烟气中各成分检测方案(烟气分析仪)

收藏
检测样品: 废气
检测项目: 分子态无机污染物
浏览次数: 763
发布时间: 2016-05-11
关联设备: 3种 查看全部
获取电话
留言咨询
方案下载

北京乐氏联创科技有限公司

金牌15年

解决方案总数: 34 方案总浏览次数:
方案详情
烟道内烟气,既有正压工况的,也有负压工况的,甚至存在压力忽大忽小的变化工况。极端情况下,有些烟道还存在很大的负压(如宝钢烧结机头负压=20kPa)。针对大多数烟道负压的情况居多,德国益康J2KN烟气分析仪配置了大功率取样气泵。这一措施有效避免了抽不出气的问题,从而改变“负压降低采气流速”的问题。而同类品牌不少烟气分析仪则因为抽力不够,遇到烟道负压工况时,检测示值一定低于实际气体浓度。也就是说,只要你现场采气流速不等于实验室标定流速,测试示值肯定不准。因此,选择烟气分析仪时,抽气量是我们不得不考虑的一个重要因素。

方案详情

便携烟气分析仪应用探讨 1 前言 随着我国对大气污染防治的力度逐年加大,在国内已经逐渐建立起对污染物的排放监测网络,连续污染物排放监测系统CEMS系统的安装总数也接近两万套。如何有效保证监测系统的可靠运行,监测数据真实有效成为了环保和监测部门的重要关注点。 便携的烟气分析仪大量应用于监测系统的比对和校验,以保证监测结果的可靠性。实际应用中大多数监测系统已经采用了电化学测量原理或非分光红外原理的气体分析方法。 2 测量方法和原理 主流的烟气分析仪大多采用电化学和非分光红外的测试原理想结合。 目前国内市场高端的烟气分析仪还是以进口为主,侧重仪器性能及精度的话,则是以德国益康J2KN烟气分析仪为领先。 2.1电化学测试原理 电化学测试方法又称为定电位电解法,是国家对二氧化硫的标准测定方法之一。(HJ/T 57-2000《固定污染源排气中二氧化硫的测定 定电位电解法》)。 其核心器件电化学传感器的结构如图1。 图1 电化学传感器的结构 二氧化硫(SO2)扩散通过传感器渗透膜,进入电解层,在恒电位工作电极上发生氧化反应;由此产生极限扩散电流,在一定范围内,其电流大小与二氧化硫浓度成正比。 电化学传感器还可广泛应用于一氧化氮、氯化氢、硫化氢等气体的测定。由于传感器的制作对工艺和材料的特殊要求,目前仍然主要依赖进口。 2.2非分光红外测试原理 非分光红外气体测试方法已经广泛应用于工业过程和环境监测等领域。其核心部件红外传感器根据应用特点的不同,又可分为双光束、微流、微音器等不同类型。固定污染源监测系统中大量使用的是微流红外传感器,可实现对二氧化硫、一氧化氮、一氧化碳等主要污染物的测定。近年来,环保等相关部门也开始着手非分散红外测定方法的标准制定,以规范测试方法的应用。 红外微流传感器的结构如图2。 图2 微流红外传感器的结构 微流红外传感器技术的工作原理为:红外光源①发出的红外光,经过切光器②调制频率后,进入测量气室④;由于二氧化硫等异种原子构成的分子对红外光具有吸收特性,若测量气室④中存在上述气体,则进入测量气室的部分红外光会被吸收,未被吸收的红外光进入检测器⑤。检测器⑤由前气室、后气室、微流传感器⑥组成,前、后气室充满待测组分的气体。在红外光的作用下,检测器前、后气室中的气体发生膨胀;由于存在膨胀差异,会导致前、后气室之间产生微小的流量;微流传感器⑥检测到该流量后,产生交流电压信号,信号经处理后得到气体的浓度。 3电化学分析仪的应用分析 电化学分析仪具有小型、轻便、快捷等优点,在我国应用较多。但国内传感器制作技术有限,大部分仍需进口传感器,使用成本较大。实际使用中电化学仪器还会普遍存在取样流量、气体交叉干扰以及前处理等方面的问题。 3.1 取样流量对电化学仪器的影响 采用电化学传感器设计的烟气分析仪,不论是国产仪器,还是国外进口仪器,在使用过程中经常碰到“测不准”问题,即在实验室测试标准气体是好的,到了现场却测不准。这是因为,电化学传感器对流速的变化极为敏感。通常电化学类烟气分析仪的测试读数与采气流速呈“正相关”。 HJ/T 57-2000《固定污染源排气中二氧化硫的测定 定电位电解法》标准特别强调:“采气流速的变化直接影响仪器的测试读数”。 国家环境监测总站《火力发电业建设项目竣工环境保护验收监测技术规范》中也写道:“定电位电解法监测仪器对采样流量要求甚严,监测数据的显示与采样流量的变化成正比,当仪器采样流量减小时(例如烟道负压大于仪器抗负压能力),监测数据明显变小。在使用时为了减少测定误差,仪器的工作流量应与标定(校准)时的流量相等”。 而烟道内烟气,既有正压工况的,也有负压工况的,甚至存在压力忽大忽小的变化工况。极端情况下,有些烟道还存在很大的负压(如宝钢烧结机头负压=20kPa)。针对大多数烟道负压的情况居多,德国益康J2KN烟气分析仪配置了大功率取样气泵。这一措施有效避免了抽不出气的问题,从而改变“负压降低采气流速”的问题。而同类品牌不少烟气分析仪则因为抽力不够,遇到烟道负压工况时,检测示值一定低于实际气体浓度。也就是说,只要你现场采气流速不等于实验室标定流速,测试示值肯定不准。因此,选择烟气分析仪时,抽气量是我们不得不考虑的一个重要因素。 而现场测试过程中,流速对测量结果的影响往往难以暴露,只有当测试数据明显偏离时才会引起注意。所以对仪器操作人员提出了较高的要求,必须严格控制仪器标定和采样的流量,尽量保持一致。 3.2 气体交叉干扰对电化学仪器的影响 电化学传感器通过设置不同的电极电位,使得传感器对应某一特定气体敏感,从而达到测定的目的。但对于电极电位相似的气体,会产生交叉干扰。 提供电化学传感器的城市科技公司也明确给出了气体交叉干扰的参考数据: 单位:(%) 干扰气 传感器 SO2 NO NO2 CO H2S SO2 100 0 -120 <3 0 NO <5 100 -20 0 <35 表1 电化学传感器的交叉干扰参考数据 实际的应用中,燃油炉、燃气炉、水泥厂的监测过程中会出现SO2、NO测定值明显偏低或检测无的情况,主要是因为排放烟气中NO2的干扰原因。而在测定锅炉、水泥窑、烧结机烟气时,往往会出现SO2测定值明显偏大的情况,主要是因为排放烟气中CO的干扰原因。 虽然这些气体的交叉干扰已知,但由于干扰值的非线性和非重复性,大部分烟气分析仪无法对干扰值进行有效补偿,而德国益康烟气分析仪通过大量的现场实测数据,建立了专门的矩阵补偿方法将气体之间的交叉干扰降到最低,这也是益康烟气分析仪的测量精度优于同类产品的重要因素之一。 3.3 预处理对电化学仪器的影响 电化学仪器的前处理普遍比较简单,主要由取样探针、取样管和过滤器组成。 一般在不采用湿法脱硫的烟道气的含湿量不超过3% ,而采用湿法脱硫后的烟气含湿量往往大于5%,如果脱硫设备脱水不好, 烟气含湿量可高达12%。高含湿量的烟气进入取样管路后,由于温度下降超过露点温度, 取样管路将产生冷凝水,并会吸收一部分烟气中的SO2 , 导致进入传感器的SO2 浓度降低,造成监测结果出现负偏差甚至无。 因此,大多数高端的电化学仪器采用了加热探针、伴热管路以及冷凝除水的前处理系统来避免冷凝水对SO2的影响,以适应高湿低硫工况下的测量。目前,这种工况下SO2浓度低于30mg/m3的时候,大多数烟气分析仪则无法测出其SO2的真实浓度,而德国益康烟气分析仪配备140℃的高温加热管线则可以有效避免这个问题。 长期使用仪器后,由于烟气湿度的影响,在电化学传感器的渗透膜表面会形成结露水;结露水会影响气体分子的渗透,从而导致测量结果偏低,甚至测试不到目标污染物。所以电化学仪器每次使用前应抽取一段时间干燥清洁的空气吹扫传感器,以保证测量准确。 此外,电化学传感器使用寿命有限,在超过量程测试时还容易出现“中毒”现象,导致传感器失效。基于这些原因,便携电化学烟气分析仪的使用范围受到了一定的限制,尤其在类似背景气体复杂、高湿低浓度的测试条件下,已经不能满足监测或比对的要求。 4 红外分析仪的应用分析 红外原理的气体分析仪在污染源监测系统上的广泛应用,已经替代了电化学原理的仪器。随着国内自主知识产权的红外技术的开发成功,使得便携式红外烟气分析仪的普及成为了必然的趋势。 红外分析仪具有抗干扰能力强、受流量影响小、寿命长等特点,克服了电化学分析仪在应用中出现的问题。但在实际中还需要考虑以下因素的影响。 4.1 水分对红外仪器的影响 由于烟气排放中的水分,尤其是气态水是影响二氧化硫和氮氧化物测定的主要干扰物(参考图3 SO2、NO、H2O红外吸收光谱图),直接影响了仪器的测量精度。这也是为什么部分红外气体分析仪在实验室条件下使用标准气检定时合格,在现场测试却达不到要求的主要原因。 图3 SO2、NO、H2O红外吸收光谱 虽然便携红外分析仪大多采用了加热取样、冷干脱水的预处理方法,以防止水分冷凝和气态水分干扰。但事实上烟气中的水分无法完全去除,而且由于排放工况的变化和冷凝效率的原因,冷凝器的出口露点往往也存在波动。在高湿低浓度条件下,水分的干扰甚至超过了仪器本身的测量误差,干扰误差尤为明显。 消除水分干扰误差的方法通常有两种:一是采用脱水装置,二是设置水分传感器并进行软件补偿。 采用脱水装置的方法有采用高效干燥剂如无水高氯酸镁,或者采用NAFION膜式干燥管。其主要问题在于需要经常更换,人为增加了运行维护成本。仪器生产厂家也有可能在检定时使用脱水装置, 但是在运行时为减少运行费用不采用该装置,造成实际运行中的性能改变,导致仪器监测数据不确定度增加。 采用水分传感器和软件补偿的方法一般只修正零点的水分干扰,且低端的分辨率较低。对于同时含水和含SO2,NO的气体的修正精度很差。此外对于NO分析仪,由于在相同的气室长度下,NO的分辨率低于H2O的分辨率,采用水分传感器修正的方法对NO测定会造成很大的系统误差。 最新的测试技术是在在传统微流红外传感器的基础上增加了特殊调水机构。它是通过将不同温度下的饱和空气依次通入红外传感器,通过调节调水机构,使得含有非冷凝水的气体与零气的信号一致,通过硬件调节及软件线性修正,可最大限度消除H2O(气)对SO2、NO的干扰。进一步实验结果还表明,通过该方法调节后的传感器可以满足各种水分含量条件下的水分干扰消除,干扰的程度可控制在5ppm以内。 为满足类似高湿低浓度的测试条件,便携红外烟气分析仪应最大限度降低水分(气)干扰的影响,以提高实际测试精度。 4.2 HC化合物对红外仪器的影响 除了水分干扰以外,碳氢化合物,如焦化厂排放的气态污染物中存在未燃尽的CH4、C2H6、C2H4等对于SO2的测量结果会存在很大干扰。 针对可能对SO2测定产生的干扰,在红外微流传感器的前端设置可专门吸收HC波长的气体吸收过滤室,最大限度消除大部分HC化合物对SO2测量结果的影响。 在排放的碳氢化合物组成复杂的特殊条件下,如果需要完全消除HC对SO2的影响,还可以考虑在烟气流路中增加HC物理化学过滤器,以保证实际测试的精度。 4.3 测试分辨率对红外仪器的影响 随着污染物治理的加强,大量脱硫、脱硝装置得以应用,污染物实际的排放浓度也越来越小。这对便携红外烟气分析仪的测试分辨率也提出了更高的要求。 很多仪器为提高零点稳定性,会采用不同的算法,以保证减小零点的波动;还有如前所述,为了补偿水分的干扰影响,也会采用零点补偿方式。这样的直接结果就是在进行零点附近的低浓度测试时仪器没有反应。 参考《固定污染源废气 二氧化硫的测定非分散红外吸收法》(征求意见稿)的编制说明,对红外分析方法检出限和测定下限采用两种方法进行评价,一是按照ISO 7935-1992,仪器方法检出限为0.57-3.5 mg/m3,测定下限为3-10 mg/m3;二是按照HJ 168-2010,仪器方法检出限为0.77-1.3mg/m3,测定下限为4-6 mg/m3。 为保证低浓度测试条件下的测试效果,便携烟气分析仪的分辨率应不超过3mg/m3(1ppm),最新的国产烟气分析仪已经可以做到0.5mg/m3(0.2ppm),以满足更多测试条件下的应用。 5 结论 采用电化学原理的便携烟气分析仪在实际应用中反映的流速、干扰、水分冷凝等问题已经能够明显限制了其在监测和比对测试中的应用。采用红外原理的便携烟气分析仪克服了电化学仪器的主要缺点,开始逐渐取代电化学仪器。为了解决红外测试在应用中的问题,便携红外烟气分析仪还应该解决水分干扰、HC干扰以及高分辨率等问题,以提高便携红外烟气分析仪的适用性,保证测试结果的准确可靠。 烟气分析仪在提高燃烧效率中的应用 摘 要 本文介绍了燃烧产物及烟道气中氧气和一氧化碳的含量对燃烧效率的影响,以及烟气分析仪器的工作原理及其在提高燃烧效率中的应用。 关键词 燃烧效率 烟气 空燃比 1 前言 随着人们环保和节能意识的逐渐提高,众多大中型企业如钢铁冶金、石油化工、火力发电厂等,已将提高燃烧效率、降低能源消耗、降低污染物排放、保护环境等作为提高产品质量和增强产品竞争能力的重要途径。钢铁行业的轧钢加热炉、电力行业的锅炉等燃烧装置和热工设备,是各行业的能源消耗大户。因此,如何测量和提高燃烧装置的燃烧效率、确定最佳燃烧点,是十分令人关心的。 2 确定最佳燃烧效率点 供给加热炉、锅炉等加热设备的燃料燃烧热并不是全部被利用了。以轧钢加热炉或锅炉为例,有效热是为了使物料加热或熔化(以及工艺过程的进行)所必须传入的热量。根据炉子热平衡可知, 式中,Q——供给炉子的热量; Q1——炉子烟气(废气)中过剩空气带走的物理热; Q2——炉子烟气(废气)中燃料不完全燃烧而生成的或未燃烧的CO气带走的物理热; Q3——炉子设备热损失(包括炉体散热、逸气损失、冷却水带走、热辐射等); Q4——其他热损失。 由上式可以看出,炉子烟气带走的物理热是热损失中主要部分。图1显示了热效率和各项热损失随着空燃比α的增减的变化规律。 当鼓风量过大时(即空燃比α偏大),虽然能使燃料充分燃烧,但烟气中过剩空气量偏大,表现为烟气中O2含量高,过剩空气带走的热损失Q1值增大,导致热效率η偏低。与此同时,过量的氧气会与燃料中的S、烟气中的N2反应生成SO2、NOX等有害物质。而对于轧钢加热炉,烟气中氧含量过高还会导致钢坯氧化铁皮增厚,增加氧化烧损。 当鼓风量偏低时(即空燃比α减小),表现为烟气中O2含量低,CO含量高,虽说排烟热损失小,但燃料没有完全燃烧,热损失Q2增大,热效率η也将降低。另外,烟囱也会冒黑烟而污染环境。 图1 热效率与空燃比的关系 所谓提高燃烧效率,就是要适量的燃料与适量的空气组成最佳比例进行燃烧。实验研究表明,图2为烟气中氧含量和CO含量与炉子能耗的关系。 图2 烟气中O2和CO含量与炉子能耗的关系 图2中,“过量空气能耗”阴影面积表示富余的空气形成的能耗(或热损失),表征为烟气中O2含量。“过量燃料能耗”阴影面积表示有未完全燃烧的燃料所引起的能耗,表征为烟气中CO含量。可以看出,若要降低这两部分能耗(同时亦可提高产品质量),必须降低烟气中O2含量和CO含量,但烟气中O2含量和CO含量是互相制约的两个因素。若将上述两个阴影区叠加成另外一条曲线,即总效率热损失曲线,其最小值即为最佳的燃烧控制点,此处热损失最小、热效率最高,即烟气中O2含量约为1%。 由上文可知,热效率与烟气中的CO、O2、CO2含量以及排烟温度、供热负荷、雾化条件等因素有关。因此,可通过测量并控制烟道气体中CO、O2、CO2的含量来调节空气消耗系数λ,来达到最高燃烧效率。 燃烧效率控制由来已久,上世纪60年代,曾广泛采用CO2分析仪监测烟道气体中CO2含量来控制空气消耗系数λ以达到最佳,但CO2含量受燃料品种影响较大。70年代后,逐渐采用烟气中O2含量或O2含量和CO含量相结合的方法来控制燃烧效率。 提高燃烧效率最直接的方法就是使用烟气分析仪器(如烟气分析仪、燃烧效率测定仪、氧化锆氧含量检测仪)连续监测烟道气体成分,分析烟气中O2含量和CO含量,调节助燃空气和燃料的流量,确定最佳的空气消耗系数。 3 正确使用烟气分析仪 无论采取何种方式控制燃烧效率,快速、准确的测量烟气中O2含量和CO含量都是实现最佳燃烧的前提条件。因此,这里介绍一些典型的烟气分析仪器的工作原理及其使用方法。 3.1 烟气分析仪(或燃烧效率测定仪) 烟气分析仪是抽气采样炉窑烟道气体并自动进行成分分析的仪表,分为在线监测式和便携式。一般可以测量分析烟气中的CO、O2、NOX、SO2等气体含量,以及烟气温度、压力等,并通过计算获得CO2含量、过剩空气系数、烟气露点、燃烧效率、排烟热损失、烟气流量等热工参数。 烟气分析仪中一般安装多个传感器,分为电化学传感器和红外传感器。电化学传感器测量原理是将待测气体经过除尘、去湿后进入传感器室,经由渗透膜进入电解槽,使在电解液中被扩散吸收的气体在规定的氧化电位下进行电位电解,根据耗用的电解电流求出其气体的浓度。 红外传感器主要由红外光源、红外吸收池、红外接收器、气体管路、温度传感器等组成。它是利用各种元素对某个特定波长的吸收原理,当被测气体进入红外吸收池后会对红外光有不同程度的吸收,从而计算出气体含量。红外传感器具有抗中毒性好、量程范围广、反应灵敏等特点。 烟气分析仪利用测量得到的O2、CO含量等数据可计算得到相应的热工参数。其计算公式如下: CO2含量: 空气过剩系数: 排烟热损失: 燃烧效率: 这里,, 式中:O2、CO2——干烟气中O2、CO2的体积百分浓度,% CO2max——燃料完全燃烧生成的CO2最大值 Tgas、Tair——燃气温度、环境温度,℃ A1——燃烧效率系数 B——按Siegert公式计算出的校正系数 Vdrymin——干烟气体积 Cpm——燃气比热 Hu——燃气净热值 VH2O——水蒸气体积 CpmH2O——水蒸气比热 3.2 氧气分析仪 测量烟气中含氧量的仪表称为氧分析仪(氧量计)。常用的氧分析仪主要有热磁式和氧化锆式两种。 (1)热磁式氧分析仪 其原理是利用烟气组分中氧气的磁化率特别高这一物理特性来测定烟气中含氧量。氧气为顺磁性气体(气体能被磁场所吸引的称为顺磁性气体),在不均匀磁场中受到吸引而流向磁场较强处。在该处设有加热丝,使此处氧的温度升高而磁化率下降,因而磁场吸引力减小,受后面磁化率较高的未被加热的氧气分子推挤而排出磁场,由此造成“热磁对流”或“磁风”现象。在一定的气样压力、温度和流量下,通过测量磁风大小就可测得气样中氧气含量。由于热敏元件(铂丝)既作为不平衡电桥的两个桥臂电阻,又作为加热电阻丝,在磁风的作用下出现温度梯度,即进气侧桥臂的温度低于出气侧桥臂的温度。不平衡电桥将随着气样中氧气含量的不同,输出相应的电压值。 热磁式氧分析仪虽然具有结构简单、便于制造和调整等优点,但由于其反应速度慢、测量误差大、容易发生测量环室堵塞和热敏元件腐蚀严重等缺点,已逐渐被氧化锆氧分析仪所取代。 (2)氧化锆传感器式氧分析仪 氧化锆(ZrO2)是一种陶瓷,一种具有离子导电性质的固体。在常温下为单斜晶体,当温度升高到1150℃时,晶型转变为立方晶体,同时约有7%的体积收缩;当温度降低时,又变为单斜晶体。若反复加热与冷却,ZrO2就会破裂。因此,纯净的ZrO2不能用作测量元件。如果在ZrO2中加入一定量的氧化钙(CaO)或氧化钇(Y2O3)作稳定剂,再经过高温焙烧,则变为稳定的氧化锆材料,这时,四价的锆被二价的钙或三价的钇置换,同时产生氧离子空穴,所以ZrO2属于阴离子固体电解质。ZrO2主要通过空穴的运动而导电,当温度达到600℃以上时,ZrO2就变为良好的氧离子导体。 在氧化锆电解质的两面各烧结一个铂电极,当氧化锆两侧的氧分压不同时,氧分压高的一侧的氧以离子形式向氧分压低的一侧迁移,结果使氧分压高的一侧铂电极失去电子显正电,而氧分压低的一侧铂电极得到电子显负电,因而在两铂电极之间产生氧浓差电势。此电势在温度一定时只与两侧气体中氧气含量的差(氧浓差)有关。若一侧氧气含量已知(如空气中氧气含量为常数),则另一侧氧气含量(如烟气中氧气含量)就可用氧浓差电势表示,测出氧浓差电势,便可知道烟气中氧气含量。 氧化锆氧分析仪具有结构和采样预处理系统较简单、灵敏度和分辨率高、测量范围宽、响应速度较快等优点。 3.3 产品及应用 烟气分析仪器应用领域十分广泛,例如:(1)热电厂循环流化床锅炉用于燃烧控制室的烟道气体监测;(2)钢铁厂轧钢加热炉用于解决降低氧化烧损或脱碳层厚度时的炉气气氛检测;(3)全氢热处理炉用于检测辐射管是否烧穿漏气(4)研制新型燃烧器(蓄热式、低NOX式、辐射管式)时用于燃烧器结构尺寸的设计研究;(5)汽车尾气排放检测;(6)其他环境保护监测项目。 国内外烟气分析仪器产品众多,性能特点也参差不齐。其中,德国益康(ecom)rbr测量技术有限公司出品的烟气分析仪种类齐全、性能优良,占据了国内较大市场份额,拥有众多用户。便携式烟气分析仪主要有J2KN、EN2系列、CN等,在线式烟气监测系统有SGP型等。 笔者使用烟气分析仪进行炉窑热工研究,积累了一定的经验。图3为使用便携式rbr ecom-J2KN烟气分析仪进行新型辐射管燃烧器的实验研究。 图3 烟气分析仪在燃烧器研究中的应用 4 结束语 烟气分析仪已经成为控制炉窑燃烧和运行不可缺少的重要设备,正确使用它并通过它合理调节炉窑热工操作参数,将收到以下效果: (1)节约能源。减少助燃空气量和排风量,节省通风机动力费用。减少烟气中过量空气带走的热量损失,达到节能的目的。或减少过量燃烧供给量,直接实现节约燃料。 (2)减少环境污染。减少NOX、SO2等污染物的排放。 (3)提高产品质量。控制烟气残氧量可减少钢坯氧化烧损,提高企业经济效益。 (4)延长炉窑使用寿命。 我国有数十万台中小型工业锅炉和加热炉,我国的发电煤耗和吨钢能耗都与国际先进水平有一定差距,若能采用烟气分析仪器等自动控制手段,对有关燃烧参数进行在线、及时、准确的监测,以便实现人工调节或自动控制,使燃烧效率达到最高(或者较高),将给社会带来巨大的经济效益和社会效益。 锅炉能效(节能)测试设备的精度及要求 锅炉能效(节能)测试设备是特种综合检验机构对锅炉能效(节能)使用的监管监测设备.我公司专业对此监督部门提供锅炉能效(节能)测试全套设备,且完全符合总局特种设备局《关于贯彻执行〈锅炉节能技术监督管理规程〉和〈工业锅炉能效测试与评价规则〉的有关意见》(质检特函[2010]85号)的要求中对申请锅炉定型产品和在用产品能效检测设备的功能和精度要求,具体设备清单如下: 1.烟气测量 (1)便携式烟气分析仪2台套,测量O2、RO2的仪表精度不低于1.0级,测量CO的仪表精度不低于5.0级; (2)烟气成分采集分析系统1台套;线性输出不低于±1%;重复性不低于±1%FS;检出限0.1ppm(需采用网格法布置测点的大型锅炉能效测试必备设备)。 2.温度测量 (1) 温度采集系统(多点温度采集)1台套,测量最高温度800℃,精度不低于0.5级; (2)铂电阻温度计(测量介质温度)2台套,测温范围: -200至400℃,精度不低于0.5级; (3)高温热电偶(测量炉膛温度)1台套,测量最高温度1300℃,精度不低于0.5级; (4)红外线测温仪(测量表面温度)2台套,测温范围:-30至300℃,精度不低于±5%; (5)表面温度计(测量表面温度)1台套,测量最高温度300℃,精度不低于1级; (6)数字温湿度计(测量大气温度、湿度)1台,精度不低于1.5级。 3.压力测量 (1)数字压力计(测量烟风压力)2台套,精度不低于1级; (2)压力表(测量介质压力)2台套,测量最高压力6.0MPa,精度不低于1.6级; (3)大气压力表(测量大气压力)1台套,精度不低于1级。 4.流量测量 (1)超声波流量计(测量介质流量)2台套,精度不低于1.5级; (2)涡轮流量计(测温介质流量)1台套,精度不低于0.5级; (3) 电磁流量计(测温介质流量)1台套,精度不低于0.5级; (4)热流计1台套,精度不低于±3%;。 5.锅炉介质取样分析 (1)钠度计(测量含盐量)1台套,精度不低于±0.05%; (2)电导率仪(测量电导率)1台套,精度不低于±0.05%; (3) 蒸汽/锅水取样器1台。 6.燃料及灰渣取样分析 (1)煤质元素分析(C、H、O、N、S)、工业分析(、W、A、V)及发热量、灰渣可燃物含量分析装置1台套; (2)固体燃料制样装置1套; (3)煤粉细度分析装置1台套(煤粉锅炉能效测试必备设备); (4)煤粉取样器1台套(煤粉锅炉能效测试必备设备)。 7.其他 (1)电能表(测量电能耗量)1台套,精度不低于0.5级; (2) 衡器(煤量称重)1台,精度不低于0.5级; (3)飞灰取样器(烟尘取样)2台套。 露点与相对湿度  露点的原始定义一般说来是:湿度一定压力一定的被测量气体被降温,当降到一个特定的温度时出现结露现象,此时这个特定温度就是这个压力条件下的露点温度.所以才出现了从原始定义出发测量露点的镜面式露点仪,GE的测量镜面采用铂铑合金. 相对湿度是被测量气体的水蒸气分压与相同压力、温度条件下净水表面饱和水蒸气分压的比值。范围0-100% 单位RH,无量纲单位。 露点的测量环境要根据测量仪器的不同而定,镜面式露点仪一般要求流量,基本都为0.25升/分钟至5升/分钟之间,流量过大或过小都将导致测量不准确。探头式的在线露点仪也要求流量条件,它的流量性质准确的称为流速,不同压力下流速允许范围因传感器不同而异。GE的金基三氧化二铝传感器有许多种,种种不同,根据测量条件内置针阀式采样器的可测量更大压力气体的露点,MMY35典型的流速允许为  1bar 基本是常压了,可达50米/秒。但在10bar压力条件下,只有5米/秒的最大流速。 相对湿度基本没碰到过有什么要求,一般常见的是在相对湿度含量很低的情况下用露点表示,或者直接用含水PPM表示,因为你不能用小数点以后几个零的数字来表示,那样没有意义。高温下也一般已经不存在相对湿度的概念,因为水已经被完全汽化,根本不存在含水量的概念(高压下例外)。无论是高温还是高温高压下,现在的相对湿度传感器基本都是通过采样气体测量常温湿度,然后反推得出的。 结论:如果空气相对湿度达到100%RH,那么此时的空气温度就是露点温度,这个结果不难得出。 而且现在的计量单位,从一级到二级站基本都已经将镜面露点仪作为相对湿度的最高标准。 什么是相对湿度? 在相同温度下,空气中水汽含量与饱和水汽含量之间的比例。 详细解释: 压力为P,温度为T的湿空气的相对湿度是指给定的湿空气中,水汽的摩尔分数怀同一温度T和压力P下纯水表面的饱和水汽的摩尔分数之比,用百分数表示。 相对湿度是两个压强值之比: %RH = 100 x p/ps 在这里p 是周围环境中水蒸汽的实际部分压强值;ps是周围环境中水的饱合压强值. 相对湿度传感器通常是在标准室温情况下校准的(高于0度),相应的,通常认为这种传感器可以指示在所有温度条件下的相对湿度(包括在低于0度的情况). 冰会产生的蒸汽压强低于液态水。因此,当液态水水以冰的形式出现时,冷凝会相对湿度低于100%的情况下产生。 水汽压和相对湿度 中国科学院计算机网络信息中心提供的解释如下   大气中水汽的含量虽然不多,却是大气中极其活跃的成分,在天气和气候中扮演着重要的角色。大气中的水汽含量有很多种测量方法,日常生活中人们最关心的是水汽压、绝对湿度和相对湿度。   水汽压(e)是大气压力中水汽的分压力,和气压一样用百帕来度量。以前气压和水汽压常以水银柱的毫米数来测度,1百帕=0.75008毫米水银柱。在一定温度下空气中水汽达到饱和时的分压力,称为饱和水汽压(E)。饱和水汽压随着气温的升高而迅速增加。   绝对湿度(a)指单位体积湿空气中含有的水汽质量,也就是空气中的水汽密度,单位为克/厘米3或千克/米3。绝对湿度不容易直接测量,实际使用比较少。如果水汽压的单位为百帕,绝对湿度的单位取千克/米3,则两者关系为: 其中T是温度。 相对湿度(f)指空气的水汽压e与同一温度下的饱和水汽压E之比,以百分数表示是: 相对湿度的大小表示空气接近饱和的程度。当f=100%时,表示空气已经达到饱和;未饱和时,f<100%;过饱和时f>100%。相对湿度的大小不仅与大气中水汽含量有关,而且还随气温升高而降低。 湿度的单位换算 测湿仪表的显示值,通常是相对湿度或露点温度,在需要用其它单位时可进行换算。换算的方法如下: 1.相对湿度与实际水汽压间的换算 由相对湿度的定义可得: ---------------------------(1) 式中:RH----相对湿度,%RH; e----实际水汽压,hPa; E---饱和水汽压,hPa。 因此: -------------------------------(2) 即:实际水汽压等于相对湿度乘以相同温度下的饱和水汽压。 由于饱和水汽压E是温度的函数,所以用相对湿度换算为实际水汽压或用实际水汽压计算相对湿度,都必须已知当时的温度值。在计算饱和水汽压时,应确定是冰面还是水面,以正确选用计算公式。 2.相对湿度换算为露点温度 由于露点温度定义为空气中的水汽达到饱和时的温度,所以,必须先计算出实际水汽压。根据露点的定义,这时的水汽压就是露点温度对应的饱和水气压。因此,可以用对饱和水汽压求逆的方法计算露点温度。 用Goff-Grattch方程求逆非常困难,常用饱和水汽压的简化公式计算,而 简化公式很多,一般采用国军标GJB1172推荐的公式: ----------(3) 式中:E------为饱和水汽压,Pa; T------热力学温度,K; A、B、C为经验系数。其数值如下: 纯水平面: 0~100℃:A=20.013;B=16.286;C=2.492。 过冷却纯水平面: 0~-50℃:A=21.930;B=4.2526;C=4.422。 纯冰平面: 0~-100℃:A=23.151;B=-3.3151;C=6.10。 由公式(3)可以导出: ------------(4) 式中: 必须根据 的值按以下原则判断Td的范围: 当 >0时,Td>273.15K 当 <0时,Td<273.15K 最后由Td的范围确定A、B、C系数的大小。与(3)式的条件相同。 3.露点温度换算为相对湿度 用露点温度换算为相对湿度,要比相对湿度换算为露点温度简单得多。但必须已知当时的温度值,其计算步骤如下: (1)把露点温度代入饱和水汽压计算公式计算出当时温度条件下的实际水汽压e。 (2)把当时的温度代入饱和水汽压公式计算当时温度条件下的饱和水汽压E。 (3)用公式(1)计算相对湿度。 4.实际水汽压与露点温度的换算 可采用以下简化公式: --------------------------(5) 式中: -----露点温度,℃; e------实际水汽压,hPa; -----0℃时的饱和水汽压取6.11213hPa; a=17.5638; b=241.8243。 例如,在用通风干湿表测量露点温度时,就可先用干湿表公式直接计算出实际水汽压e,然后用上式即可计算露点温度。 4.实际水汽压与露点温度的换算 可采用以下简化公式: --------------------------(6) 式中: -----露点温度,℃; e------实际水汽压,hPa; -----0℃时的饱和水汽压取6.11213hPa; a=17.5638; b=241.8243。 例如,在用通风干湿表测量露点温度时,就可先用干湿表公式直接计算出实际水汽压e,然后用上式即可计算露点温度。 5.实际水汽压与绝对湿度的换算 实际水汽压与绝对湿度间存在以下关系: -------------------------------(7) 式中:a----绝对湿度,g/m3; e----实际水汽压,hPa; a----空气的体膨胀系数,a=1/273.15; t-----空气的温度,℃。 由于湿度传感器很少能直接测量绝对湿度,在计量检定中很少用绝对湿度换算实际水汽压。 5.用霜点相对湿度换算露点相对湿度 世界气象组织在《气象仪器和观测方法指南》中说明了大多数相对湿度传感器的特性,在0℃以下温度也采用水面相对湿度的优点。 (1)基本上对相对湿度敏感的大多数湿度表,在各种温度下都显示水面相对湿度。 (2)温度在0℃以下的大多数云,由水滴或主要由水滴组成。 (3)相对湿度大于100%时一般不予观测,这在天气报告中特别重要。因为在温度低于0℃时,大气相对于冰面经常处于过饱和状态。 (4)在现有的温度低于0℃的相对湿度记录中,绝大多数是相对于水面的测量值。 另一方面,大多数湿敏元件的初始校准往往是在0℃以上条件进行的,校准,即是定了“刻度”,在0℃以下测量时,其“刻度”不大可能改变。因此,对于大多数湿度敏感元件,在冰面条件下测得的相对湿度值,必须换算为水面相对湿度值。其方法如下: (1)用霜点相对湿度对应的温度值计算出冰面饱和水汽压 。 (2)以冰面饱和水汽压乘以霜点相对湿度得出实际水汽压e。 (3)用霜点相对湿度对应的温度值计算对应的水面饱和水汽压 。 (4)用实际水汽压e除以水面饱和水汽压 ,即可得过冷却水面对应的相对湿度。 基于水面饱和水汽压的相对湿度,要比相同温度条件下冰面的相对湿度偏低,温度越低,其偏低的值越大。 caohuali (​http:​/​​/​www.mycfd.cn​/​cgi-bin​/​profile.cgi?action=show&member=caohuali" \t "_blank​) 发表于: 2004/10/16 03:40pm 露点和霜点 露点(Dp)露点是指气体冷却,开始由水汽冷凝为液态水的温度。露点可能会是在0ºC以下 (过冷却水)。应将此定义与霜点相区别。(见下一条目) 霜点(Fp)霜点是指气体冷却,开始由水汽冷凝为固态冰的温度。霜点只会在气温低于结冰点以下时出现。 J2KN多功能烟气分析仪在水泥行业中的应用 烟气分析仪在新型干法旋窑烧成控制中,窑尾进料室和预热机C1出口的烟气分析(NOx、CO、O2及SO2含量)极为重要,是中控操作员的“眼睛”,因为烟气中各种气体含量能比较准确的反映窑内的烧成温度、窑内通风、反应气氛(一般要求为氧化气氛)等状况。 中控操作员可以根据进料室的NOx(表征窑内烧成温度高低)含量来加、减煤,通过CO及O2含量来判断窑内通风状况,可以增、减窑尾主排风机转速或开、关三次风管闸板开度来调整窑内通风状况。还可以根据SO2的含量多少及时调整窑况,防止窑尾结皮过重。这些气体的含量对于窑的操作比较重要,特别是在窑况波动时,这些数据对窑操作员做出准确判断尤其重要。我公司原来在进料室配置了一台离线式气体分析仪,由于使用频率较高,经常损坏或者出现测量的数据不准确(漂移,需要校准),有时对经验不足的操作员造成误导,以致影响到窑的操作。为了及时准确的掌握窑况,后来我公司购买了一台便携式的J2KN烟气分析仪,用来测量窑及预热机系统中的各种气体的含量,并经常和现有离线气体分析仪所测量的数据经行比对,给窑操作员提供准确的参数,对窑况做出准确的判断,及时的对风、煤、料、速进行调整,稳定窑的操作,给我司烧成系统能够高产、低耗、高品质、长期安全运转提供了有效的保障。 还用来测量预热机C1出口处的CO、O2来判断分解炉中的O2是否能保证煤粉在分解炉中完全燃烧,以及预热机系统拉风是否过大,造成烧成系统热耗增加。 我司每周用烟气分析仪对整个生料粉磨系统和熟料烧成系统进行测量标定: 生料粉磨系统:测量预热机出口O2含量、生料磨进口O2含量、生料磨出口O2含量,生料电收尘出口O2含量及系统风量,通过以上数据判断整个生料粉磨系统的漏风情况,做到及时堵漏工作,漏风即影响生料的产量亦浪费电耗,不利于经济生产。 b. 烧成系统:标定预热机C1出口和进料室的气体分析仪,为烧成提供及时准确的信息;测量C1出口的风量,判断系统拉风状况。;测量冷却机出口系统风量,看冷却机系统的操作工况 小结:烟气分析仪是水泥厂必不可少的仪器设备,它为整个生产线的运转提供了强有力的保障。它的经济效益也是巨大的,远超过了它本身的价值。 J2KN烟气分析仪不仅性能稳定,精度好,而且带无线遥控操作功能,其设计更倾人性化,是我们水泥行业监测的首选测量工具。 燃烧效率分析仪在陶瓷行业的应用 气氛在陶瓷领域中的运用 温度、气氛、压力通常被人们称为陶瓷烧成的“三大制度”,是陶瓷烧成过程中的决定因素。其中陶瓷窑炉的气氛,不仅影响了窑炉内的烧成温度,而且直接决定了陶瓷的烧成质量。比如在建筑卫生陶瓷中,各种花釉、色料在不同的气氛中呈色机理不一样,氧化不好时,坯体容易出现黑心等缺陷,所以一般要求的是氧化气氛下烧成;在日用陶瓷中,单从白度考虑,因原料中的含铁或钛量不同而要求烧氧化气氛或还原气氛,含铁量多的在还原气氛下是白里泛青,而在氧化气氛下是白里泛黄夹黑点;特种陶瓷如铁氧体陶瓷即磁性陶瓷,也就是俗话说的吸铁石、磁钢,只有在氧化气氛下才能达到预期的磁场强度、磁通、剩磁等物理化学性能要求指标。总而言之,不管是广义的陶瓷还是狭义的陶瓷,在烧成过程中对气氛的要求都十分严格。这里主要就建筑陶瓷的辊道窑去分析气氛对烧成的机理作用及控制方式等。 陶瓷烧成过程中的气氛要求 燃料燃烧时,根据燃料燃烧化学反应方程式计算出来的单位燃料完全燃烧时所需要的空气量叫理论空气量。在实际燃烧过程中为保证燃料的完全燃烧,实际供给的空气量往往要大于理论空气量,称为实际空气量。实际空气量与理论空气量的比值称为空气过剩系数α。燃烧时根据操作、控制α的大小不同,火焰的气氛也不同,也就有氧化焰、还原焰和中性焰之分。〈1〉氧化焰,空气过剩系数α>1,燃烧产物中有过剩的氧而不含可燃成分(如CO等)。〈2〉还原焰,空气过剩系数α<1,燃烧产物中含有可燃成分(如CO等)未燃完。〈3〉中性焰空气过剩系数α=1,燃烧产物中没有过剩的氧,也没有过剩的可然性成分。理论上中性焰的温度最高,但这往往难以控制。现时陶瓷窑炉基本上是采用油或气作为燃料。气体燃料燃烧时的空气过剩系数α值为1.05~1.15,而液体燃料燃烧时的空气过剩系数α值为1.15~1.25。 实际窑炉炉膛内尤其是辊道窑、隧道窑等连续性窑炉炉膛内,不仅存在燃烧产物,还存在因压力制度而导致的外界空气的侵入和急冷、各种气幕等打入的空气量。所以,炉膛内烟气的气氛指炉膛内有否及有多少CO、O2等。窑炉不同区域,单独侵入的空气量不同(尤其在密封性能不好,即辊棒与多孔砖之间、窑顶马弗板处石棉未塞好时),气氛也就不同。而陶瓷制品不是靠哪一个烧嘴烧成的,所以,考察炉膛内气氛是根本。   陶瓷工艺配方的不同,决定对烧成时气氛要求不一样,如工艺要求釉面砖(包括有釉卫生洁具)或含色料多的玻化砖,气氛则相当大程度上影响到产品的呈色。这主要是因着色离子在不同氧含量或一氧化碳含量的热气流中所呈价态不同而导致呈现不同颜色的原因。陶瓷制品烧成过程中,烧成速度越快,越容易会出现黑心、黑点、气泡、针孔等缺陷的可能,这是因为给有机质氧化还原反应的时间不足。而真正决定氧化还原反应快慢在于充分的烧嘴氧化气氛、炉膛氧化气氛以及相应的烟气流速。在某些特种陶瓷烧成过程中,气氛要求更为严格,因为气氛不同直接影响到最终产品物理、化学性能的达标。比如磁性陶瓷,因其原料为铁氧质,而铁离子在还原气氛与氧化气氛中分别存在不同的价态。 使用燃烧效率分析仪的陶瓷窑气氛控制方法 “生在配方,死在烧成”,陶瓷窑烧成对气氛的要求十分严格、十分重要乃为大多数工程技术人员所认同,然而如何针对性地去调节气氛,如何控制从而解决类似色差、色号、针孔、黑心、气泡、黑点、烟熏、盐霜等缺陷呢,这便是理论与实践相结合的问题所在。使用燃烧效率分析仪 (​http:​/​​/​www.gassensor.com.cn​/​product​/​typeid​/​5.html​),了解陶瓷窑炉内气氛的变化,结合温度、压力等热工参数,可针对性控制烧成过程中产品缺陷的形成。 如前所述,气氛通常分为烧嘴气氛和炉内气氛。烧嘴气氛决定了烧成温度并最终影响炉内气氛,但由于炉内环境复杂,通常难以测量。燃烧效率分析仪在实际应用过程中通常是测量排烟中的气体成分,分析燃烧效率,以控制气氛来指导烧成工艺调整。 一般陶瓷产品的烧成是在850~1050℃之间完成的,砖坯的氧化还原反应不充分时就容易出现黑心、黑点等缺陷。一般在不改变窑速的前提下应保证炉内气氛为氧化性气氛,即空气过剩系数α值为1.05~1.15。使用燃烧效率分析仪测试得到炉内空气过剩系数后,如果α值存在偏差时,通常的调节方法有两种:调整抽烟排量和调整烧嘴气氛,两种方法通常需要结合使用。 当实测的空气过剩系数偏差较大时通常采用调整抽烟排量来改变炉内新风的供给,使得炉内气氛为弱氧化性气氛,保证烧成过程中的氧化反应。但是当抽烟排量变化时,直接导致炉内烟气流速的变化,容易引起烧成段温度的改变,直接影响烧成效果。这时必须控制烧嘴温度的变化,适当调整烧嘴的燃烧,降低温度的变化引起的影响。当实测的空气过剩系数偏差较小时通常采用调整烧嘴气氛,在保证烧成温度分布的同时,改变炉内气氛。这种方法可精确调整烧成工艺,对产品质量有着直接应响。调整时还应该注意不要造成烧嘴飘火或冲烟现象,避免对炉内气氛产生的不良影响。 当然,对于炉内气氛控制的调整,除了考虑炉内温度外,还有炉内压力、窑炉密封性等多方面因素,调整方法也不能一概而论,需要综合考虑。但在调整过程中,燃烧效率分析仪对炉内气氛的监测尤其重要,这就对燃烧效率分析仪的性能提出较高的要求。 德国益康燃烧效率分析仪 (​http:​/​​/​www.gassensor.com.cn​/​product_detail_cn​/​typeid​/​5​/​id​/​13.html​)更适合气氛控制的要求 燃烧效率分析仪可抽取窑炉烟道气体并自动分析其成分,计算得到炉内的空气过剩系数或燃烧效率。燃烧效率分析仪中一般安装多个传感器,传感器根据测量原理不同分为电化学和红外两种。 电化学传感器由于结构简单,体积小巧等优点,大多数燃烧效率分析仪采用该原理的传感器,分别测量CO和O2,计算得到CO2,空气过剩系数等其他热工参数。实际使用过程中,由于不同窑炉的烟道压力不同,经常导致分析仪的取样流量不同或波动,电化学传感器易受到采样流量的影响,从而降低了测试精度,而德国益康燃烧效率分析仪采购大功率采样气泵不仅可以保证取样流量稳定,而且其可视化流量显示可以直观仪器采样流速是否正常,从而有效避免因流量不稳而影响测试精度的现象。 另外,由于烟道排放气体中还存在SOx、NOx等其他气体,会对CO测量产生交叉干扰的影响。虽然这些气体的交叉干扰已知,但由于干扰值的非线性和非重复性,大部分烟气分析仪无法对干扰值进行有效补偿,而德国益康燃烧效率分析仪通过大量的现场实测数据,建立了专门的矩阵补偿方法将气体之间的交叉干扰降到最低,这也是益康烟气分析仪的测量精度优于同类产品的重要因素之一。此外CO电化学传感器在排放气体浓度较高时还容易出现“中毒”现象,可能导致传感器完全失效。而德国益康燃烧效率分析仪则可配备CO超量程自动关断功能、自动抽取清晰空气清洗,有效避免CO传感器自“中毒”现象。同时德国益康烟气分析仪还具有灵敏度高,精度好,皮实耐用等等优点,这些特点均有利于实现窑炉气氛的精确控制。 实现CO2实测功能可实现过剩空气的精确控制 大部分使用电化学传感器的燃烧效率分析仪中CO2的浓度是通过计算得到的,并不能精确代表实际排烟中的CO2含量。参考GB/T 15317-2009 《燃煤工业锅炉节能监测》中关于空气系数的测试方法,空气系数是采用奥氏分析仪或燃烧效率分析仪,测出烟气中含氧量φ(O2),一氧化碳含量φ(CO)以及三原子气体含量φ(RO2),按公式(1)计算: …………………………….. (1) 通常认为排放中的CO、SO2等均为少量,可将公式(1)简化成公式(2): ………………………… (2) 如果忽略CO2,公式(2)进一步简化为公式(3): …………………………….. (3) 可以看出使用公式(3)的条件是实际燃烧状况接近完全燃烧,可对燃烧作一个近似估算。但陶瓷窑的燃烧状况复杂,受到各种因素的影响,要对窑炉气氛实现精确控制,以实现理想的燃烧工况,就必须使用公式(2)甚至公式(1)来评估燃烧状况,使用这两个计算方法的前提就是实现CO2测试功能。近年来市场销售的燃烧效率分析仪中,也逐渐出现了符合该要求此类仪器,比如德国益康J2KN烟气分析仪的则可同时实现CO、CO2和O2的实测,计算得到精确的空气系数,以指导燃烧控制。 总的来说陶瓷的烧成工艺决定了陶瓷产品的最终质量,对窑炉的气氛控制要求应该综合分析温度、压力等因素的影响,通过使用燃烧效率分析仪实现精确的测量,指导燃烧调整,最终达到提高陶瓷窑炉出炉质量和降低窑炉能耗的目的,为陶瓷生产企业提高效益。 气体监测的计量单位说明 气体计量名词解释 PEL – 准许暴露程度 IDLH – 对生命及健康的直接威胁 STEL – 短期暴露程度 REL – 推荐的暴露程度 TWA – 平均等待时间 Ceiling –最高限度 TLV – 估计起点 % LEL-发生爆炸的最低百分比含量 PPM – 每百万分之一个单位 %气体百分比含量 气体监测通用计量单位 气体的百分比含量(高浓度) % LEL – 引申应用 PPM – 每百万分之一个单位(低浓度) PPb - 十亿分之一单位(低浓度) LEL为计量单位的换算 甲烷 5% 体积 = 50,000 PPM = 100% LEL    戊烷 1.4%体积 = 14,000 PPM = 100% LEL    100% LEL(甲烷)= 50,000 ppm = 5% 体积 100% LEL(戊烷)= 14,000 ppm = 1.4%体积 热效率 热损失 随着我国对大气污染防治的力度逐年加大,在国内已经逐渐建立起对污染物的排放监测网络,连续污染物排放监测系统CEMS系统的安装总数也接近两万套。如何有效保证监测系统的可靠运行,监测数据真实有效成为了环保和监测部门的重要关注点。便携的烟气分析仪大量应用于监测系统的比对和校验,以保证监测结果的可靠性。实际应用中大多数监测系统已经采用了电化学测量原理或非分光红外原理的气体分析方法。
确定

还剩14页未读,是否继续阅读?

不看了,直接下载
继续免费阅读全文

该文件无法预览

请直接下载查看

北京乐氏联创科技有限公司为您提供《烟气中各成分检测方案(烟气分析仪)》,该方案主要用于废气中分子态无机污染物检测,参考标准--,《烟气中各成分检测方案(烟气分析仪)》用到的仪器有高温烟气分析仪MCA14m 、便携式总烃/甲烷/非甲烷总烃分析仪Model3010、英国SINGAL 4000VM NOX 氮氧化物分析仪