冷冻油

仪器信息网冷冻油专题为您整合冷冻油相关的最新文章,在冷冻油专题,您不仅可以免费浏览冷冻油的资讯, 同时您还可以浏览冷冻油的相关资料、解决方案,参与社区冷冻油话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

冷冻油相关的耗材

  • 冷冻保护箱
    冷冻保护盒Cryo-Preserver用于盛放试管样品放置于冷冻环境,适合液氮,干冰或丙酮,乙醇之类的制冷环境,是理想而冷冻样品盒或样品冷冻盒。把试管样品放入到冷冻保护盒中放置于上述冷冻环境可有效隔离制冷物质对于样品的污染,并且放置样品非常方便。把冷冻保护盒PappaCooler存放于您的冷冻环境中,准备样品时可以去除冷冻保护盒放置于工作台上,取出样品。存放样品时,直接试管插入即可。冷冻样品盒该设计经过优化,能够高效率大规模冷冻各种样品,在低温时保细胞原核和真核细胞并给予很高的存活率。使用样品冷冻盒PappaCooler省时省钱,不用需大量的能量产生溶剂和气体,节能环保。
  • 冷冻管/5ml 塑料冷冻管/冻存管
    冷冻管/5ml 塑料冷冻管/冻存管由上海书培实验设备有限公司为您提供,产品规格齐全,量多从优,欢迎客户来电咨询选购。产品名称:冷冻管产品型号:5ml市场报价:75(RMB)供货单位:上海书培实验设备有限公司冷冻管/5ml 塑料冷冻管介绍:一:冷冻管选用优质聚丙烯制成,高温高压消毒不变形。二:应用于样品的低温储存,用于保存全血、血清和细胞等样品三:冷冻管分为0.5ml冷冻管、1.8ml冷冻管、5ml冷冻管、10ml冷冻管,冷冻管也有塑料冷冻管、细胞冷冻管、细菌冷冻管等等。冷冻管/5ml 塑料冷冻管解冻方法:取出冷冻管后,须立即放入37 °C 水槽中快速解冻, 轻摇冷冻管使其在1 分钟内全部融化, 并注意水面不可超过冷冻管盖沿, 否则易发生污染情形。包装规格:200个/包
  • 塑料冷冻管/1.5ml 尖底冷冻管/冻存管
    塑料冷冻管/1.5ml 尖底冷冻管/冻存管由上海书培实验设备有限公司为您提供,产品规格齐全,量多从优,欢迎客户来电咨询选购。塑料冷冻管/1.5ml 尖底冷冻管冷冻管介绍:冷冻管选用优质聚丙烯制成,高温高压消毒不变形。冷冻管分为0.5ml冷冻管、1.8ml冷冻管、5ml冷冻管、10ml冷冻管,冷冻管也有塑料冷冻管、细胞冷冻管、细菌冷冻管等等。应用于样品的低温储存,用于保存全血、血清和细胞等样品塑料冷冻管/1.5ml 尖底冷冻管解冻方法:取出冷冻管后, 须立即放入37 °C 水槽中快速解冻, 轻摇冷冻管使其在1 分钟内全部融化, 并注意水面不可超过冷冻管盖沿, 否则易发生污染情形。产品包装规格:500个/包

冷冻油相关的仪器

  • 除油冷冻式干燥机 UAD 产品简介 U-AD系列一款带有除油功能的冷冻式干燥机,能将压缩空气内的油含量降低到无油水平。既能保护冷干机不受油类污染与侵蚀,延长其使用寿命,冷干效果始终如一,保证压缩空气的露点不会随着使用时间的增长而改变。同时经除油后的压缩空气冷凝水干净无污染。双冷却系统设计,能将高温气体完全冷却,使得整个设备运行效率更高效稳定。 工作原理 U-AD主要由除油净化器、冷冻式干燥机、精密过滤器和电控系统组成。其核心技术为低温催化氧化燃烧除油,并有效整合冷冻式干燥机,在高效除水的同时达到深度除油的效果。 冷冻式干燥机前置除油净化器,确保进入冷干机的压缩空气洁净无油,从而避免冷干机内换热器及管道积油,确保除水效果,提升使用寿命;另外洁净压缩空气冷凝后的冷凝水中不含油污,洁净的冷凝液可直接外排,不会污染环境。 产品特点 1、持续稳定的提供干燥洁净的压缩空气;2、压缩空气品质不受环境、温度、湿度影响;3、触屏式人机交互操作;4、采用独特管道设计,高效的热交换器,设备能耗低;5、与无油压缩机相比设备维护简单、采购成本更低、更稳定;6、提供压缩空气作为激光切割的辅助气体、经济、实惠、方便;7、延长激光加工设备中光学元器件的维护、清洁、更换周期;8、对加工件无污染。 鲍斯净化是鲍斯股份倾力打造的气体处理品牌,隶属于控股子公司重庆鲍斯。重庆鲍斯创立于2014年,旗下产品包括压缩空气净化器CAC、检测仪器、天然气提浓及液化处理设备等一系列高科技产品,覆盖生物医药、电子、食品、纺织、汽车、化工、电力等各行各业。同时也可提供化工及燃气项目回收利用及液化项目的技术咨询与服务、工程设计及施工管理、成套设备供应。 鲍斯股份,始创于2005年,于2015年在深圳交易所挂牌上市股代码:300441。公司总部位于蒋氏故里弥勒圣地——奉化,目前公司主要生产压缩机、气体处理设备等高端精密零部件及成套设备。
    留言咨询
  • 除油冷冻式干燥机 UAD 产品简介 U-AD系列一款带有除油功能的冷冻式干燥机,能将压缩空气内的油含量降低到无油水平。既能保护冷干机不受油类污染与侵蚀,延长其使用寿命,冷干效果始终如一,保证压缩空气的露点不会随着使用时间的增长而改变。同时经除油后的压缩空气冷凝水干净无污染。双冷却系统设计,能将高温气体完全冷却,使得整个设备运行效率更高效稳定。 除油冷冻式干燥机 UAD 工作原理 U-AD主要由除油净化器、冷冻式干燥机、精密过滤器和电控系统组成。其核心技术为低温催化氧化燃烧除油,并有效整合冷冻式干燥机,在高效除水的同时达到深度除油的效果。 冷冻式干燥机前置除油净化器,确保进入冷干机的压缩空气洁净无油,从而避免冷干机内换热器及管道积油,确保除水效果,提升使用寿命;另外洁净压缩空气冷凝后的冷凝水中不含油污,洁净的冷凝液可直接外排,不会污染环境。 除油冷冻式干燥机 UAD 产品特点1、持续稳定的提供干燥洁净的压缩空气;2、压缩空气品质不受环境、温度、湿度影响;3、触屏式人机交互操作;4、采用独特管道设计,高效的热交换器,设备能耗低;5、与无油压缩机相比设备维护简单、采购成本更低、更稳定;6、提供压缩空气作为激光切割的辅助气体、经济、实惠、方便;7、延长激光加工设备中光学元器件的维护、清洁、更换周期;8、对加工件无污染。 鲍斯净化是鲍斯股份倾力打造的气体处理品牌,隶属于控股子公司重庆鲍斯。重庆鲍斯创立于2014年,旗下产品包括压缩空气净化器CAC、检测仪器、天然气提浓及液化处理设备等一系列高科技产品,覆盖生物医药、电子、食品、纺织、汽车、化工、电力等各行各业。同时也可提供化工及燃气项目回收利用及液化项目的技术咨询与服务、工程设计及施工管理、成套设备供应。 鲍斯股份,始创于2005年,于2015年在深圳交易所挂牌上市股代码:300441。公司总部位于蒋氏故里弥勒圣地——奉化,目前公司主要生产压缩机、气体处理设备等高端精密零部件及成套设备。
    留言咨询
  • SH134冷冻机油絮凝点测定仪是依据《冷冻机油絮凝点测定法》GB/T12577、DIN51351 设计、制造的。适用于矿物类冷动机油,也适用于合成油类冷动机油絮凝点的测定。该絮凝点测定仪试验原理是:将一定量的试样和制冷剂在试验管里混合,互溶后放入絮凝点测定仪冷浴中,按一定的速度逐渐降温冷却,在光照下观察,当其中开始有乳浊或絮凝现象出现时,记下此时的温度。冷冻机油絮凝点测定仪适用于矿油类冷冻机油,也适用于合成油类冷冻机油。SH134石油冷冻机油低温性能絮凝点测试仪技术指标:● 适用标准:GB/T12577 DIN51351 ● 制冷方式:进口双压缩机复叠式制冷● 杜瓦瓶保温性、透明观察● 控温方式 :进口数显PID温控仪● 控温范围:常温~-70±0.5℃● 抽空系统:真空泵抽吸 快速接头连接● 计时方式:数显计时器 实验结束,声音告警提示● 做样单元:双管● 仪器尺寸 :720mm*450mm*680mm ● 重 量:75kg 山东盛泰仪器有限公司对出售给贵方的仪器提供如下质量保证:----提供的仪器材料是全新的、符合国家质量标准和具有生产厂家合格证的货物;----提供的材料、主要元器件符合技术资料中规定的技术要求;----设备整机质量保证期为一年(不含易损件正常磨损)。----在质量保证期内出现的仪器质量问题,我方负责免费维修。由于使用方责任造成设备故障,我方负责维修,合理收费。 ----设备终生优惠供应零部件,整机终生维护维修。 ----保质期满后,使用方需要维修及技术服务时,我方仅收成本费。
    留言咨询

冷冻油相关的方案

冷冻油相关的论坛

  • 新能源汽车驱动电机测试系统中存在冷冻油的影响

    新能源汽车驱动电机测试系统在运行的时候系统中如果存在冷冻油的话,就会造成新能源汽车驱动电机测试系统故障,那么具体的冷冻油对于新能源汽车驱动电机测试系统有什么影响呢?  冷冻油在新能源汽车驱动电机测试系统中的危害使冷凝温度和冷凝压力升高;冷凝器传热恶化。因为油进入冷凝器后产生的油膜的热导率远比金属小,使热阻增大,传热系数减小。新能源汽车驱动电机测试系统中的冷冻油使蒸发温度和蒸发压力下降,压缩机产冷量下降,单位功耗增加,使冷间降温困难。原因有两方面,一方面与冷凝器的原因一致;另一方面,由于在蒸发器内积油,将使蒸发器有效面积减少。  新能源汽车驱动电机测试系统中冷冻油易造成堵塞,引起系统工作不正常。这主要是由于油的粘度大,遇到污物和机械杂质易混合成胶状的物质,这种胶状物质积聚在截面较小的管道或阀门时,极易造成堵塞,引起制冷工况的紊乱。为避免和减少油进入,新能源汽车驱动电机测试系统,除设置性能良好的油分离器和正确掌握压缩机加油量外,在运转中必须做好制冷设备的定期放油工作。另外,还应注意加入与放出油量的平衡。如果发现压缩机加油量增多,而放出的油量减少,应查明原因及时排除,并增加放油次数,以防止过多的油进入制冷系统内。  新能源汽车驱动电机测试系统中冷冻油的影响不言而喻,建议新能源汽车驱动电机测试系统采用全密闭循环管路,这样运行中不会产生油雾以及冷冻油以及其他故障。

  • 快速温度变化( 湿热) 试验箱中冷冻油的重要性

    快速温度变化( 湿热) 试验箱中是能够经常用到冷冻油的,冷冻油的好坏也是可以影响快速温度变化( 湿热) 试验箱的使用,质量差的冷冻油对于快速温度变化( 湿热) 试验箱来时,影响是比较大的。  快速温度变化( 湿热) 试验箱冷冻油的闪点过低也会带来的危险。由于一般冷冻油的挥发性比较大,闪点过低会使制冷循环的油量增多,增大损耗增加本钱且不说了,更严重的是在压缩升温的过程中会增大发生燃烧危险的可能性,因此要求冷冻油的闪点比制冷排气温度高30度以上。  纯粹冷冻油化学成分稳定,不氧化,不会腐蚀金属。如果劣质冷冻油内含有制冷剂或水分时便会产生腐蚀作用,润滑油氧化后会生成酸性物,腐蚀金属。当冷冻油在高温时,会出现焦炭和污粉,若这种物质进入过滤器和节流阀容易堵塞。进入快速温度变化( 湿热) 试验箱压缩机,可能打穿电机绝缘膜,那就很轻易发生“烧机”了。  如果快速温度变化( 湿热) 试验箱冷冻油含有水分,会加剧油的化学变化,使油变质,引起对金属的腐蚀作用,同时还会在节流阀或膨胀阀处造成"冰堵"。而润滑油中含有机械杂质,会加剧运动件摩擦表面的磨损,造成压缩机损坏。  快速温度变化( 湿热) 试验箱的冷冻油具有一定的粘度才能让运动部件的摩擦面保持良好的润滑状态,从而能从压缩机带走部分热量并起到密封作用。冷冻油要在两种极端温度条件下工作:压缩机排气阀温度可高达100多度,而膨胀阀、蒸发器的温度则会低至-40度。这样的工作环境决定了它需要有很好的粘-温特性。假如冷冻油粘度不够,就会导致压缩机轴承和缸体磨损加剧、噪音升高,同时制冷效果降低,并缩短压缩机的使用寿命,甚至在极端情况下可能引起我们平时说的“烧机”,压缩机就是这样慢慢挂了。  快速温度变化( 湿热) 试验箱冷冻油的倾点也是一个可能导致“烧机”发生的指标。像刚才说过的,压缩机的工作温度变化范围较大,因此为了保证润滑油的作用能够得到正常发挥,一般要求它在低温状态下仍能保持很好的活动性。所以倾点一般应该低于冷冻温度,同时粘温特性也要好,这样才能保证冷冻油在低温环境下能从蒸发器顺利返回压缩机。假如冷冻油的倾点过高,就会导致回油过慢,那就很轻易发生“烧机”了。  快速温度变化( 湿热) 试验箱中冷冻油的重要性不言而喻,所以,快速温度变化( 湿热) 试验箱冷冻油在选择的时候,尽量选择品质好点的快速温度变化( 湿热) 试验箱。

  • 超高温材料冲击测试装置蒸发器冷冻油多怎么处理?

    超高温材料冲击测试装置中配件比较多,大到压缩机小到电气元器件都是很重要的,冠亚超高温材料冲击测试装置如果发现蒸发器冷冻油比较多的话,建议及时处理比较好。  超高温材料冲击测试装置蒸发器中冷冻油太多,也能引起制冷量不足而导致降温缓慢。超高温材料冲击测试装置蒸发器中存油,可直接通过其油面的冷热分界线来判断,如超高温材料冲击测试装置油位过高应及时放出。  有些氟利昂与冷冻机油互相溶解,因此,超高温材料冲击测试装置制冷系统里的制冷剂在循环流动时,就免不了会有冷冻机油残留于各部件。超高温材料冲击测试装置冷冻油残留在换热器内会影响传热系数。特别是当冷冻机油进入超高温材料冲击测试装置蒸发器后,若结构设计或安装不合理时,超高温材料冲击测试装置冷冻机油就会只进不出或多进少出,使蒸发器里残留的冷冻机油愈来愈多,严重影响其吸热效果,出现制冷量不足的情况,到这地步不处理的话温度就降不下去,因此,必须进行超高温材料冲击测试装置放油工作。  如何判断超高温材料冲击测试装置蒸发管内留有较多的冷冻机油而影响制冷是件较困难的事情。若遇到超高温材料冲击测试装置这种情况,则会出现一个明显的反常现象,即蒸发管上的白霜是稀稀拉拉的,结得不完全,并且呈浮霜,若无其他故障的话,那很可能是蒸发管内残留冷冻机油太多的缘故。清除超高温材料冲击测试装置蒸发器内冷冻机油,必须将它拆下来,进行吹洗再烘干。对排管式蒸发器,因拆卸很不方便,可将超高温材料冲击测试装置蒸发器的进口用压缩空气吹,然后用喷灯烘蒸发管。  超高温材料冲击测试装置的蒸发器种类也是比较多的,一旦存在冷冻油比较多的话,就需要我们及时解决。

冷冻油相关的资料

冷冻油相关的资讯

  • 徕卡课堂——冷冻断裂与冷冻蚀刻基础介绍
    揭示生物学样本和材料样本原本无法观察到的内部结构冷冻断裂是一种将冰冻样本劈裂以露出其内部结构的技术。冷冻蚀刻是指让样本表面的冰在真空中升华,以便露出原本无法观察到的断裂面细节。金属/碳复合镀膜能够实现样本在SEM(块面)或TEM(复型)中的成像,主要用于研究如细胞器、细胞膜,细胞层和乳胶。这项技术传统上用于生物学应用,但现在逐渐在物理学和材料科学中展现出重要意义。近年来,研究人员通过冷冻断裂电子显微镜,尤其是冷冻复型免疫标记(FRIL),对膜蛋白在动态细胞过程中所发挥的作用有了新的见解。作者:Gisela Höflinger图1:麦叶上的蚜虫适合于电子显微镜的环境电子显微镜的样品室通过抽真空处理降至极低压力。置于这种环境下的活细胞无法有效保全结构,因为细胞构成中的大部分水分会快速蒸发。生物样本的制备方法有很多种。样品材料被(固定)保存,这样后续脱水对原位结构的破坏最小,同时可以使用环境扫描电镜(SEM)或者将水冷冻。高压冷冻是观察自然状态下含水结构的唯一方法。高压冷冻所形成的冰不是六边形冰(从水变为六边形冰时体积会增加)而是无定形冰,因此体积保持不变。所以,对渗透和温度变化敏感的结构得以保留(见文章“高压冷冻基础介绍”)。要观察诸如细胞器、细胞膜、乳胶或液体的表面界面等结构,冷冻断裂是唯一的方法。通过刀片(或类似物)或释放弹簧负载的外力来破开冷冻样本,并沿着最小阻力线断裂样本。图2:冷冻断裂(来源:http://en.wikibooks.org/wiki/Structural_Biochemistry/Lipids/Membrane_Fluidity) 水的升华与凝结 – 冷冻蚀刻与污染要暴露冷冻断裂面,需要把冰去除。这就需要通过把断裂面的冰升华去除以保存样品的结构。升华的过程是冰不经过液态过程直接转化为气态。而液态过程会导致样品体积和结构的破坏。图3:ES,细胞外表面;PF,细胞膜冷冻断裂面;EF,细胞膜外层冷冻断裂面;FS,细胞膜内表面;Cyt,细胞质水的升华/冷凝过程取决于特定温度下的饱和压力,以及水或冰在室内的有效水分压。注意:良好的真空度会降低水分压。例如:温度为-120℃的冰或冰冻样本饱和压力约为10-7 mbar。如果样品室内达到这个压力,则冷凝和蒸发处于平衡状态。蒸发的分子数量等于冷凝的分子数量。在更高压力下,冷凝速度要快于升华速度 – 因此冰晶会在样本表面上生长。必须采取一切手段来避免这种情况。样本上方一个较冷(比样本更冷)的冷阱会降低局部压力,从而起到了冷凝阱的作用。从样本中带出的水分子优先附着在较冷的表面上。在低于饱和压力的压力下,更多的分子升华而不是冷凝,同时会发生冷冻蚀刻。执行冷冻蚀刻直到样本完全无冰,这一过程称为冷冻干燥。仅适用于合理时间内执行的小样本。该过程分为几个步骤,需要从大约-120℃加热到-60℃,同时在每个步骤上使温度保持一定时间。该过程需要几天的时间来完成。图4:饱和蒸汽压力(感谢Umrath 1982提供的图片)样本温度低于-120℃时,蚀刻速度非常慢,蚀刻持续时间会增加到不切实际的程度。如果真空室的压力固定,则可以通过提高样本温度来提高蚀刻速度。对于生物样本,要特别小心温度高于-90℃。蚀刻速度会大幅提高。另外,要注意玻璃态冰中形成六边形冰晶从而导致脱水伪像。纯水的理论升华速度会降低,因为:• 样本深处的水升华速度比表面的水更慢。• 盐和大分子溶剂会降低升华速度。• 生物样本中大量存在的结合水会降低升华速度。通过冷冻断裂生成图像冷冻断裂和冷冻蚀刻技术往往采用高真空精细镀膜技术,将超细腻重金属和碳薄膜沉积于断裂表面。冷冻断裂样本在一定角度下用金属覆盖,然后在碳背衬膜(徕卡EM ACE600冷冻断裂或徕卡EM ACE900与徕卡EM VCT500)上生成复型进行TEM成像或在SEM的试块面上进行成像。对于这两种方法,冷冻断裂表面经过一定的蚀刻时间后以相同的方式进行镀膜。首先在一定角度下进行一层薄的(2-7nm)重金属镀膜,以形成地形对比度(阴影)。其次再针对重金属薄膜,在90°下进行一层厚的碳层(15-20nm)镀膜,以稳定超薄电子束蒸发。此时的蚀刻处理会停止。要对极小的结构进行成像,需要在极低的角度(2–8°)镀膜重金属并在镀膜期间旋转样本。这样可增加细丝状及其它细小结构的对比度。此项技术又称为小角度旋转投影。蒸镀重金属薄膜需要采用电子束蒸发镀膜技术。这种镀膜技术可实现精细定向沉积。碳的支撑层稳定了未被金属覆盖的结构。随着温度的升高,这些结构会改变它们的轮廓,样本不会完全导电,复型也不会粘在一起。冷冻断裂酵母的单向投影图5:低温SEM,BSE(背散射电子)图像。Walther P, Wehrli E, Hermann R, Müller M.(1995)双层镀膜获取高分辨率低温SEM。J Microsc. 179, 229-237。图6:复型,TEM图像(感谢Electronmicroscopy ETH Zürich提供图片)。Walther P, Wehrli E, Hermann R, Müller M.(1995)双层镀膜获取高分辨率低温SEM。J Microsc. 179, 229-237。图7:徕卡高压冷冻,真空冷冻传输至冷冻断裂系统中,利用电子束发射枪和旋转样本底座来进行冷冻蚀刻和低温镀膜。徕卡真空冷冻传输至低温SEM。油/水基样品,–100℃(升华)3分钟暴露油脂结构。图8:徕卡高压冷冻,真空冷冻传输至冷冻断裂系统中,利用电子束发射枪和旋转样本底座来进行冷冻蚀刻和低温镀膜。徕卡真空冷冻传输至低温SEM。原生生物游仆虫混合培养的羽纹硅藻。感谢英国波特斯巴NIBSC的Roland Fleck博士提供图片图9:徕卡冷冻断裂系统及徕卡真空冷冻传输至低温SEM的HPF、冷冻断裂、冷冻蚀刻和低温镀膜。油/水基乳液破裂,露出洋葱状薄片结构,形成液滴。感谢汉堡拜尔斯多夫Stefan Wiesner博士提供的图片。图10:TEM中的酵母细胞复型。经徕卡高压冷冻和徕卡冷冻断裂复型制备。感谢Elektronenmikroskopie ETH Zürich提供的图片。图11:大麦叶上的真菌。安装于徕卡冷冻断裂仪样本台上,并通过冷却样本台在液氮下进行冷冻。徕卡冷冻断裂仪对样品进行部分冷冻干燥(在更高的样本温度下冷冻干燥)。使用钨镀膜。徕卡真空冷冻传输至低温FESEM 5keV。相关产品徕卡EM ACE900 高端EM样本制备冷冻断裂系统徕卡EM VCT500了解更多:徕卡官网
  • 冷冻机油分析检测参数
    冷冻机油广泛应用于各行各业,用于去除设备中的热量。典型的应用包括酿造厂,使酿造厂的温度保持在零摄氏度左右,以及需要稳定的冷冻水供应的化学工艺中。制冷机通常通过制冷循环或蒸汽压缩来运行。近年来,吸收式制冷循环在工业上并没有得到广泛的应用,因此我们将把注意力集中在采用蒸汽压缩技术的制冷机上。在这种方法中,热量被制冷液吸收,制冷液沸腾后由液体变为气体。热量被去除之后,气体再被压缩回液体。就像家用空调一样,热量通常被转移到设备外部去除,所以从冷却介质到环境之间是净热传递。这些系统通常是密封的,因此制冷剂不会逸出。那么密封系统为什么需要进行油液分析?系统中的需要通过泵和卷轴进行移动和压缩。我们需要监控的是系统组件中轴承和其他运动部件的状况。具体而言,我们要监测的是轴承,卷轴,油品质量和污染。.压缩机的一个独特之处在于润滑剂必须与驱动系统的制冷剂混溶。通常,制造商会推荐与其系统和所选制冷剂兼容的润滑油。现代的臭氧友好型制冷剂通常需要合成油。多元醇酯润滑剂在冷却器系统中变也得非常普遍。为什么要进行监测?油的质量 - 润滑油的状态会影响其混溶性。我们应该检查确保用的是正确的机油,而且油的状况良好。机油污染 - 如果油被污染了,会对制冷机的效率产生负面影响。特别是水污染会降低制冷机的效率。磨损 - 正如我们所说,监控的关键部件是轴承和卷轴。过度的污染或磨损碎片可能导致轴承失效。早期检测可以在系统故障前进行修复。早期修复通常成本较低,并且可以防止停机。推荐的测试参数有哪些?水分- 水污染会降低制冷机的效率,也会导致腐蚀和冷冻问题。确保油是干燥的可以省去很多麻烦。酸值/碱值 - 对于氟利昂或R-22等氯化制冷剂,建议对总酸值(TAN)进行测试。对于氨基系统,建议对总碱值(TBN)进行测试。总碱值会影响制冷剂中润滑剂的混溶性。真空粘度 (40 ℃) -运动粘度是流体在重力作用下的阻力。这是润滑剂最重要的物理特性。如果制冷系统中润滑油粘度下降,则表明分离器不能正常工作。冷却系统中粘度的测量有时很难测量,因为制冷剂溶解在润滑剂中,在测量粘度之前,制冷剂通常必须先排气。这可能需要几个小时。幸运的是,如果你使用的是斯派超MiniVisc 3000,就不需要此步骤。MiniVisc的毛细管设计允许润滑油在测量时排出气体。磨损金属 - 金属元素分析可以确定污染源,使问题根源诊断变得更加容易。铁磁颗粒浓度 - 铁磁材料磨损的急剧增加或磨损颗粒尺寸的急剧增加通常表明磨损状况的异常或正在恶化。监测磨损金属颗粒可以让维修人员在故障发生之前进行维护。.
  • 【瑞士步琦】冷冻干燥含酵母菌的微球应用
    瑞士步琦冷冻干燥含酵母菌的微球应用冷冻干燥应用”益生菌是一种有益于人体健康的微生物,常被用于改善肠道菌群。微胶囊包埋技术可以帮助保护菌株,延长其在体内的存活时间,不易受外界环境的影响而失活。因此,在生产益生菌产品时,需要考虑选择合适的微胶囊技术,以确保益生菌的稳定性和活性。下面这篇应用非常好的结合了微胶囊包埋和冷冻干燥技术,证明菌种经过包埋干燥后仍具有生物活性,为发酵工艺和食品转化等领域开辟新的可能性。1介绍冷冻干燥,也称为冻干是一种非常通用的脱水方法,常用于保存微生物、食物或药物,如蛋白质类药物。它将冷冻和干燥结合在一个独特的操作中,可以创造出高质量的干燥终产品。冷冻干燥通常用于保存微生物培养物,因为它具有不可忽视的优点:储存的方便性和增加邮寄微生物的可能性。此外,制得的产品只需要少量维护,培养基在储存过程中不会受到污染,微生物可以长时间保持活力。然而,众所周知,冷冻干燥技术对微生物至关重要,因为它对微生物的生存能力和生理状态都有负面影响。根据方法和生物体的不同,微生物存活率也各有不同;然而,活力水平明显低于液氮储存 2。观察到的活力下降主要是由于一些不良副作用引起的,例如细胞内冰晶的形成1、敏感蛋白的变性或在此过程中膜脂质的物理状态发生一些不可逆的变化 3,5。为了防止这种影响,通常在冷冻或冷冻干燥前使用脱脂牛奶、蔗糖、甘油、 DMSO 或海藻糖等作为冻干保护物质1,3。据报道,海藻糖在干燥、冷冻、渗透胁迫和热休克等极端环境下对酵母和细菌具有保护作用。这些保护效果与膜的稳定和酶活性的保存有关。关于海藻糖的保护作用,已经报道了几种假设。一些报道认为它的作用是通过多个外部氢键取代参与维持蛋白质三级结构的水分子,另一些报道认为它形成玻璃态结构以确保物理稳定性。除了发酵过程或食品转化,酿酒酵母或乳酸菌等微生物在益生菌膳食食品和饲料补充剂领域具有重要的经济意义。然而,这些应用需要在储存过程中保持细胞活力。通过造粒和冷冻干燥技术相结合,可以得到大小和组成均匀的无尘颗粒。由于具有更高的颗粒表面积,这使得产品将具有良好的颗粒流动性,更容易掌握的剂量和更快的产品复原性。尽管存在上述挑战,冷冻干燥仍然是一种酵母、孢子真菌和细菌的方便保存方法,因为它们的长期生存能力通常保持得相当好,而且菌株的储存和分发要求也很简单。因此,本应用旨在生产酿酒酵母颗粒作为模型微生物,使用微胶囊造粒仪 Encapsulator B-390 作为造粒机,将酵母悬浮液挤压进入液氮中形成单分散球体,然后使用冷冻干燥机 Lyovapor&trade L – 200 进行冷冻干燥处理。2仪器,试剂和器材仪器:ESCO NordicSafe, Biosafety Cabinet Class IIBUCHI 微胶囊造粒仪 Encapsulator B-390BUCHI 冷冻干燥机 LyovaporTM L-200 Pro,干燥腔体搭配可加热搁板BUCHI LyovaporTM Software试剂:YPD 培养基, Sigma Aldrich海藻糖, Sigma Aldrich脱脂奶粉琼脂去离子水液氮器材:玻璃培养皿液氮杜瓦瓶3实验本应用中描述的工作是在无菌条件下进行的。将 84g 市售面包酵母悬浮溶解在 50mL 无菌 YPD 培养基(Sigma Aldrich)中。在酵母悬浮液中加入 50mL 无菌冻干保护剂培养基(5g 海藻糖(Sigma Aldrich)和 5g 脱脂牛奶溶于去离子水中),然后用微胶囊造粒仪 B-390 进行制粒(表1)。将挤压后的液滴收集在液氮浴中冷冻,然后转移到不锈钢托盘中,保存在 -25°C 的冰箱中进行冷冻干燥。表1:微胶囊包埋参数_300μm 喷嘴1mm 喷嘴频率[Hz]68060电压[V]7502500压力[mbar]500500冷冻干燥步骤(初级干燥和次级干燥)使用 LyovaporTM 编程软件,如表 2 所示。使用 LyovaporTM L-200 Pro 干燥腔体、可加热的搁板和环境空气。表2:初级干燥和次级干燥冻干参数无酵母菌微球采用与含酵母菌微球相同成分培养基和参数进行制备。冷冻干燥后,将 1mL 无菌水加入 1mL 微球中,用以复原样品。对于含有酵母菌的菌珠,对每个重组溶液进行10倍、100 倍和 1000 倍的连续稀释。将复原后的溶液和稀释液分别涂于 YPD 琼脂平板上,如图 1 所示。琼脂板在 28℃ 培养 24h,评价细胞活力。▲ 图1:琼脂平板上的酵母活力测试4结果与讨论含有酵母的微球可以通过使用微胶囊造粒仪 B-390 进行包埋制备,结果表明:用微胶囊造粒仪 B-390 将酵母滴入液氮中,可使酵母迅速颗粒化;用 300μm 的喷嘴和 1mm 的喷嘴分别制备了 700μm 和 1500μm 左右的微球。仅使用含冻干保护剂介质的溶液也得到了类似的结果。如图 2 所示,冻干后的微球在形状和大小上与湿冻微球保持相似。▲ 图2:用微胶囊造粒仪 B-390 制得的 300μm 酵母微球,在冻干前(左)后(右)的对比通过扫描电镜对其结构进行分析。在图 3 中,可以观察到含有酵母的球珠(下两图)和仅由冻干保护剂培养基制成的球珠(上两图)在形态上的差异。含有酵母菌的微球具有由 5μm 颗粒组成的粗糙结构,可以认为是微生物,而只含有冻干保护剂的微球具有更光滑的结构。▲ 图3:含酵母菌的冻干微球(下)和不含酵母菌冻干微球(上)的结构对比当冷冻干燥时,考虑到膜中脂质物理状态的变化或由于某些蛋白质结构的变化,生物系统可能受到破坏3,9。为了验证酵母菌的活力,将酵母菌重新水合,稀释,并在 28°C 的 YPD 琼脂板上培养 24 小时。图 4 证实了文献报道的内容,即便失去了部分活力,酵母在冻干后仍然可以生长2,4,6,10。▲ 图4:在 28℃ 琼脂板中培养 24 小时后的酵母菌活力5结论含有酵母菌的微粒可以很容易地用微胶囊造粒仪 B-390 进行制备,并使用冻干机 LyovaporTM L-200 进行冷冻干燥处理。B-390 的喷嘴直径分别为300 μm和1000 μm,制得的微粒直径分别为 700μm 和 1500μm。冷冻干燥后,珠粒的大小和形状没有变化。该颗粒流动性好,容易掌握使用剂量,且与水混合后溶解速度快。冻干后的微生物在贮藏过程中仍能保持良好的活力,并能在复水化后成功生长。在本应用中,造粒包埋和冷冻干燥的结合显示出了非常好的实验结果。它可以在发酵工艺和食品转化等领域开辟新的可能性,有利于生产制备剂量易控制和重组的培养发酵剂;另外,在益生菌和食品补充剂领域中获得无尘且可自由流动的粉末,同时保证产品颗粒大小和组成的均匀度。6参考文献N’Guessan, F. K. Coulibaly, H. W. Alloue-Boraud, M. W. A. Cot, M. Djè, K. M. Production of Freeze-Dried Yeast Culture for the Brewing of Traditional Sorghum Beer, Tchapalo. Food Sci. Nutr. 2016, 4 (1), 34–41.Bond, C. Freeze-Drying of Yeast Cultures. In Cryopreservation and Freeze-Drying Protocols Day, J., Stacey, G., Eds. Methods in Molecular BiologyTM Humana Press, 2007 pp 99–107.Leslie, S. B. Israeli, E. Lighthart, B. Crowe, J. H. Crowe, L. M. Trehalose and Sucrose Protect Both Membranes and Proteins in Intact Bacteria during Drying. Appl. Environ.Microbiol. 1995, 61 (10), 3592–3597.Miyamoto-Shinohara, Y. Imaizumi, T. Sukenobe, J. Murakami, Y. Kawamura, S. Komatsu, Y. Survival Rate of Microbes after Freeze-Drying and Long-Term Storage.Cryobiology 2000, 41 (3), 251–255.Wolkers, W. F. Tablin, F. Crowe, J. H. From Anhydrobiosis to Freeze-Drying of Eukaryotic Cells. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 2002, 131 (3), 535–543.Lodato, P. Huergo, M. S. de Buera, M. P. Viability and Thermal Stability of a Strain of Saccharomyces Cerevisiae Freeze-Dried in Different Sugar and Polymer Matrices. Appl. Microbiol. Biotechnol. 1999, 52 (2), 215–220.Strasser, S. Neureiter, M. Geppl, M. Braun, R. Danner, H. Influence of Lyophilization,Fluidized Bed Drying, Addition of Protectants, and Storage on the Viability of Lactic Acid Bacteria. J. Appl. Microbiol. 2009, 107 (1), 167–177.Miyamoto, T. (Kyushu U. Kawabata, K. Honjoh, K. Hatano, S. Effects of Trehalose on Freeze Tolerance of Baker’s Yeast. J. Fac. Agric. - Kyushu Univ. Jpn. 1996.Giulio, B. D. Orlando, P. Barba, G. Coppola, R. Rosa, M. D. Sada, A. Prisco, P. P. D. Nazzaro, F. Use of Alginate and Cryo-Protective Sugars to Improve the Viability of Lactic Acid Bacteria after Freezing and Freeze-Drying. World J. Microbiol. Biotechnol. 2005, 21 (5), 739–746.Cerrutti, P. Huergo, M. S. de Galvagno, M. Schebor, C. Buera, M. del P. Commercial Baker’s Yeast Stability as Affected by Intracellular Content of Trehalose, Dehydration Procedure and the Physical Properties of External Matrices. Appl. Microbiol. Biotechnol. 2000, 54 (4), 575–580.
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制