其他检测

解决方案

标准解读

检测项目类别:

推荐厂商:

天津语瓶仪器技术有限公司 语瓶仪器
可睦电子(上海)商贸有限公司-日本京都电子(KEM) 可睦电子(KEM)
岛津企业管理(中国)有限公司 岛津
施启乐(广州)仪器有限公司 施启乐
国仪量子上海新仪纽迈分析利曼中国
重置
全部品牌

检测项目:

参考标准:

湍动槽中耗散元素检测方案(粒子图像测速)

A new method to describe small scale statistical information from passive scalar fields has been proposed by Wang and Peters (2006). They used direct numerical simulations (DNS) of homogeneous shear flow to introduce the innovative concept. This novel method determines the local minimum and maximum points of a fluctuating scalar field via gradient trajectories starting from every grid point in the direction of the steepest ascending and descending scalar gradients. Relying on gradient trajectories, a dissipation element is defined as the region of all the grid points the trajectories of which share the same pair of maximum and minimum points. The procedure has also been successfully applied to various DNS fields of homogeneous shear turbulence using the three velocity components and the kinetic energy as scalar fields. To validate statistical properties of these elements derived from DNS (Wang and Peters 2006, 2008), dissipation elements are for the first time determined based on experimental data of a fully developed turbulent channel flow. The dissipation elements are deduced from the gradients of the instantaneous fluctuation of the three velocity components u5, v5, and w5 and the instantaneous kinetic energy k5, respectively. The required 3D velocity data is obtained investigating a 17.82 × 17.82 × 2.7 mm3 (0.356  × 0.356  × 0.054 ) test volume using tomographic particle-image velocimetry (Tomo-PIV). The measurements are conducted at a Reynolds number of 1.7× 104 based on the channel half-height  and the bulk velocity U. Detection and analysis of dissipation elements from the experimental velocity data are presented. The statistical results are compared to the DNS data from Wang and Peters (2006, 2008).
检测样品: 其他
检测项: 耗散元素

北京欧兰科技发展有限公司

查看联系电话
前往展位

仪器信息网行业应用栏目为您提供2243篇其他检测方案,可分别用于,参考标准主要有等