可充电锂电池循环纳米晶体HT-LiCoO2阴极的扫描电镜研究

收藏
检测样品: 锂电池
检测项目: --
浏览次数: 638
发布时间: 2013-01-31
关联设备: 1种 查看全部
获取电话
留言咨询
方案下载

北京飞驰科学仪器有限公司

白金11年

解决方案总数: 86 方案总浏览次数:
方案详情
LiCoO2具有а- NaFeO2的结构类型,据报道当反复插入或者移动Li+时,可以保护分层的阳离子顺序。我们的研究发现,具有纳米粒度的颗粒在延长循环之后,包含在LiCoO2的阳离子出现无序状态。本研究采用德国Fritsch公司的 Pulverisette 5 四罐行星式高能球磨机,通过化学和机械研磨的方法,生成了粒径为70-300nm 的LiCoO2阳极粉末。通过扫描电镜研究发现,最初的O3结晶结构部分转化为立方结晶相,这种结晶相的形成可能是由于延长LiCoO2基可充电锂电池循环后引起的容量降级。由于扩散距离较短,小粒径的LiCoO2粉末(70 nm)的循环寿命在200次循环之后明显优于大粒径的LiCoO2粉末(300 nm)。 实验过程中,通过喷洒液氮溶液对Li/Co = 1.1的醋酸溶液进行冷冻,将部分冻结压缩的样品与K2SO4按照 1:10的比率混合,然后使用德国Fritsch公司的Pulverisette 5 四罐行星式高能球磨机,采用氧化锆ZrO2的研磨装置,仪器公转转速为600 rpm,研磨时间为24h,球料比为10:1。 具体的研磨粉碎实验方法及相关实验数据,欢迎您来电话与北京飞驰科学仪器有限公司取得联系。

方案详情

LiCoO2具有а- NaFeO2的结构类型,据报道当反复插入或者移动Li+时,可以保护分层的阳离子顺序。我们的研究发现,具有纳米粒度的颗粒在延长循环之后,包含在LiCoO2的阳离子出现无序状态。本研究采用德国Fritsch公司的 Pulverisette 5 四罐行星式高能球磨机,通过化学和机械研磨的方法,生成了粒径为70-300nm 的LiCoO2阳极粉末。通过扫描电镜研究发现,最初的O3结晶结构部分转化为立方结晶相,这种结晶相的形成可能是由于延长LiCoO2基可充电锂电池循环后引起的容量降级。由于扩散距离较短,小粒径的LiCoO2粉末(70 nm)的循环寿命在200次循环之后明显优于大粒径的LiCoO2粉末(300 nm)。 实验过程中,通过喷洒液氮溶液对Li/Co = 1.1的醋酸溶液进行冷冻,将部分冻结压缩的样品与K2SO4按照 1:10的比率混合,然后使用德国Fritsch公司的Pulverisette 5 四罐行星式高能球磨机,采用氧化锆ZrO2的研磨装置,仪器公转转速为600 rpm,研磨时间为24h,球料比为10:1。具体的研磨粉碎实验方法及相关实验数据,欢迎您来电话与北京飞驰科学仪器有限公司取得联系。 
确定

该文件无法预览

请直接下载查看

北京飞驰科学仪器有限公司为您提供《可充电锂电池循环纳米晶体HT-LiCoO2阴极的扫描电镜研究》,该方案主要用于锂电池中--检测,参考标准--,《可充电锂电池循环纳米晶体HT-LiCoO2阴极的扫描电镜研究》用到的仪器有德国FRITSCH(飞驰)P5 四罐行星式球磨机/仪

相关方案 更多