太阳能检测

解决方案

标准解读

推荐厂商:

菲力尔中国 FLIR
安捷伦科技(中国)有限公司 安捷伦
天美仪拓实验室设备(上海)有限公司 天美
岛津企业管理(中国)有限公司 岛津
人和科仪利曼中国瑞士万通林赛斯高麦克欧兰科技旗云创科PerkinElmer国仪量子普发真空欧波同泰思肯先锋科技洛克泰克博伦经纬北京谱朋天津兰力科赛默飞色谱与质谱大昌华嘉耐驰复纳科学仪器德国元素Elementar北京祥鹄卓立汉光HORIBAJGM金铠仪器北京安洲希望世纪百欧林韵鼎国际QUANTUM量子科学旗云中天天耀科技东方德菲仪器香港环球分析德尔微上海依阳实业
重置
全部品牌

检测项目:

参考标准:

中科院士李永舫有机光伏巨分子受体(GMAs)与小分子受体结构

有机太阳能电池(OSCs)因其在柔性和可穿戴光伏设备制造中的低成本溶液加工方法而备受关注。特别是全聚合物太阳能电池(all-PSCs),由于其良好的柔性和形态稳定性,在柔性设备领域显示出巨大潜力。然而,早期用于all-PSCs的聚合物受体在近红外区域的吸收能力较弱,且分子堆积不理想,限制了其进一步发展。为了克服这些挑战,提高功率转换效率(PCE),研究人员提出了聚合小分子受体(PSMA)的概念,利用窄带隙小分子受体(SMAs)作为关键构建模块。PSMAs不仅具有低带隙和强吸收的优点,还具有适合的分子堆积和较小的激子结合能,这些特性促使all-PSCs的PCE超过了17%。尽管PSMAs在all-PSCs的发展中取得了显着成就,但其光伏性能受批次变化的影响较大。为了解决这一问题,并实现更低的扩散特性,需要开发具有精确定义结构和接近聚合物分子量的新材料。 在这样的背景下,中科院院士李永舫团队设计了一系列巨大分子受体(GMAs),包括DY、TY和QY,它们分别具有两个、三个和四个小分子受体亚基。这些GMAs通过逐步合成方法制备,并用于系统地研究亚基数量对受体结构和性能的影响。基于这些受体的器件中,TY基膜显示出适当的给体/受体相分离,更高的电荷转移态产率和更长的电荷转移态寿命。结合最高的电子迁移率、更高效的激子解离和更低的电荷载流子复合特性,基于TY的器件实现了16.32%的最高PCE。发表于Nature Communications的结果不仅表明GMAs中的亚基数量对其光伏性能有显着影响,而且还证明了通过GMAs的结构多样化,可以深入理解从SMAs到PSMAs的性能差异,这对于推动高效率和稳定的有机太阳能电池应用至关重要。
检测样品: 太阳能
检测项: 光电效应​

光焱科技股份有限公司

查看联系电话
前往展位

OSCs结合宽带隙全无机钙钛矿Voc达2.116 volt

有机太阳能电池(OSCs)的发展已见成效,采用非富勒烯受体(NFAs)的小分子材料,使其能量转换效率(PCE)超过了19%。然而,有机材料在吸收光谱上存在局限,尤其是NIR和NUV区域的吸收不佳。为了提升光吸收能力,研究人员提出了低带隙NFAs和多组分策略,虽然提高了JSC,但在单一结OSCs中无法最小化高能量光子的能量损失。 串联太阳能电池(TSCs)结合了宽带隙(WBG)和低带隙(LBG)半导体,可以扩展吸收光谱,减少能量损失,从而提升光伏性能。研究人员探索了2T和4T两种结构,其中2T架构因其较低的寄生吸收和易于模块整合而受到青睐。然而,高性能WBG有机材料的开发相对落后,而全无机钙钛矿(如CsPbI2Br)因其可调的宽带隙和热稳定性,成为前子电池的理想材料。 南方科技大學 Aung Ko Ko KYAW 團隊於Advanced Science (DOI: 10.1002/advs.202200445 )中發表,使用CsPbI2Br作为前子电池的吸收层,通过ZnO/SnO2双层电子传输材料提高了电子提取效率和Voc。同时,采用窄带隙PM6体异质结(BHJ)膜作为后电池吸收层,以扩展吸收至900nm以上。透过热退火(TA)-自由制程改善了后子电池的性能,降低了界面电阻,抑制了非辐射复合,从而提高了Voc。最终,单片式2T-TSCs达到了20.6%的PCE和2.116V的Voc,创下了基于钙钛矿/有机吸收层太阳能电池的新纪录,并超越了单一结和叠层有机太阳能电池的最高报告PCE。这表明,结合WBG全无机钙钛矿的叠层策略是有效且创新的,能够充分利用太阳光谱,提升OSCs的效率。
检测样品: 太阳能
检测项: Voc損耗分析​

光焱科技股份有限公司

查看联系电话
前往展位

巧用绝缘聚合物矩阵, 全小分子有机太阳能电池的稳定性

有机太阳能电池(OPV) 凭借其轻薄、 柔性可弯曲和成本低廉等优势, 成为新一代光伏技术的重要发展方向。 而近年来, 全小分子有机太阳能电池(ASM OPV) 因其更易于合成、 更高的材料可重复性、 以及更易于精确调控材料特性等优点, 受到科研人员的广泛关注。 与聚合物太阳能电池相比, 全小分子有机太阳能电池ASM OPV 具有以下显著的优势和劣势: 优点: 1. 高纯度和可控性: 小分子材料可以通过精确的化学合成获得高纯度, 这使得材料特性更易于控制和重现, 从而提高电池性能的一致性和稳定性。 2. 电子迁移率高: 小分子材料通常具有较高的电子迁移率, 这有助于提高电池的光电转换效率。 3. 溶液加工性: 小分子材料通常易溶于有机溶剂, 适合溶液加工技术, 例如旋涂、 刮涂和印刷, 这些技术具有低成本和大面积制备的潜力。 4. 结构灵活性: 小分子材料的化学结构可以通过分子设计灵活调整, 以优化光吸收、 电荷传输和能级匹配。 5. 热稳定性: 小分子材料的结构稳定性较高, 一般具有更好的热稳定性, 这有助于提高电池的使用寿命。 缺点: 1. 薄膜形成难度: 小分子材料在成膜过程中容易出现结晶和相分离现象, 这会影响薄膜的均匀性和电池性能。 2. 溶剂选择有限: 虽然小分子材料可以溶解在有机溶剂中, 但合适的溶剂选择有限, 这可能会影响制程的灵活性。 3. 机械柔韧性较差: 小分子材料的机械柔韧性一般不如聚合物材料, 这可能会影响电池在柔性基板上的应用。 4. 成本相对较高: 由于小分子材料的合成过程较为复杂, 纯度要求高, 其成本通常高于聚合物材料。 5. 能级匹配挑战: 小分子材料的能级匹配需要精确设计, 这对材料设计和制备提出了更高的要求。 另外, ASM OPV 系统也存在着一些问题, 例如 其分子堆积和聚集结构通常比聚合物系统更加脆弱, 导致其在实际应用中更容易发生性能衰退。 近期, 香港理工大学李刚教授团队 在 Advanced Materials 期刊上发表了重要研究成果, 为提升全小分子有机太阳能电池的稳定性指明了新方向。
检测样品: 太阳能
检测项: 光电效应

光焱科技股份有限公司

查看联系电话
前往展位

AM1.5G A+级太阳光模拟器及量子效率量测提升全聚合物太阳能电池效率

全聚合物太阳能电池(all-PSCs)凭借其出色的稳定性和机械耐用性,被认为是未来太阳能电池应用的重要方向。全聚合物太阳能电池主要由供体和受体两种有机聚合物材料组成,其基本结构包括以下: l 透明导电电极: 通常由氧化铟锡(ITO)制成,用于光的透射和电子的导电。 l 电子传输层: 提高电子从活性层向电极的传输效率。 l 活性层: 由供体和受体材料组成,是光生电荷的主要产生区域。供体材料吸收光子产生激子(电子-空穴对),激子在受体材料处分离成自由电子和空穴。 l 空穴传输层: 提高空穴从活性层向电极的传输效率。 l 金属电极: 通常由银或铝制成,用于收集和导出电荷。 近年来,全聚合物太阳能电池的研究发展迅速: l 材料发展: 随着非富勒烯受体材料的快速发展,APSCs的光/热稳定性和柔韧拉伸性能显着提高。 l 转换效率: 研究显示,聚合物太阳能电池的转换效率已突破10%,这使其成为一种有竞争力的替代传统硅基太阳能电池的技术。 l 机械灵活性: APSCs表现出优异的透明性、溶液加工性和机械灵活性,使其在柔性电源系统中有广泛应用前景。 然而,由于其效率长期落后于小分子受体基太阳能电池,限制了其进一步发展。如何有效平衡并提升开路电压(Voc)和短路电流密度(Jsc)成为全聚合物太阳能电池领域的一大难题。 近期,香港科技大学颜河教授团队在国际顶级期刊 Energy & Environmental Science 上发表了突破性研究成果, 成功开发了一种名为PYO-V的新型聚合物受体, 它可以通过调节分子结构, 实现更宽的光谱吸收和更高的能量级, 从而有效提升了全聚合物太阳能电池的性能, 并实现了高效的多功能光伏应用。 颜河教授是香港科技大学化学系教授,长期致力于有机光伏材料与器件方面的研究, 在国际著名期刊发表了200余篇高质量学术论文。 他的团队致力于突破现有全聚合物太阳能电池的技术瓶颈, 为下一代高效稳定的光伏器件的开发提供新的思路和方向。
检测样品: 太阳能
检测项: 光电效应​

光焱科技股份有限公司

查看联系电话
前往展位

北卡教堂山分校黄劲松研发出强化屏障有效提高稳定性

钙钛矿太阳能电池(PSC)作为下一代光伏技术的重要候选者,近年来取得了飞速的发展, 其光电转换效率已经接近甚至超越了传统晶硅太阳能电池。 然而,钙钛矿太阳能电池的稳定性问题依然是制约其商业化应用的关键难题。 反向偏压(reverse bias)对钙钛矿太阳能电池的稳定性有着重要影响, 它可能导致钙钛矿材料分解, 进而影响电池的长期稳定性。 因此,理解反向偏压对钙钛矿结构和性能的影响是提高电池稳定性的重要研究方向。 研究人员需要深入了解反向偏压条件下钙钛矿材料的降解机制, 以找到提高其稳定性的解决方案。 研究反向偏压下的降解机理能帮助科学家找出钙钛矿太阳能电池的弱点。 这些研究有助于设计更加耐用的材料和结构, 以防止电池在反向偏压条件下快速降解。 同时,反向偏压会导致效率损失,这主要是由于电荷载流子的再结合速率增加以及可能的渗透电流增大。 了解和克服这些问题对于保持高效率运行的钙钛矿太阳能电池至关重要。 研究反向偏压对电池的影响还有助于改进封装技术, 防止环境因素(如湿气和氧气)在反向偏压条件下对钙钛矿材料造成的影响。 近期,北卡罗来纳大学教堂山分校黄劲松教授团队在国际顶尖期刊《Nature Energy》上发表了一项重要研究成果, 揭示了钙钛矿太阳能电池在反向偏压下失效的机理, 并通过构建强化屏障, 显着提高了钙钛矿太阳能电池在反向偏压下的稳定性。
检测样品: 太阳能
检测项: 光电效应​

光焱科技股份有限公司

查看联系电话
前往展位

南京大学谭海仁团队钙钛矿/晶硅叠层太阳能电池实现大规模制备

钙钛矿太阳能电池(PSCs)自2009年报导以来,由于其高效能、低成本和简单制备工艺迅速引起了学术界和工业界的广泛关注。其核心材料钙钛矿具有优异的光电特性,如高吸光係数、长载流子扩散长度和高载流子迁移率,使其成为下一代光伏技术的潜力选手。在过去十年间引发了广泛的研究热潮,并被认为是最有潜力替代传统硅太阳能电池的下一代光伏技术之一。 近年来,钙钛矿太阳能电池(PSCs) 的效率不断提升,并在 NREL 的效率认证数据中屡创新高。 叠层结构的出现自2017开始,在過去三年中,钙钛矿/晶硅叠层太阳能电池的效率取得显着的突破。 钙钛矿/晶硅叠层太阳能电池,更是被认为是未来实现更高效率和更低成本的理想方案。然而,在空气环境下实现宽带隙钙钛矿 (~1.68 eV) 的可扩展制备一直是一个巨大的挑战,因为水分会加速钙钛矿薄膜的降解。 南京大学谭海仁教授团队近期取得重大突破,他们在研究中发现,溶剂的性质对水分干扰的影响程度至关重要。通过深入研究,他们发现正丁醇 (nBA) 由于其低极性和中等挥发速率,不仅可以有效缓解空气环境中水分对钙钛矿薄膜的负面影响,還可以提高钙钛矿薄膜的均勻性,进而实现可扩展制备。
检测样品: 太阳能
检测项: 光电效应

光焱科技股份有限公司

查看联系电话
前往展位
< 1 2 3 ··· 6 > 前往 GO

仪器信息网行业应用栏目为您提供153篇太阳能检测方案,可分别用于气体流量检测、组分分析检测、光反应量子产率检测,参考标准主要有等