测项: 有机污染物
参考标准: HJ 699-2014 水质 有机氯农药和氯苯类化合物的测定 气相色谱-质谱法

安捷伦科技(中国)有限公司

查看联系电话
前往展位

环境样品中水、土以及气中VOCs检测方案(自动进样器)

VOCs(Volatile organic compounds)即挥发性有机化合物, 世界卫生组织(WHO,1989)对总挥发性有机化合物的定义为,熔点低于室温而沸点在50~260℃之间的挥发性有机化合物的总称。 环境样品中VOCs的检测分析是每一个环境实验室的必检项目,环境样品中水、土以及气都会涉及VOCs测定,VOCs的检测分析是通过VOCs前端制备技术和GC/GCMS联机分析进行完成的。不同的样品类型选择不同的前端制备技术,VOCs前端制备技术主要有吹扫捕集、顶空、热解析、固相微萃取等等。但目前常规的检测制备技术存在很多问题,如效率低、自动化程度差、成本高、空间占地大、分析仪器资源利用不合理等等。Astation全自动多功能样品制备进样平台应用于常规实验室,可以将样品预处理,稀释,衍生,萃取,过滤,萃取,加标等,具有真正的多功能采样器:液体进样,静态顶空,ITEX动态顶空,MHE,固相微萃取,微固相萃取,热分解等集合在同一平台上,并可自动更换不同规格或类型进样器适配模组,同时大大提高了样品处理效率。可以离线或在线为各大品牌GC, GC/MS, LC, UV/VIS等仪器提供完善的样品前处理过程。主要用于制药、食品安全、生命科学、化工、环境和食品、香料等行业的应用。
检测样品: 环境水(除海水)
检测项: 有机污染物

北京莱伯泰科仪器股份有限公司

查看联系电话
前往展位

水样中污染物筛查检测方案(气相色谱仪)

水样分析实验室在进行完全定量分析之前,对大量化合物进行筛查的需求日益增加。使用 GC/MSD 对萃取的水样进行定性分析,能够了解样品中所含物质的近似浓度。 而现有的定性筛查工作流程主要依靠手动筛查,十分耗时且高度依赖于分析人员的技术水平。可能是基质复杂性的原因,手动筛查过程还可能导致化合物的遗漏或错误归属。此外,不同分析人员筛查结果的差异以及化合物鉴定的任何偏差都可能会导致数据分析耗费大量时间。通常情况下,手动审查的化合物列表中大约有 50 种化合物。每种化合物通过其保留时间 (RT)、质谱图以及目标离子和定性离子之比得到审查和鉴定,因此大大增加了单个样品要审查的化合物数量,并在已有基础上进一步增加了样品分析的复杂程度。例如,如果一位分析人员要筛查一个可能含有 1000 种化合物的样品,则可能需要花费 18 个小时才能完成这一个样品的审查。 Agilent SureTarget GC/MSD 水污染物筛查仪可为水样定性筛查提供直观简便的工作流程。Agilent SureTarget 分析工作流程不仅能够对众多化合物进行快速筛查,还能消除化合物鉴定中的偏差和不一致情况。SureTarget GC/MSD 水污染物分析仪预配置有最佳的硬件、消耗品、软件和分析方法,可快速实施水中污染物的筛查方法。
检测样品: 环境水(除海水)
检测项: 有机污染物

安捷伦科技(中国)有限公司

查看联系电话
前往展位

仪器信息网行业应用栏目为您提供1200篇环境水(除海水)检测方案,可分别用于物理指标检测、营养盐检测、有机污染物检测、有机物综合指标检测、(类)金属及其化合物检测、无机阴离子检测、生物检测、颗粒物检测、其他检测、生态检测、放射性检测、感官性状和物理指标检测、消毒剂检测、酸沉降检测、综合检测、微塑料检测,参考标准主要有《HJ 715-2014 水质 多氯联苯的测定 气相色谱-质谱法》、《HJ 696-2014水质 松节油的测定 气相色谱法》、《HJ 698-2014水质 百菌清和溴氰菊酯的测定 气相色谱法》等