类脂成分

仪器信息网类脂成分专题为您整合类脂成分相关的最新文章,在类脂成分专题,您不仅可以免费浏览类脂成分的资讯, 同时您还可以浏览类脂成分的相关资料、解决方案,参与社区类脂成分话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

类脂成分相关的耗材

  • AstecCHIROBIOTICT2色谱柱酸性化合物羧酸酚类小肽胺类脂肪族16019AST Supelco
    AstecCHIROBIOTICT2色谱柱酸性化合物羧酸酚类小肽胺类脂肪族16019AST Supelco16019ASTSupelcoAstec® CHIROBIOTIC® T2手性 HPLC色谱柱Astec® CHIROBIOTIC® T2 Chiral HPLC Column5μm particle size, L × I.D. 15cm × 2.1mmdescription HPLC columnpackaging pkg of 1eamfr. no. Astecparameter 0-45 °C temperature241 bar pressure (3500 psi)application(s) HPLC: suitableL × I.D. 15cm × 2.1mmmatrix high-purity silica gel particle platformparticle size 5μmpore size 200?operating pH range 3.8 - 6.8suitability suitable for L63 per USPseparation technique chiral◆产品描述:美国色谱科Supelco Astec CHIROBIOTIC T2手性 HPLC色谱柱CHIROBIOTIC T 和 T2 以替考拉宁作为手性选择剂。它们对编号类别的分子提供独特的选择性,特别是未衍生的 α, β, γ以及环状氨基酸、N-衍生氨基酸、羟基羧酸、酸性化合物(包括羧酸和酚类)、小肽、中性芳香族分析物以及环状芳香族和脂肪族胺类。通常在手性冠醚或配体交换型 CSP 上获得的分离也可能在手性化合物 T 和 T2 上进行,但在更简单的流动相(如水-醇)中进行。此外,所有已知的 β-受体阻滞剂(氨基醇)和二氢香豆素均已消退。CHIROBIOTIC T 和 T2 的结合化学和载体颗粒的孔径不同,使其具有不同的选择性和制备能力。键合相:替考拉宁操作 pH 范围:3.8-6.8颗粒直径:5、10 或 16μm孔径:100 (CHIROBIOTIC T) 或 200 (CHIROBIOTIC T2)Recommended productsDiscover LiChropur reagents ideal for HPLC or LC-MS analysis◆北京康林科技科技有限责任公司是美国Supelco公司一级代理商,供货美国色谱科Astec CHIROBIOTIC T2手性 HPLC色谱柱。Astec 为以下机构的注册商标: Sigma-Aldrich Co. LLCCHIRALDEX 为以下机构的注册商标: Sigma-Aldrich Co. LLC◆订货信息:16018ASTAstec CHIROBIOTIC T2手性 HPLC色谱柱5 μm particle size, L × I.D. 10 cm × 2.1 mm (Supelco)16019ASTAstec CHIROBIOTIC T2手性 HPLC色谱柱5 μm particle size, L × I.D. 15 cm × 2.1 mm (Supelco)16022ASTAstec CHIROBIOTIC T2手性 HPLC色谱柱5 μm particle size, L × I.D. 10 cm × 4.6 mm (Supelco)16023ASTAstec CHIROBIOTIC T2手性 HPLC色谱柱5 μm particle size, L × I.D. 15 cm × 4.6 mm (Supelco)16024ASTAstec CHIROBIOTIC T2手性 HPLC色谱柱5 μm particle size, L × I.D. 25 cm × 4.6 mm (Supelco)◆北京康林科技科技有限责任公司是美国Supelco公司一级代理商,供货美国色谱科Supelco Astec CHIROBIOTIC T2手性 HPLC色谱柱。 ◆欢迎联系北京康林科技科技有限责任公司咨询相关业务。AstecCHIROBIOTICT2色谱柱酸性化合物羧酸酚类小肽胺类脂肪族16019AST Supelco
  • AstecCHIROBIOTICT2色谱柱酸性化合物羧酸酚类小肽胺类脂肪族16024AST Supelco
    AstecCHIROBIOTICT2色谱柱酸性化合物羧酸酚类小肽胺类脂肪族16024AST SupelcoAstec CHIROBIOTIC T2手性 HPLC色谱柱Astec CHIROBIOTIC T2 Chiral HPLC Column5 μm particle size, L × I.D. 25 cm × 4.6 mmdescription HPLC columnpackaging pkg of 1 eamfr. no. Astecparameter 0-45 °C temperature241 bar pressure (3500 psi)application(s) HPLC: suitableL × I.D. 25 cm × 4.6 mmmatrix high-purity silica gel particle platformparticle size 5 μmpore size 200 ?operating pH range 3.8 - 6.8suitability suitable for L63 per USPseparation technique chiral◆产品描述:美国色谱科Supelco Astec CHIROBIOTIC T2手性 HPLC色谱柱CHIROBIOTIC T 和 T2 以替考拉宁作为手性选择剂。它们对编号类别的分子提供独特的选择性,特别是未衍生的 α, β, γ以及环状氨基酸、N-衍生氨基酸、羟基羧酸、酸性化合物(包括羧酸和酚类)、小肽、中性芳香族分析物以及环状芳香族和脂肪族胺类。通常在手性冠醚或配体交换型 CSP 上获得的分离也可能在手性化合物 T 和 T2 上进行,但在更简单的流动相(如水-醇)中进行。此外,所有已知的 β-受体阻滞剂(氨基醇)和二氢香豆素均已消退。CHIROBIOTIC T 和 T2 的结合化学和载体颗粒的孔径不同,使其具有不同的选择性和制备能力。 键合相:替考拉宁 操作 pH 范围:3.8-6.8 颗粒直径:5、10 或 16μm 孔径:100 (CHIROBIOTIC T) 或 200 (CHIROBIOTIC T2)Recommended productsDiscover LiChropur reagents ideal for HPLC or LC-MS analysis◆北京康林科技科技有限责任公司是美国Supelco公司一级代理商,供货美国色谱科Astec CHIROBIOTIC T2手性 HPLC色谱柱。Astec 为以下机构的注册商标: Sigma-Aldrich Co. LLCCHIRALDEX 为以下机构的注册商标: Sigma-Aldrich Co. LLC◆订货信息:16018ASTAstec CHIROBIOTIC T2手性 HPLC色谱柱5 μm particle size, L × I.D. 10 cm × 2.1 mm (Supelco)16019ASTAstec CHIROBIOTIC T2手性 HPLC色谱柱5 μm particle size, L × I.D. 15 cm × 2.1 mm (Supelco)16022ASTAstec CHIROBIOTIC T2手性 HPLC色谱柱5 μm particle size, L × I.D. 10 cm × 4.6 mm (Supelco)16023ASTAstec CHIROBIOTIC T2手性 HPLC色谱柱5 μm particle size, L × I.D. 15 cm × 4.6 mm (Supelco)16024ASTAstec CHIROBIOTIC T2手性 HPLC色谱柱5 μm particle size, L × I.D. 25 cm × 4.6 mm (Supelco)◆北京康林科技科技有限责任公司是美国Supelco公司一级代理商,供货美国色谱科Supelco Astec CHIROBIOTIC T2手性 HPLC色谱柱。 ◆欢迎联系北京康林科技科技有限责任公司咨询相关业务。AstecCHIROBIOTICT2色谱柱酸性化合物羧酸酚类小肽胺类脂肪族16024AST Supelco
  • 脂肪酸分析专用柱YMC-Pack FA/CA
    YMC-Pack FA/CA硅胶基质材料的脂肪酸分析专用柱此款色谱柱包括适用于脂肪酸、羟基羧酸分离用的FA柱和双羧酸用的CA柱两类。通过对样品进行衍生化处理,实现上述各类脂肪酸类的快速分离。特点:需进行2-NPH(2-Nitrophenylhydrazine)衍生可进行高感度、高选择性的定量分析衍生操作简单方便短时间内实现多种成分的分离简便的衍生化方法:

类脂成分相关的仪器

  • 日本YAMATO鱼类品质测量仪/鱼类脂肪/新鲜度测定仪主要用于鱼类的新鲜度检测及鱼肉脂肪含量的测量,广泛用于水产、食品、检测行业等等。设备的测量方式不会对鱼肉造成损伤,但必须触摸并接触到鱼才能进行测量。使用中避免过度用力按压仪器,这可能会导致数据不准确。鱼类品质测量仪/鱼类脂肪含量测定仪/鱼类新鲜度检测仪原理: 随着鱼的死亡,鱼的细胞也会随时间而变化。鱼死后,就会出现与鱼相对的阻抗变化。如果鱼肉是“紧实”或“硬”的,它就会被分级为“A”级别。一段时间后,鱼肉开始软化,阻抗开始下降,这种状态被分级为“B”级,因此随着时间的推移而逐渐退化。如果鱼一旦冷冻过,就不能判断它的脂肪比例和新鲜度水平,该设备会显示“解冻”。日本YAMATO鱼类品质测量仪/鱼类脂肪/新鲜度测定仪DFA 110技术参数: 测量原理:生物电阻抗法测量频率:5、20、50、100(kHz)测量响应时间:4秒显示模式:EL显示屏可测鱼类种类:鲭鱼、军舰金枪鱼、Anago、丸鱼,三文鱼、虹鳟鱼、蝴蝶鱼、鲈鱼、帆鳍沙鱼、石斑鱼、海鳗等脂肪量程:1~70%阻抗:30~999Ω材质:ABS配件:感应电极功能选项:蓝牙防水等级:IP65操作温度:-10℃~40℃新鲜度等级:A', A, B, C,D(A等级可直接生吃,C,D等级必须要烧熟才能吃,如下图)
    留言咨询
  • 肉类脂肪测试仪 400-860-5168转1665
    能够现场测量猪肉和牛肉的FAT质量(脂肪酸成分-SFA,油酸),便携式,无损,快速的NIR仪器,由可充电电池供电!技术指标测量项目1.油酸,2. SFA 3.单不饱和脂肪酸等。根据校准显示许多参数波长范围700?1,050纳米测量时间每次测量2?3秒纤维长度1,250毫米光源卤素灯,平均寿命40,000小时。ADC16位接口USB2.0功率可充电AA电池x 6个工作时间1小时 大约尺寸/重量296(阔)x98(高)x233(深)/ 5.3千克
    留言咨询
  • 干式索式提取器CY-SXT-04D脂肪测定仪主要特征:1、加热抽提,溶剂回收和冷却三大部分组成;2、抽提时间可设定,到时自动停止;3、采用金属加热块供热;4、电路和抽提空间完全隔离;5、脂肪测定仪操作时可以根据试剂沸点和环境温度不同而调节加热温度;6、大液晶屏微电脑控制,具有超温报警功能;7、试样在抽提过程反复浸泡及抽提,从而达到快速提取目的;8、同步显示设定温度、实时温度、设定时间和加热计时;9、可自动回收溶剂,大大方便了用户的使用,并节约了很多时间;奶类脂肪测定仪是采用比较法对奶的脂肪含量进行测量的仪器。其特点是简单、快捷、准确。在奶品的贸易中,它所出据的数据是对各类奶品定价的重要依据。其工作原理为:先将稀释液加温到一恒温温度并排汽,再将鲜奶和稀释液由分配系统配成1:15的混合液(稀释液的作用是用以溶解鲜奶中的蛋白质和消除混合液中的气泡),然后再将混合液加压均质,让一恒定光源透过混合液,并实现光电转换,光电流与奶脂肪含量是线性关系。用已知脂肪含量的标准奶样(用罗兹法确定)对仪器进行校准,然后再对待测奶样进行测定。将被测奶样示值与已知标准奶样的示值进行比较,经数据处理,即可得到被测奶样的脂肪含量,并显示出示值。从1989年起,我所开展了奶类脂肪测定仪的计量检定工作。在检定过程中,我们对该仪器的检修方法进行了总结和整理,现将该仪器的几种常见故障及其排除方法概述如下,以供参考。一、配比不正确奶类索式提取器脂肪测定仪的奶样与稀释液的配比为1:15,配比的不正确将直接影响测量结果的准确度。而配比的不正确多数是由于注奶器容积的偏差而引起的(管道漏气,单向阀与注奶器活塞的渗漏也可以引起)。检修时,先将注奶器(其结构如医用注射器)从底板上拆下来,松开阀盖,拧开外螺母。检修的同时,应更换掉已经磨损或损坏的垫圈、O形环、滑环。转动活塞杆,则活塞的位置相对位移,可引起注奶器容积的变化。依据检测数据,边测试边调试,直到满足要求为止。二、阀体的检修在奶样和稀释液流动过程中,共经过三个单向阀体一一两个吸人阀和一个排出阀。在使用过程中经常发生阀体被损坏的情况,其现象为配比错误和双向导液,使操作泵把失灵,示值错误。对于此类阀体的故障,不要急于拆修,可先用一个25d的手动注射器装满稀释液,分别从稀释液的进口和混合液的排出口注人纯净的稀释液,以排除由于干涸的奶样吸附了姆内钢球而使阀体失灵的故障。如果仍然不能解决问题,就要打开仪器上盖,把阀体拆开检查。打开阀体后,更换已磨损或损坏的钢球或垫圈,阀门关闭不严的则应更换不锈钢弹簧。此时应注意,各阀体都用不同的颜色加以区别,要按原位装上,不要弄错位置。三、管道漏气奶类脂肪测定仪从奶样的吸人到混合液的排出,要经历很长的管道通路,其间任何管道连接的疏松、漏气都将使测量无法进行。由于管道漏气的部位不同,其现象也不同。因此,在做任何检修前应先检查各部位管道的连接是否紧密,有无漏气的地方。排除了这种可能性之后,再进行其它各项的检查索式提取器脂肪测定仪根据索氏抽提原理、用重量测定方法来测定脂肪含量。即在有机溶剂下溶解脂肪,用抽提法脂肪从溶剂中分离出来,然后烘干,称量,计算出脂肪含量1、实样包扎:从备用样品中,用烘盒称取2-5g试样,在105度下烘30分钟,趁热倒入研钵中研磨。将试样研到出油状后,用脱脂棉蘸少量乙醚擦净研钵上的试样和脂肪,全部置入(筒底塞一层脱脂棉)滤纸筒内,后再用脱脂棉塞入上部,压住试样放入抽提器内。2、在抽提筒内注入无水乙醚约80ML左右,先将抽提器套住上方冷凝管,然后将抽提瓶套住抽提器,并移置水浴锅上,调节位置使抽提瓶保持良好接触,实验时旋塞竖向即可。3、开启电源,根据所需调节加热温度,显示屏直接显示加热温度值。4、进行溶剂回收时,使旋塞柄横向即可。5、回收完乙醚后,使冷凝管上提,抽提瓶从水浴锅上取出。置入恒温箱内,烘去水份,然后移入干燥缸内冷却后称重,计算含油量。6、使用完毕关闭电源,关水,并保持机内干净。干式索式提取器CY-SXT-04D脂肪测定仪从固体物质中萃取化合物的一种方法是,用溶剂将固体长期浸润而将所需要的物质浸出来,即长期浸出法。此法花费时间长.溶剂用量大、效率不高。在实验室多采用脂肪提取器(索氏提取器)来提取、脂肪提取器,就是利用溶剂回流及虹吸原理,使固体物质连续不断地被纯溶剂萃取,既节约溶利萃取效率又高。萃取前先将固体物质研碎,以增加固液接触的面积。然后将固体物质放在滤纸套1内,置于提取器2中,提取器的下端勺盛有溶剂的圆底烧瓶相连,上面接回流冷凝管。加热园底烧瓶,使溶剂沸腾,蒸气通过提取器的支管3上升,被冷凝后滴入提取器中,溶剂和固体接触进行萃取,当溶剂面超过虹吸管4的高处时,含有萃取物的溶剂虹吸回烧瓶,因而萃取出一部分物质,如此重复,使固体物质不断为纯的溶剂所苹取、将萃取出的物质富集在烧瓶中。液—固萃取是利用溶剂对固体混合物中所需成分的溶解度大,对杂质的溶解度小来达到提取分离的目的.一种方法是把固体物质放于溶剂中长期浸泡而达到萃取的目的,但是这种方法时间长,消耗溶剂,萃取效率也不高.另一种是采用索氏提取器的方法,它是利用溶剂的回流和虹吸原理,对固体混合物中所需成分进行连续提取.当提取筒中回流下的溶剂的液面超过索氏提取器的虹吸管时,提取筒中的溶剂流回圆底烧瓶内,即发生虹吸.随温度升高,再次回流开始,每次虹吸前,固体物质都能被纯的热溶剂所萃取,溶剂反复利用,缩短了提取时间,所以萃取效率较高1.萃取法提取粗咖fei因用滤纸制作圆柱状滤纸筒,称取10g茶叶,用研钵捣成茶叶末,装入滤纸筒中,将开口端折叠封住,放入提取筒中.将150 mL圆底烧瓶安装于电热套上,放入2粒沸石,量取95%乙醇100mL,从提取筒中倒入烧瓶,安装好索氏提取装置,见图4-21.1,打开电源,加热回流2小时. 实验时能够观察到,随着回流的进行,当提取筒中回流下的乙醇液的液面稍高于索氏提取器的虹吸管顶端时,提取筒中的乙醇液发生虹吸并全部流回到烧瓶内.然后再次回流,虹吸,记录虹吸次数.虹吸5-6次后,当提取筒中提取液颜色变得很浅时,说明被提取物已大部分被提取,停止加热,移去电热套,冷却提取液. 拆除索氏提取器(若提取筒中仍有少量提取液,倾斜使其全部流到圆底烧瓶中),安装1 $ 4 9 U L$ 5à2- 113 - 紧贴器壁又要能方便放置.2.生石灰起中和和吸水作用,以除去部分杂质.3.粗咖fei因中的水分除之后,才能进行升华操作,否则留有的少量水分会在下一步升华开始时带来一些烟雾.4.加热温度是升华操作成功的关键,升华过程中始终都应严格控制加热温度,温度太高,会发生炭化,影响结晶颜色,升华温度yi定要控制在固体化合物熔点以下.5.再升华是为了使升华,再升华过程也要严格控制加热温度.
    留言咨询

类脂成分相关的方案

类脂成分相关的论坛

  • 【分享】中药各类成分速记袖珍版

    [size=4][font=宋体]所言中药三大类,植物动物矿物堆。植物药占大多数,其他二者愧不如。[/font][/size][font=Tahoma][/font][size=4][font=宋体]植物生长发育中,新陈代谢多成分。有的遍布植物体,也有仅在器官中。[/font][/size][font=Tahoma][/font][size=4][font=宋体]糖类脂肪和蛋白,鞣质苷类生物碱;挥发油里氨基酸,树脂色素无机盐。[/font][/size][font=Tahoma][/font][size=4][font=宋体]当取部分做药用,药理作用先弄清;有效成分已查明,物质基础自然定[/font][/size][size=4][font=Tahoma].[/font][font=宋体]中药材中成分杂,有效无效可转化。苷类成分常有效,偶尔也被无情抛。[/font][/size][font=Tahoma][/font][size=4][font=宋体]鞣质似乎无作为,收敛止血不是吹。蛋白多肽常弃用,珍珠药中分量重。[/font][/size][font=Tahoma][/font][size=4][font=宋体]中药针剂有意义,其他剂型没法比,迅速入血快起效,安全更比效重要。[/font][/size][font=Tahoma][/font][size=4][font=宋体]化学成分不掌握,何谈中药之效果?中药成分若不清,药物效果难保证。[/font][/size][font=Tahoma][/font][size=4][font=宋体]有效成分提分离,配液灌装注射剂。重视生产和实际,理论同样要学习。[/font][/size][font=Tahoma][size=2][/size][/font]

  • 介绍单不饱和脂肪酸

    单不饱和脂肪酸是橄榄油、茶籽油的主要成分,花生油、芝麻油、米糠油、低芥酸菜籽油也含一些。适量摄入这类脂肪利于降血脂、抗血凝、延缓动脉粥样斑块的形成。

  • 【原创】“假鸡蛋”成分分析-环丙烯脂肪酸GC-MS分析

    这里所说的“假鸡蛋”是指因饲喂了含棉粕的饲料而导致出现鸡蛋蛋黄变硬,弹性增加的“橡皮蛋”。不是人造的。我之前在论坛里发过一篇“假鸡蛋”传闻的澄清与鸡蛋真假鉴别方法http://bbs.instrument.com.cn/shtml/20100910/2776825/饲喂含棉粕的饲料后,鸡所产的蛋在存放一段时间后,蛋清会出现淡粉红色,而煮熟后,蛋黄就会像乒乓球一样有弹性。这是因为棉粕中含有一类特殊的脂肪酸——环丙烯脂肪酸。这类脂肪酸在鸡蛋中的含量很低,而且很难买到标准品,所以要进行检测分析非常难,我按照GB/T 5009和GB/T9695.02-2008的方法进行脂肪抽提,甲酯化,使用GC/MS进行分析,结果根本测不到环丙烯脂肪酸。 直到最近,在网上找到一个GB 5413.27-2010 食品安全国家标准 婴幼儿食品和乳品中脂肪酸的测定的标准,按照这个标准的第二法,成功的从鸡蛋中检出了环丙烯脂肪酸。

类脂成分相关的资料

类脂成分相关的资讯

  • 不同加工方式对榛子油脂质组成的影响:一项脂质组学分析
    榛子是世界四大干果之一。榛子油是一种营养丰富、保健作用广泛、具有独特坚果风味的高级食用油。榛子油中的脂肪酸主要为油酸、亚油酸、棕榈酸和硬脂酸,不饱和脂肪酸的含量高达90%。其他生物活性成分和抗氧化活性物质也赋予了它抗氧化,抗衰老,提高免疫力,预防动脉粥样硬化,及促进胆固醇降解和代谢的作用。 脂质在生命活动中承担着关键的作用,具有多种重要的生理功能。脂质可分为八大类:脂肪酰(FAs)、甘油脂(GLs)、甘油磷脂(GPs)、鞘脂(SPs)、固醇脂(STs)、孕烯醇酮脂(PRs)、糖脂(SLs)和聚酮(PKs)。脂质组学(lipidomics)作为代谢组学的一个分支,利用现代质谱技术分析脂质的内在化学性质。高分辨率脂质组学平台的出现,包括鸟枪法脂质组学、液相色谱质谱联用(LC-MS)、基质辅助激光解吸电离串联飞行时间质谱仪(MALDI-TOF-MS)和成像脂质组学等都成为了分析脂质的工具。脂质组学的研究涉及脂质的定性定量分析、结构和功能特性分析以及在生理和病理阶段的动态变化分析等等。其在食品科学领域的研究主要围绕在食品营养和食品安全控制方面。高分辨率质谱已广泛用于研究食品成分、产地溯源、质量鉴定和真伪鉴别。 为探究加工方式对榛子油脂质组成的影响,鉴定不同榛子油样品的特征脂质。在本实验中,沈阳农业大学的孙嘉阳、吕春茂教授等将脂质组学应用于榛子油的研究。使用冷压法、超声波辅助有机溶剂浸提法和水酶法提取分别得到不同的榛子油样品(CPO、UHO和EAO)。利用超高效液相色谱串联四级杆飞行时间质谱(UPLC-QTOF-MS)和多元统计分析方法对榛子油中的脂质进行全面表征与分析。探讨了不同加工方法对榛子油脂质组成和油脂品质的影响。这些数据为榛子油的加工利用提供了新的见解,并将有助于榛子产品的开发与应用。榛子油脂质的定性利用UPLC-QTOF-MS在正负离子模式下对3种不同的榛子油样品进行扫描,利用二级质谱数据库进行光谱匹配,实现脂质的定性。在榛子油中共鉴定出98种脂质,包括负离子模式下的63种脂质和正离子模式下的35种脂质(图1A)。这些脂质分为3个大类(GL、GP和SP)和10个亚类。GLs包含2个亚类(二酰甘油(DG)和三酰甘油(TG)),GPs包含7个亚类(甘油磷脂酸(PA)、甘油磷脂酰胆碱(PC)、甘油磷脂酰乙醇胺(PE)、甘油磷脂酰甘油(PG)、甘油磷脂酰肌醇(PI),和其他GPs(PEtOH、PMeOH)),SP包含的1个亚类(神经酰胺(Cer))(图1B)。(A)正负离子模式下鉴定的脂质数量;(B)脂质亚类数量的百分比。图1 榛子油中脂质的定性分析榛子油脂质的定量CPO、UHO和EAO中的总脂质含量分别为1248646.6325、1056993.7416和1027794.9027 nmol/g。图2A~C显示了各亚类脂质含量所占百分比情况。CPO、UHO和EAO中TGs所占比例最大,分别为98.49848%、98.32412%和98.42983%,其次是DGs、PAs和PEs。图2D进一步比较了3种不同榛子油中同一亚类脂质含量的差异。CPO组中GLs(TGs和DGs)含量最高,这可能是由于机械挤压导致的较高脂质浓度所致。UHO组中GPs含量最高,PCs、PIs和PEs含量显著高于其他两组,UHO组中PAs的含量是EAO的117倍。GPs是生物膜的主要成分,在加工时榛子被浸泡在有机溶剂中,溶剂会破坏细胞膜,从而增加GPs的释放,产生这一结果。而EAO组中Cer含量更高,主要是Cer-NS。图2 (A)CPO中脂质亚类的百分比;(B)UHO中脂质亚类的百分比;(C)EAO中脂质亚类的百分比;(D)CPO、UHO和EAO中同一亚类脂质含量的比较在榛子油样品中共鉴定了15种脂肪酸(表1)。除C12:0月桂酸、C14:0肉豆蔻酸、C17:0十七烷酸和C18:3亚麻酸外,CPO组的其他脂肪酸含量均显著高于其他两组。在计算每种脂肪酸的百分比后,发现CPO、UHO和EAO中不饱和脂肪酸的百分比分别为93.39%、93.30%和93.55%。表1 CPO、UHO和EAO中的脂肪酸组成(%)多元统计分析首先对不同加工方式的榛子油样品进行主成分(PCA)分析,可以初步了解不同处理组之间的自然聚类趋势。在图3A的PCA得分图中可以观察到3种榛子油样品分离明显。图3B的PCA的载荷图显示出TG类脂质是区分榛子油的最重要变量。利用偏最小二乘判别分析(PLS-DA)筛选显著差异脂质。图3C得分图显示,PLS-DA模型可以有效区分三种不同的榛子油样品。为了进一步验证模型,我们进行了200次交叉验证,以评估其稳定性和预测能力。R2和Q2值分别为0.8687和0.7769(图3D)。这表明建立的PLS-DA模型具有较高的可靠性和预测能力,且不存在过拟合现象。(A)PCA得分图;(B)PCA载荷图;(C)PLS-DA得分图;(D)PLS-DA交叉验证图。图3 无监督和有监督模式的多元统计分析EAO、CPO和UHO间的显著差异脂质基于构建的PLS-DA模型,将VIP 1且P 0.05作为筛选条件。图4A显示了鉴定出的12种显著差异脂质情况,包括6个TAGs,3个DAGs、1个PC、1个PA和1个PE。这12种脂质在不同加工方式榛子油中具有显著差异。与UHO组相比,CPO组中9种脂质显示上调,3种下调,其中PC(PC 36:2|PC 18:1_18:1)变化最大(图4B)。与EAO组相比,CPO组有11种脂质显示上调,1种下调,PE(PE 36:3|PE 18:1_18:2)变化最大(图4C)。与EAO组相比,UHO组中有10种显著差异脂质显示上调,2种下调,其中PC(PC 36:2|PC 18:1_18:1)变化最大(图4D)。我们发现在不同加工方式榛子油中GP类脂质差异最大。这些脂质含量的变化可能直接影响油脂的质量和功能。因此,未来对特定亚类脂质进行靶向研究十分重要。这12种显著差异脂质也可以作为潜在的生物标志物对这三个不同加工方式的油脂进行质量控制。图4 (A)PLS-DA VIP得分图,右侧热图表示相应脂质的含量;(B)CPO和UHO之间的差异倍数图;(C)CPO和EAO之间的差异倍数图;(D)UHO和EAO之间的差异倍数图在本研究中,使用UPLC-QTOF-MS对榛子油进行了非靶向脂质组学分析。对CPO、UHO和EAO的脂质组成进行了定性和定量分析,鉴定出10个亚类的98种脂质。通过有监督和无监督的多元统计分析,确定了12种显著差异脂质。这些脂质可以作为潜在的生物标志物来区分三种加工方式的榛子油以及其他掺假检测和质量鉴别。本研究明确了榛子油的脂质成分,并证实了不同加工方式对植物油脂质的影响。这项研究的结果有助于我们理解油脂加工的机理,为今后特定脂质的研究提供有用的信息,并促进榛子油的开发和应用。作者孙嘉阳,女,中共党员,沈阳农业大学硕士研究生(在读),2019年辽宁省优秀毕业生,2020年沈阳农业大学优秀团干部。主要研究方向为榛子油加工及贮藏氧化机制。参与国家自然基金及辽宁省重点研发项目的相关研究工作 。以第一作者在Food Science and Human Wellness发表一篇SCI论文1篇,申请国家发明专利2项。吕春茂,男,博士,沈阳农业大学食品学院三级副教授,硕士生导师,沈阳市高层次“拔尖人才”,沈阳农业大学服务乡村振兴团队首席专家。主要从事果蔬精深加工、食品生物技术和食品质量与安全方面的教学与科研工作。近年来一直针对北方特色果蔬农产品的高值化利用和加工关键技术开展科学研究,包括东北特色经济林作物榛子的食品加工、加工过程中主要营养成分的变化与关联机制、深加工产品及其功能性评价、加工副产品的综合利用;寒富苹果精深加工产品研制及功能性评价、果渣等加工废弃物的综合利用;越橘精深加工产品研制与功能性评价等。共发表论文50多篇,SCI收录5篇,完成专著2部,参与编著教材2部。申请发明专利5项。目前主持辽宁省重点研发计划项目“东北榛子深加工综合利用关键技术研究与示范”等科研课题5项,参加国家重点研发计划“特色经济林采后果实与副产物增值加工关键技术”和国家自然科学基金项目“富含油脂的食品热加工过程中晚期糖基化终产物(AGEs)形成机理研究”的部分研究工作。获得省部级二等奖3项,三等奖2项。学术兼职:中国经济林协会榛子专业委员会理事;中国食品科学技术学会休闲食品加工技术分会理事;中国经济林协会加工利用分会理事;中国经济林协会板栗分会常务理事;辽宁省食品质量与安全学会理事;辽宁省农科院专业学位评审专家等。
  • 离子淌度差分质谱法直接进样快速定量千种脂质
    p style="text-align: justify "  span style="color: rgb(0, 32, 96) "strong背景介绍/strong/span/pp style="text-align: justify "  健康的身体是人人都想一直保持的,但是伴随着人的衰老,一些疾病的得病率也在不断攀升,例如:糖尿病、心血管疾病、神经退行性疾病等。脂质作为人体需要的重要营养素之一,在许多生物过程中都扮演着重要的角色,是人体细胞组织的组成成分,为机体供给所需的能量,以及协助细胞信号传导等。/pp style="text-align: justify text-indent: 2em " SCIEX公司于2011年美国质谱年会(American Society of Mass Spectrometry,ASMS)会议上展示了最新的SelexIONTM 技术。该技术是首个获得高重现性、耐用性及易用性的离子淌度差分质谱分离技术(Differential mobility Spectrometry,DMS),同时还可为高灵敏度的定量与定性分析提供更多的选择性。/pp style="text-align: justify "  近年来,随着科研人员对脂质研究的深入,发现疾病的发生通常伴随着体内脂质水平的紊乱,因此,将脂质作为疾病的生物标志物的研究也越来越火热,而如何全面检测并定量分析人体内的脂质含量成为了研究重点。/pp style="text-align: justify " span style="color: rgb(0, 32, 96) "strong 那么如何全面检测并定量分析人体内的脂质?/strong/span/pp style="text-align: justify "  在最新的一篇研究衰老的文献 “Cross-Platform Comparison of Untargeted and Targeted Lipidomics Approaches on Aging Mouse Plasma” 中,同时采用strong非靶向脂质组学与靶向脂质组学方法(LipidyzerTM)/strong研究衰老老鼠血浆中脂质的差异变化。在该文章中,非靶向脂质组学与靶向脂质组学方法工作流程如图1所示,非靶向脂质组学方法采用LC-HRMS技术,利用反相色谱方法分离脂质,数据分析采用传统的分析方法,进行峰提取、峰对齐、峰鉴定、归一化、峰定量、手动确证。靶向脂质组方法采用SCIEX公司LipidyzerTM平台,相比非靶向脂质组方法,LipidyzerTM采用strong差向离子淌度分离技术(DMS)/strong对脂质进行分离,因无需色谱分离,故采集时间更短 LipidyzerTM采用的是MRM 方法靶向分析脂质,故在数据分析过程中,仅需要3步(鉴定、归一化、定量)即可得到准确的定量结果。/pp引用文献:a href="https://www.nature.com/articles/s41598-018-35807-4"https://www.nature.com/articles/s41598-018-35807-4/a/pp style="text-align: center "img title="640.webp.jpg" alt="640.webp.jpg" src="https://img1.17img.cn/17img/images/201901/uepic/036d08a3-9fa8-473f-b1f5-595ab3341d09.jpg"//pp style="line-height: 16px "img style="margin-right: 2px vertical-align: middle " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a title="Cross-Platform Comparison.pdf" href="https://img1.17img.cn/17img/files/201901/attachment/bbe0fd7c-0aa9-44d4-9532-98d0ce313dc2.pdf" target="_blank" textvalue="Cross-Platform Comparison of Untargeted and Targeted Lipidomics Approaches on Aging Mouse Plasma.pdf"Cross-Platform Comparison of Untargeted and Targeted Lipidomics Approaches on Aging Mouse Plasma.pdf/a/pp style="text-align: center "img title="图1.webp.jpg" alt="图1.webp.jpg" src="https://img1.17img.cn/17img/images/201901/uepic/39c82326-fe5a-435a-8d92-c482ab684e96.jpg"//pp style="text-align: center "  图1. 靶向和非靶向工作流程/pp style="text-align: justify "  文章结果表明,LipidyzerTM方法在检测的脂质种类与数量上与传统非靶向脂质组学是相当的(图2),且都具有很好的定量准确度。研究者利用LipidyzerTM方法对衰老老鼠血浆的脂质差异性分析中发现strong甘油三脂TAG/strong在衰老过程中变化差异最大,说明TAG代谢在衰老过程中最为敏感,为未来走向临床提供了可靠的生物标记物。/pp style="text-align: center "img title="图2.webp.jpg" alt="图2.webp.jpg" src="https://img1.17img.cn/17img/images/201901/uepic/8a2de8e9-45b3-4c4f-98dd-033dd963924f.jpg"//pp style="text-align: center "  图2. LipidyzerTM检测出衰老过程中变化的脂质/pp style="text-align: justify "  span style="color: rgb(0, 32, 96) "strongLipidyzeTM提供高通量大规模脂质绝对定量“一站式”方案/strong/span/pp style="text-align: justify "  SCIEX对于脂质的检测分析也推出了相应的解决方案——LipidyzerTM,能够实现13大类,1000多种脂质的绝对定量分析。该平台(图3)提供了一套完整的靶向脂质组学解决方案,包含样品前处理,数据采集,以及数据分析。/pp style="text-align: center "img title="图3.webp.jpg" alt="图3.webp.jpg" src="https://img1.17img.cn/17img/images/201901/uepic/dcbbf113-2f59-435f-86ca-9ab372659d13.jpg"//pp style="text-align: center "  图3. LipidyzerTM平台/pp style="text-align: justify "  span style="color: rgb(0, 32, 96) "strong多重技术优势适用临床样本分析,助力精准脂质代谢与健康研究/strong/span/pp style="text-align: justify "  LipidyzerTM利用离子淌度技术(DMS)实现不同脂类的完全分离,具有极强的特异性 方法内包含strong13类脂质/strong,strong50多个同位素内标脂质/strong,覆盖了复杂的脂质代谢通路 通过内标的添加,实现每类脂质的绝对定量分析(图4)。该技术平台已在人血清和血浆分析中得到验证,成为临床脂质组分析的“即得”利器。/pp style="text-align: center "img title="图4.webp.jpg" alt="图4.webp.jpg" src="https://img1.17img.cn/17img/images/201901/uepic/ffc841ad-1c91-458d-b348-ef1b81e03916.jpg"//pp style="text-align: center "  图4. LipidyzerTM的优势/pp /ppbr//p
  • mRNA疫苗递送载体分析技术进展与应用-脂质纳米颗粒
    脂质纳米颗粒(Lipid nanoparticles, LNPs)是一种具有均匀脂质核心的脂质囊泡,因其高包封率和高转染效率等特点,广泛用于核酸等药物的递送,目前 Moderna、CureVac和BioNTech等mRNA 疫苗企业研发的预防新型冠状病毒肺炎(COVID-19)mRNA 疫苗均采用了LNPs递送技术。LNPs 是一种多组分脂质递送系统,通常包括阳离子/可电离脂质、中性磷脂(辅助性脂质)、胆固醇以及聚乙二醇化脂质(PEG-脂质),如图1所示。阳离子/可电离脂质是LNPs系统实现递送功能的关键,由于LNPs带正电,能够吸引带负电的mRNA,并结合在LNPs内部,可以避免被溶酶体降解,提高mRNA在体内的稳定性。LNPs的各种组分的准确含量和配比是脂质纳米颗粒的形成和稳定的重要影响因素,如磷脂和胆固醇能够稳定LNPs结构,聚乙二醇化脂质能够延长LNPs在生物体内的循环半衰期。因此,分析和监测LNPs制备过程的脂质载体是控制LNPs质量的关键,能够保证脂质纳米颗粒的形成并提高其稳定性。由于LNPs的主要四种组成组分的结构中不含明显的紫外吸收基团,在传统的紫外检测器上没有或具有较低的响应信号,因此高效液相色谱-蒸发光散射联用技术(HPLC-ELSD)和拉曼光谱技术(Raman spectra)是LNPs研发和生产中常用的分析技术,本文对这两种常用的脂质纳米颗粒分析技术进行简要介绍。图1. mRNA脂质纳米颗粒示意图1. 高效液相色谱-蒸发光散射联用技术(HPLC-ELSD)1.1 技术原理:高效液相色谱-蒸发光散射联用技术(HPLC-ELSD)将高效液相色谱与蒸发光散射通用检测器联用,其中蒸发光散射检测器(evaporative light scattering detector,ELSD)是20世纪90年代出现的通用型检测器。其工作原理如图2所示,被分析对象经过色谱分离后,随流动相从色谱柱流出,流出液引入雾化器与通入的气体(常为高纯氮,也可是空气)混合后喷雾形成均匀的微小雾滴,经过加热的漂移管,蒸发除去流动相,被分析组分形成气溶胶,然后进入检测室,用强光或激光照射气溶胶,产生光散射,最后使用光电二极管检测散射光。图2. 蒸发散射检测器(ELSD)的部件及原理[3]1.2 技术特点:高效液相色谱-蒸发光散射联用技术(HPLC-ELSD),采用的蒸发光散射检测器能够检测不含发色团的化合物,非常适合紫外检测响应信号不佳的半挥发性及非挥发性化合物的分析,它对各种物质有几乎相同的响应,但其灵敏度通常较低,尤其对于有紫外吸收的组分其灵敏度较紫外检测器约低一个数量级,高效液相色谱-蒸发光散射联用技术较适用于氨基酸、脂肪酸、聚合物、脂质、生物载体以及无紫外吸收的辅料的分析。1.3 分析仪器:第一台ELSD是由澳大利亚的Union Carbide研究实验室的科学家开发,距今已经数十年。目前ELSD通常与液相色谱配套使用,主流液相色谱品牌均可配备。该类设备国内外均有生产,如国内的上海通微ELSD-UM5800Plus蒸发光散射检测器、美国安捷伦1260 II 蒸发光检测器、岛津ELSD-LT III 蒸发光检测器、沃特世2424 蒸发光检测器、美国奥泰(Alltech)蒸发光散射检测器ELSD 6100等。2. 拉曼光谱技术(Raman spectra)2.1 技术原理:拉曼光谱法研究化合物分子受光照射后所产生的非弹性散射-散射光与入射光能级差及化合物振动频率、转动频率间关系。拉曼光谱采用激光作为单色光源,将样品分子激发到某一虚态,随后受激分子弛豫跃迁到一个与基态不同的振动能级,此时,散射辐射的频率将与入射频率不同。这种“非弹性散射”光被称之为拉曼散射,频率之差即为拉曼位移(以 cm-1 单位),实际上等于激发光的波数减去散射辐射的波数,与基态和终态的振动能级差相当。频率不变的散射称为弹性散射,即瑞利散射:如果产生的拉曼散射频率低于入射频率,则称之为斯托克斯散射;反之,则称之为反斯托克斯散射。实际应用中几乎所有的拉曼分析均为测量斯托克斯散射。2.2 技术特点:拉曼光谱技术具有快速、准确、不破坏样品的特点,样品制备简单甚至不需样品制备。谱带信号通常处在可见或近红外光范围,这也意味着谱带信号可以从包封在任何对激光透明的介质(如玻璃、石英或塑料)中或将样品溶于水中获得。拉曼光谱能够单机、联机、现场或在线用于过程分析,可适用于远距离检测。现代拉曼光谱仪使用简单,分析速度快(几秒到几分钟),性能可靠。因此,拉曼光谱与其他分析技术联用比其他光谱联用技术从某种意义上说更加简便,适合对药用辅料,以及脂质纳米颗粒的形态和组成成分的分析[4]。2.3 分析仪器:拉曼光谱仪器在实验室台式/在线和现场便携/手持仪器两个方向上呈现了多元化的发展。实验室仪器追求更高性能,目前常用的实验室拉曼光谱仪主要包括国内卓立汉光Finder微区激光拉曼光谱仪、港东科技LRS-4S显微拉曼光谱仪、奥谱天成 ATR8300自对焦显微拉曼成像光谱仪、日本HORIBA LabRAM HR Evolution高分辨拉曼光谱仪 、LabRAM Soleil 高分辨超灵敏智能拉曼成像仪、英国雷尼绍(Renishaw)inVia Oontor显微拉曼光谱仪、赛默飞DXR 3xi 显微拉曼成像光谱仪等。便携式与手持式小型拉曼光谱仪致力于现场检测,在快速检测方面得到应用,如国内南京简智的SSR-5000便携式拉曼光谱仪、奥谱天成ATR6600手持式拉曼光谱仪、鉴知技术(同方威视) RT6000S手持拉曼光谱仪、美国必达泰克i-Raman Prime高通量便携拉曼光谱仪、美国海洋光学ACCUMAN (SR-510 Pro)便携拉曼光谱仪、美国赛默飞First Defender RM手持拉曼等。3 应用实例分享3.1 采用HPLC-ELSD技术定量7种脂质有研究人员基于HPLC-ELSD技术建立同时定量7种脂质类成分的分析方法[5],包括阳离子脂质CSL3和DODMA、胆固醇Chol、磷脂DSPC和DOPE、亲水性聚合物脂类PolyEtox和DSPE-PEG2000,这7种脂质在高效液相色谱的C18 色谱柱上能够实现良好分离,见图3。通过分析4种不同脂质成分(CSL3/Chol/DSPE-PEG2000/DSPC、CSL3/Chol/PolyEtOx/DSPC和CSL3/Chol/DSPE-PEG2000/DOPE)以及不同脂质比的LNPs配方,评估了HPLC- ELSD方法在脂质定量中的适用性,同时发现LNPs中各类脂质在透析纯化后等比例损失了约40 %,这提示纯化步骤后脂质定量的重要性,该方法可以用于优化LNPs的配方和最终质量控制。图3. HPLC-ELSD方法检测到的7种脂类混合标准溶液的色谱图[5]3.2 采用拉曼光谱技术研究脂质纳米颗粒骨架和空间排列脂质纳米颗粒(LNPs)表面电荷的极性和密度能够影响静脉内给药的免疫清除和细胞摄取,从而决定其递送到靶标的效率,有研究人员采用不同配比的带负电荷脂质的抗坏血酸棕榈酸酯(AsP)和磷脂酰胆碱(HSPC)制备了AsP-PC-LNPs。采用DXR拉曼显微镜在50-3500 cm的位移范围内测定AsP/HSPC不同配比(4%,8%和20% w/w)的拉曼光谱。其中在位移1101cm-1和1063 cm-1处峰的强度比(I1101/I1063)和 1101cm-1和1030 cm-1处峰的强度比(I1101/I1030)均表示脂肪链C-C骨架的紊乱程度。由图4和图5可知,当AsP/HSPC比值分别为4%和8%(w/w)时,与仅含HSPC组无显著差异,而当AsP/HSPC比值增加到20%(w/w)时,两组峰强度均比下降,即过量的AsP增强了AsP-PC水合物中的脂肪链排序。在拉曼位移717cm−1处是C-N 的伸缩振动,随着AsP/HSPC比值逐渐增加,超过8%(w/w)时717cm−1处拉曼位移略有红移。当AsP/HSPC比值继续增加到20%(w/w)时,717cm−1处拉曼位移略微蓝移,结果表明低比例的AsP(≤8%,w/w)使极性的HSPC排列略无序和松散,而过量的AsP使极性的HSPC排列有序,进一步验证了拉曼光谱是研究脂质纳米颗粒骨架和空间排列的有力手段。图4 具有不同AsP比例的AsP-PC-LNPs的拉曼光谱图5 不同AsP比例的AsP-PC-LNPs拉曼光谱I1101/I1063和I1101/I1030的强度比4.小结与展望LNPs在疫苗、核酸等基因治疗等生物技术药物研发方面发挥着重要作用,LNPs中各类脂质配方的组成和配比,影响着疫苗等生物技术药物的稳定性、有效性、安全性。因此选择合适的分析技术,建立可行的分析方法,确保疫苗等生物技术药物中LNPs载体质量与稳定性,具有重要意义。参考文献:[1] Verbeke R, Lentacker I, De Smedt S C, et al. Three decades of messenger RNA vaccine development[J]. Nano Today, 2019, 28: 100766.[2] Karam M, Daoud G. mRNA vaccines: Past, present, future[J]. Asian Journal of Pharmaceutical Sciences, 2022, 17(4): 32.[3] Magnusson L E, Risley D S, Koropchak J A. Aerosol-based detectors for liquid chromatography[J]. Journal of Chromatography A, 2015, 1421: 68-81.[4] Fan M, Andrade G F S, Brolo A G. A review on recent advances in the applications of surface-enhanced Raman scattering in analytical chemistry[J]. Analytica chimica acta, 2020, 1097: 1-29.[5] Mousli Y, Brachet M, Chain J L, et al. A rapid and quantitative reversed-phase HPLC-DAD/ELSD method for lipids involved in nanoparticle formulations[J]. Journal of pharmaceutical and biomedical analysis, 2022, 220: 115011.[6] Li L, Wang H, Ye J, Chen Y, et al. Mechanism Study on Nanoparticle Negative Surface Charge Modification by Ascorbyl Palmitate and Its Improvement of Tumor Targeting Ability[J]. Molecules. 2022 27(14):4408.
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制