当前位置: 仪器信息网 > 行业主题 > >

冷冻油

仪器信息网冷冻油专题为您整合冷冻油相关的最新文章,在冷冻油专题,您不仅可以免费浏览冷冻油的资讯, 同时您还可以浏览冷冻油的相关资料、解决方案,参与社区冷冻油话题讨论。

冷冻油相关的资讯

  • 徕卡课堂——冷冻断裂与冷冻蚀刻基础介绍
    揭示生物学样本和材料样本原本无法观察到的内部结构冷冻断裂是一种将冰冻样本劈裂以露出其内部结构的技术。冷冻蚀刻是指让样本表面的冰在真空中升华,以便露出原本无法观察到的断裂面细节。金属/碳复合镀膜能够实现样本在SEM(块面)或TEM(复型)中的成像,主要用于研究如细胞器、细胞膜,细胞层和乳胶。这项技术传统上用于生物学应用,但现在逐渐在物理学和材料科学中展现出重要意义。近年来,研究人员通过冷冻断裂电子显微镜,尤其是冷冻复型免疫标记(FRIL),对膜蛋白在动态细胞过程中所发挥的作用有了新的见解。作者:Gisela Höflinger图1:麦叶上的蚜虫适合于电子显微镜的环境电子显微镜的样品室通过抽真空处理降至极低压力。置于这种环境下的活细胞无法有效保全结构,因为细胞构成中的大部分水分会快速蒸发。生物样本的制备方法有很多种。样品材料被(固定)保存,这样后续脱水对原位结构的破坏最小,同时可以使用环境扫描电镜(SEM)或者将水冷冻。高压冷冻是观察自然状态下含水结构的唯一方法。高压冷冻所形成的冰不是六边形冰(从水变为六边形冰时体积会增加)而是无定形冰,因此体积保持不变。所以,对渗透和温度变化敏感的结构得以保留(见文章“高压冷冻基础介绍”)。要观察诸如细胞器、细胞膜、乳胶或液体的表面界面等结构,冷冻断裂是唯一的方法。通过刀片(或类似物)或释放弹簧负载的外力来破开冷冻样本,并沿着最小阻力线断裂样本。图2:冷冻断裂(来源:http://en.wikibooks.org/wiki/Structural_Biochemistry/Lipids/Membrane_Fluidity) 水的升华与凝结 – 冷冻蚀刻与污染要暴露冷冻断裂面,需要把冰去除。这就需要通过把断裂面的冰升华去除以保存样品的结构。升华的过程是冰不经过液态过程直接转化为气态。而液态过程会导致样品体积和结构的破坏。图3:ES,细胞外表面;PF,细胞膜冷冻断裂面;EF,细胞膜外层冷冻断裂面;FS,细胞膜内表面;Cyt,细胞质水的升华/冷凝过程取决于特定温度下的饱和压力,以及水或冰在室内的有效水分压。注意:良好的真空度会降低水分压。例如:温度为-120℃的冰或冰冻样本饱和压力约为10-7 mbar。如果样品室内达到这个压力,则冷凝和蒸发处于平衡状态。蒸发的分子数量等于冷凝的分子数量。在更高压力下,冷凝速度要快于升华速度 – 因此冰晶会在样本表面上生长。必须采取一切手段来避免这种情况。样本上方一个较冷(比样本更冷)的冷阱会降低局部压力,从而起到了冷凝阱的作用。从样本中带出的水分子优先附着在较冷的表面上。在低于饱和压力的压力下,更多的分子升华而不是冷凝,同时会发生冷冻蚀刻。执行冷冻蚀刻直到样本完全无冰,这一过程称为冷冻干燥。仅适用于合理时间内执行的小样本。该过程分为几个步骤,需要从大约-120℃加热到-60℃,同时在每个步骤上使温度保持一定时间。该过程需要几天的时间来完成。图4:饱和蒸汽压力(感谢Umrath 1982提供的图片)样本温度低于-120℃时,蚀刻速度非常慢,蚀刻持续时间会增加到不切实际的程度。如果真空室的压力固定,则可以通过提高样本温度来提高蚀刻速度。对于生物样本,要特别小心温度高于-90℃。蚀刻速度会大幅提高。另外,要注意玻璃态冰中形成六边形冰晶从而导致脱水伪像。纯水的理论升华速度会降低,因为:• 样本深处的水升华速度比表面的水更慢。• 盐和大分子溶剂会降低升华速度。• 生物样本中大量存在的结合水会降低升华速度。通过冷冻断裂生成图像冷冻断裂和冷冻蚀刻技术往往采用高真空精细镀膜技术,将超细腻重金属和碳薄膜沉积于断裂表面。冷冻断裂样本在一定角度下用金属覆盖,然后在碳背衬膜(徕卡EM ACE600冷冻断裂或徕卡EM ACE900与徕卡EM VCT500)上生成复型进行TEM成像或在SEM的试块面上进行成像。对于这两种方法,冷冻断裂表面经过一定的蚀刻时间后以相同的方式进行镀膜。首先在一定角度下进行一层薄的(2-7nm)重金属镀膜,以形成地形对比度(阴影)。其次再针对重金属薄膜,在90°下进行一层厚的碳层(15-20nm)镀膜,以稳定超薄电子束蒸发。此时的蚀刻处理会停止。要对极小的结构进行成像,需要在极低的角度(2–8°)镀膜重金属并在镀膜期间旋转样本。这样可增加细丝状及其它细小结构的对比度。此项技术又称为小角度旋转投影。蒸镀重金属薄膜需要采用电子束蒸发镀膜技术。这种镀膜技术可实现精细定向沉积。碳的支撑层稳定了未被金属覆盖的结构。随着温度的升高,这些结构会改变它们的轮廓,样本不会完全导电,复型也不会粘在一起。冷冻断裂酵母的单向投影图5:低温SEM,BSE(背散射电子)图像。Walther P, Wehrli E, Hermann R, Müller M.(1995)双层镀膜获取高分辨率低温SEM。J Microsc. 179, 229-237。图6:复型,TEM图像(感谢Electronmicroscopy ETH Zürich提供图片)。Walther P, Wehrli E, Hermann R, Müller M.(1995)双层镀膜获取高分辨率低温SEM。J Microsc. 179, 229-237。图7:徕卡高压冷冻,真空冷冻传输至冷冻断裂系统中,利用电子束发射枪和旋转样本底座来进行冷冻蚀刻和低温镀膜。徕卡真空冷冻传输至低温SEM。油/水基样品,–100℃(升华)3分钟暴露油脂结构。图8:徕卡高压冷冻,真空冷冻传输至冷冻断裂系统中,利用电子束发射枪和旋转样本底座来进行冷冻蚀刻和低温镀膜。徕卡真空冷冻传输至低温SEM。原生生物游仆虫混合培养的羽纹硅藻。感谢英国波特斯巴NIBSC的Roland Fleck博士提供图片图9:徕卡冷冻断裂系统及徕卡真空冷冻传输至低温SEM的HPF、冷冻断裂、冷冻蚀刻和低温镀膜。油/水基乳液破裂,露出洋葱状薄片结构,形成液滴。感谢汉堡拜尔斯多夫Stefan Wiesner博士提供的图片。图10:TEM中的酵母细胞复型。经徕卡高压冷冻和徕卡冷冻断裂复型制备。感谢Elektronenmikroskopie ETH Zürich提供的图片。图11:大麦叶上的真菌。安装于徕卡冷冻断裂仪样本台上,并通过冷却样本台在液氮下进行冷冻。徕卡冷冻断裂仪对样品进行部分冷冻干燥(在更高的样本温度下冷冻干燥)。使用钨镀膜。徕卡真空冷冻传输至低温FESEM 5keV。相关产品徕卡EM ACE900 高端EM样本制备冷冻断裂系统徕卡EM VCT500了解更多:徕卡官网
  • 冷冻机油分析检测参数
    冷冻机油广泛应用于各行各业,用于去除设备中的热量。典型的应用包括酿造厂,使酿造厂的温度保持在零摄氏度左右,以及需要稳定的冷冻水供应的化学工艺中。制冷机通常通过制冷循环或蒸汽压缩来运行。近年来,吸收式制冷循环在工业上并没有得到广泛的应用,因此我们将把注意力集中在采用蒸汽压缩技术的制冷机上。在这种方法中,热量被制冷液吸收,制冷液沸腾后由液体变为气体。热量被去除之后,气体再被压缩回液体。就像家用空调一样,热量通常被转移到设备外部去除,所以从冷却介质到环境之间是净热传递。这些系统通常是密封的,因此制冷剂不会逸出。那么密封系统为什么需要进行油液分析?系统中的需要通过泵和卷轴进行移动和压缩。我们需要监控的是系统组件中轴承和其他运动部件的状况。具体而言,我们要监测的是轴承,卷轴,油品质量和污染。.压缩机的一个独特之处在于润滑剂必须与驱动系统的制冷剂混溶。通常,制造商会推荐与其系统和所选制冷剂兼容的润滑油。现代的臭氧友好型制冷剂通常需要合成油。多元醇酯润滑剂在冷却器系统中变也得非常普遍。为什么要进行监测?油的质量 - 润滑油的状态会影响其混溶性。我们应该检查确保用的是正确的机油,而且油的状况良好。机油污染 - 如果油被污染了,会对制冷机的效率产生负面影响。特别是水污染会降低制冷机的效率。磨损 - 正如我们所说,监控的关键部件是轴承和卷轴。过度的污染或磨损碎片可能导致轴承失效。早期检测可以在系统故障前进行修复。早期修复通常成本较低,并且可以防止停机。推荐的测试参数有哪些?水分- 水污染会降低制冷机的效率,也会导致腐蚀和冷冻问题。确保油是干燥的可以省去很多麻烦。酸值/碱值 - 对于氟利昂或R-22等氯化制冷剂,建议对总酸值(TAN)进行测试。对于氨基系统,建议对总碱值(TBN)进行测试。总碱值会影响制冷剂中润滑剂的混溶性。真空粘度 (40 ℃) -运动粘度是流体在重力作用下的阻力。这是润滑剂最重要的物理特性。如果制冷系统中润滑油粘度下降,则表明分离器不能正常工作。冷却系统中粘度的测量有时很难测量,因为制冷剂溶解在润滑剂中,在测量粘度之前,制冷剂通常必须先排气。这可能需要几个小时。幸运的是,如果你使用的是斯派超MiniVisc 3000,就不需要此步骤。MiniVisc的毛细管设计允许润滑油在测量时排出气体。磨损金属 - 金属元素分析可以确定污染源,使问题根源诊断变得更加容易。铁磁颗粒浓度 - 铁磁材料磨损的急剧增加或磨损颗粒尺寸的急剧增加通常表明磨损状况的异常或正在恶化。监测磨损金属颗粒可以让维修人员在故障发生之前进行维护。.
  • 【瑞士步琦】冷冻干燥含酵母菌的微球应用
    瑞士步琦冷冻干燥含酵母菌的微球应用冷冻干燥应用”益生菌是一种有益于人体健康的微生物,常被用于改善肠道菌群。微胶囊包埋技术可以帮助保护菌株,延长其在体内的存活时间,不易受外界环境的影响而失活。因此,在生产益生菌产品时,需要考虑选择合适的微胶囊技术,以确保益生菌的稳定性和活性。下面这篇应用非常好的结合了微胶囊包埋和冷冻干燥技术,证明菌种经过包埋干燥后仍具有生物活性,为发酵工艺和食品转化等领域开辟新的可能性。1介绍冷冻干燥,也称为冻干是一种非常通用的脱水方法,常用于保存微生物、食物或药物,如蛋白质类药物。它将冷冻和干燥结合在一个独特的操作中,可以创造出高质量的干燥终产品。冷冻干燥通常用于保存微生物培养物,因为它具有不可忽视的优点:储存的方便性和增加邮寄微生物的可能性。此外,制得的产品只需要少量维护,培养基在储存过程中不会受到污染,微生物可以长时间保持活力。然而,众所周知,冷冻干燥技术对微生物至关重要,因为它对微生物的生存能力和生理状态都有负面影响。根据方法和生物体的不同,微生物存活率也各有不同;然而,活力水平明显低于液氮储存 2。观察到的活力下降主要是由于一些不良副作用引起的,例如细胞内冰晶的形成1、敏感蛋白的变性或在此过程中膜脂质的物理状态发生一些不可逆的变化 3,5。为了防止这种影响,通常在冷冻或冷冻干燥前使用脱脂牛奶、蔗糖、甘油、 DMSO 或海藻糖等作为冻干保护物质1,3。据报道,海藻糖在干燥、冷冻、渗透胁迫和热休克等极端环境下对酵母和细菌具有保护作用。这些保护效果与膜的稳定和酶活性的保存有关。关于海藻糖的保护作用,已经报道了几种假设。一些报道认为它的作用是通过多个外部氢键取代参与维持蛋白质三级结构的水分子,另一些报道认为它形成玻璃态结构以确保物理稳定性。除了发酵过程或食品转化,酿酒酵母或乳酸菌等微生物在益生菌膳食食品和饲料补充剂领域具有重要的经济意义。然而,这些应用需要在储存过程中保持细胞活力。通过造粒和冷冻干燥技术相结合,可以得到大小和组成均匀的无尘颗粒。由于具有更高的颗粒表面积,这使得产品将具有良好的颗粒流动性,更容易掌握的剂量和更快的产品复原性。尽管存在上述挑战,冷冻干燥仍然是一种酵母、孢子真菌和细菌的方便保存方法,因为它们的长期生存能力通常保持得相当好,而且菌株的储存和分发要求也很简单。因此,本应用旨在生产酿酒酵母颗粒作为模型微生物,使用微胶囊造粒仪 Encapsulator B-390 作为造粒机,将酵母悬浮液挤压进入液氮中形成单分散球体,然后使用冷冻干燥机 Lyovapor&trade L – 200 进行冷冻干燥处理。2仪器,试剂和器材仪器:ESCO NordicSafe, Biosafety Cabinet Class IIBUCHI 微胶囊造粒仪 Encapsulator B-390BUCHI 冷冻干燥机 LyovaporTM L-200 Pro,干燥腔体搭配可加热搁板BUCHI LyovaporTM Software试剂:YPD 培养基, Sigma Aldrich海藻糖, Sigma Aldrich脱脂奶粉琼脂去离子水液氮器材:玻璃培养皿液氮杜瓦瓶3实验本应用中描述的工作是在无菌条件下进行的。将 84g 市售面包酵母悬浮溶解在 50mL 无菌 YPD 培养基(Sigma Aldrich)中。在酵母悬浮液中加入 50mL 无菌冻干保护剂培养基(5g 海藻糖(Sigma Aldrich)和 5g 脱脂牛奶溶于去离子水中),然后用微胶囊造粒仪 B-390 进行制粒(表1)。将挤压后的液滴收集在液氮浴中冷冻,然后转移到不锈钢托盘中,保存在 -25°C 的冰箱中进行冷冻干燥。表1:微胶囊包埋参数_300μm 喷嘴1mm 喷嘴频率[Hz]68060电压[V]7502500压力[mbar]500500冷冻干燥步骤(初级干燥和次级干燥)使用 LyovaporTM 编程软件,如表 2 所示。使用 LyovaporTM L-200 Pro 干燥腔体、可加热的搁板和环境空气。表2:初级干燥和次级干燥冻干参数无酵母菌微球采用与含酵母菌微球相同成分培养基和参数进行制备。冷冻干燥后,将 1mL 无菌水加入 1mL 微球中,用以复原样品。对于含有酵母菌的菌珠,对每个重组溶液进行10倍、100 倍和 1000 倍的连续稀释。将复原后的溶液和稀释液分别涂于 YPD 琼脂平板上,如图 1 所示。琼脂板在 28℃ 培养 24h,评价细胞活力。▲ 图1:琼脂平板上的酵母活力测试4结果与讨论含有酵母的微球可以通过使用微胶囊造粒仪 B-390 进行包埋制备,结果表明:用微胶囊造粒仪 B-390 将酵母滴入液氮中,可使酵母迅速颗粒化;用 300μm 的喷嘴和 1mm 的喷嘴分别制备了 700μm 和 1500μm 左右的微球。仅使用含冻干保护剂介质的溶液也得到了类似的结果。如图 2 所示,冻干后的微球在形状和大小上与湿冻微球保持相似。▲ 图2:用微胶囊造粒仪 B-390 制得的 300μm 酵母微球,在冻干前(左)后(右)的对比通过扫描电镜对其结构进行分析。在图 3 中,可以观察到含有酵母的球珠(下两图)和仅由冻干保护剂培养基制成的球珠(上两图)在形态上的差异。含有酵母菌的微球具有由 5μm 颗粒组成的粗糙结构,可以认为是微生物,而只含有冻干保护剂的微球具有更光滑的结构。▲ 图3:含酵母菌的冻干微球(下)和不含酵母菌冻干微球(上)的结构对比当冷冻干燥时,考虑到膜中脂质物理状态的变化或由于某些蛋白质结构的变化,生物系统可能受到破坏3,9。为了验证酵母菌的活力,将酵母菌重新水合,稀释,并在 28°C 的 YPD 琼脂板上培养 24 小时。图 4 证实了文献报道的内容,即便失去了部分活力,酵母在冻干后仍然可以生长2,4,6,10。▲ 图4:在 28℃ 琼脂板中培养 24 小时后的酵母菌活力5结论含有酵母菌的微粒可以很容易地用微胶囊造粒仪 B-390 进行制备,并使用冻干机 LyovaporTM L-200 进行冷冻干燥处理。B-390 的喷嘴直径分别为300 μm和1000 μm,制得的微粒直径分别为 700μm 和 1500μm。冷冻干燥后,珠粒的大小和形状没有变化。该颗粒流动性好,容易掌握使用剂量,且与水混合后溶解速度快。冻干后的微生物在贮藏过程中仍能保持良好的活力,并能在复水化后成功生长。在本应用中,造粒包埋和冷冻干燥的结合显示出了非常好的实验结果。它可以在发酵工艺和食品转化等领域开辟新的可能性,有利于生产制备剂量易控制和重组的培养发酵剂;另外,在益生菌和食品补充剂领域中获得无尘且可自由流动的粉末,同时保证产品颗粒大小和组成的均匀度。6参考文献N’Guessan, F. K. Coulibaly, H. W. Alloue-Boraud, M. W. A. Cot, M. Djè, K. M. Production of Freeze-Dried Yeast Culture for the Brewing of Traditional Sorghum Beer, Tchapalo. Food Sci. Nutr. 2016, 4 (1), 34–41.Bond, C. Freeze-Drying of Yeast Cultures. In Cryopreservation and Freeze-Drying Protocols Day, J., Stacey, G., Eds. Methods in Molecular BiologyTM Humana Press, 2007 pp 99–107.Leslie, S. B. Israeli, E. Lighthart, B. Crowe, J. H. Crowe, L. M. Trehalose and Sucrose Protect Both Membranes and Proteins in Intact Bacteria during Drying. Appl. Environ.Microbiol. 1995, 61 (10), 3592–3597.Miyamoto-Shinohara, Y. Imaizumi, T. Sukenobe, J. Murakami, Y. Kawamura, S. Komatsu, Y. Survival Rate of Microbes after Freeze-Drying and Long-Term Storage.Cryobiology 2000, 41 (3), 251–255.Wolkers, W. F. Tablin, F. Crowe, J. H. From Anhydrobiosis to Freeze-Drying of Eukaryotic Cells. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 2002, 131 (3), 535–543.Lodato, P. Huergo, M. S. de Buera, M. P. Viability and Thermal Stability of a Strain of Saccharomyces Cerevisiae Freeze-Dried in Different Sugar and Polymer Matrices. Appl. Microbiol. Biotechnol. 1999, 52 (2), 215–220.Strasser, S. Neureiter, M. Geppl, M. Braun, R. Danner, H. Influence of Lyophilization,Fluidized Bed Drying, Addition of Protectants, and Storage on the Viability of Lactic Acid Bacteria. J. Appl. Microbiol. 2009, 107 (1), 167–177.Miyamoto, T. (Kyushu U. Kawabata, K. Honjoh, K. Hatano, S. Effects of Trehalose on Freeze Tolerance of Baker’s Yeast. J. Fac. Agric. - Kyushu Univ. Jpn. 1996.Giulio, B. D. Orlando, P. Barba, G. Coppola, R. Rosa, M. D. Sada, A. Prisco, P. P. D. Nazzaro, F. Use of Alginate and Cryo-Protective Sugars to Improve the Viability of Lactic Acid Bacteria after Freezing and Freeze-Drying. World J. Microbiol. Biotechnol. 2005, 21 (5), 739–746.Cerrutti, P. Huergo, M. S. de Galvagno, M. Schebor, C. Buera, M. del P. Commercial Baker’s Yeast Stability as Affected by Intracellular Content of Trehalose, Dehydration Procedure and the Physical Properties of External Matrices. Appl. Microbiol. Biotechnol. 2000, 54 (4), 575–580.
  • 预算近1亿元|中国疾控中心创新项目采购多套冷冻电镜等
    6月29日,中国政府采购网发布《中国疾病预防控制中心公共卫生创新计划项目-病原冷冻电镜结构研究平台和高通量数字玻片成像系统公开招标公告》,中国疾病预防控制中心拟以9260万元人民币采购一批仪器设备,包含300kv冷冻透射电子显微镜1台(套),200KV冷冻透射电子显微镜1台(套),冷冻双束电镜1台(套),120kv透射电子显微镜1台(套),工作站1台(套),高压冷冻仪1台(套),冷冻电镜投入式冷冻制样设备2台,辉光放电仪1台(套),等离子清洗仪1台(套),真空离子溅射仪1台(套),正置荧光显微镜 (FIB光电联用光镜)1台(套),倒置荧光显微镜1台(套),液氮罐1台(套),高通量数字玻片成像系统1台(套)。以上仪器均接受进口产品。采购需求:包号品目号品目名称数量(台/套)是否接受进口产品分包预算金额(人民币万元)备注11-1300kv冷冻透射电子显微镜1是9000非单一产品采购包核心产品1-2200KV冷冻透射电子显微镜1是1-3冷冻双束电镜1是1-4120kv透射电子显微镜1是1-5工作站1是1-6高压冷冻仪1是1-7冷冻电镜投入式冷冻制样设备2是1-8辉光放电仪1是1-9等离子清洗仪1是1-10真空离子溅射仪1是1-11正置荧光显微镜 (FIB光电联用光镜)1是1-12倒置荧光显微镜1是1-13液氮罐1是22-1高通量数字玻片成像系统1是260单一产品采购包交货期合同签订后12个月内交货地点/项目现场中国疾病预防控制中心病毒病预防控制所指定地点用途实验备注:本项目采购标的对应的《中小企业划型标准规定》所属行业为:工业采购标的需满足的质量、安全、技术规格、物理特性等要求:第1包 品目1-1 300kv冷冻透射电子显微镜一、技术参数:1、分辨率 ▲1.1、信息分辨率:≤0.12nm1.2、点分辨率:≤0.25nm1.3、线分辨率:≤0.14nm2、电子枪2.1、采用场发射电子枪2.2、使用寿命≥1年2.3、束斑漂移:≤0.5nm/min (10分钟内平均束斑漂移)2.4、亮度:≥7.5*107 A/m2srV2.5、辐射安全:≤0.5uSv/hr@距离0.1米电子枪3、加速电压3.1、最高加速电压:≥300kV3.2、在80kV至300kV间加速电压连续可调4、照明系统4.1、完全平行光系统,可实现多模式照明,在TEM模式中对大视野和可变视野都能够平行照明。▲4.2、线性畸变≤0.5% (TEM模式在18k×和155k×放大倍数之间)5、控制系统:控制软件具备应用脚本软件,用户可自行编写程序控制电镜进行特定或某些复杂的实验。6、真空系统:无油真空系统。7.放大倍数7.1、TEM模式放大倍数范围100×-700,000×7.2 在任何放大倍数实现完全无旋转成像8、物镜8.1、相机长度范围:300mm-2,500mm8.2、焦距≥3.5mm 8.3、物镜极靴间距≥10mm8.4、球差系数:≤3mm8.5、色差系数:≤3mm8.6、物镜光阑:70um、100um9.样品台系统9.1、计算机控制≥4轴样品台9.2、X/Y轴行程≥2mm9.3、Z轴行程≥0.4mm9.4、最大倾斜角度:不少于±70°9.5、最大图像漂移:X/Y方向 ≤1μm(+/- 70°内倾转)9.6、重复性:≤ 400nm(3次重复测试 ) 10. 自动进样系统10.1、一次能够装载≥10个样品,并能够自动更换和转移样品,所有样品均可回收并重复使用。10.2、待用样品在低温样品停泊装置保持在冷冻状态≥120小时。10.3、能够自动补充液氮。10.4、冰生长率:≤1%/24小时 (透射信息损耗)10.5、最低温度:≤-170 ℃10.6、样品交换后漂移:交换40分钟后:≤0.035nm/s▲10.7、同一样品在镜筒内可以保持在冷冻状态,连续收集数据时间≥72小时。11、电镜操作 11.1、具有低剂量曝光功能。11.2、可设置多个用户的等级,每个用户之间的参数 设置相对独立。11.3、要求电镜安装所需房间高度≤4m。12、直接电子探测系统 12.1、像素数≥4000×4000像素。12.2、像素大小≥5μm12.3、电子计数读出模式下量子转化效率(300kV):0 Nyquist,DQE≥ 0.85;1/2 Nyquist,DQE,≥ 0.65;1 Nyquist,DQE≥0.25。 12.4、超分辨读出模式下,最大画幅≥10000×8000像素。12.5、辅助相机:可伸缩式;采集矩阵≥4K×4K, 像素物理尺寸≥5μm。12.6、原厂集成数据采集软件。12.6.1、能够自动进行单颗粒数据收集包括自动扫描整个样品、测定冰层厚度、进行低剂量数据收集。12.6.2、能够进行自动化电子断层扫描数据采集。13、能量过滤器探测系统 (300kV)13.1、温度稳定性(狭缝漂移/24h):≤1.5ev13.2、能量狭缝最小宽度:≤2ev13.3、图像几何畸变:≤0.5%13.4、图像色差畸变:≤0.4%13.5、探测器内部帧率:≥200fps14、相位板系统14.1、对比度增强≥140%14.2、采用无孔相位板系统14.3、可自动加热恢复14.4、可用区域≥80%14.5、相位偏转:40-80nC剂量时,≥0.2πRad二、主要配置:1、300kV冷冻电镜主机:1套2、直接电子探测器:1套(含辅助相机)3、能量过滤器系统:1套4、三维重构软件:1套 5、相位板:1个6、备用场发射灯丝:1根7、冷冻电镜配套UPS电源(断电情况下维持一小时):1台 8、冷冻电镜上样专用耗材:1000套三、验收和培训1、工作流验证工作:采用标准样品,达到出厂要求。2、10天应用专家现场培训。3、根据项目进展情况进行安装。安装调试完成,符合厂家性能参数验收标准,培训后2个月内,用户进行验收,验收合格后开始计算质保期。 4、供货周期:合同签订后12个月内。5、质保期:3年(包括电镜主机,包括相机,循环水机和空压机)。6、负责电镜安装场地(≤80㎡)环境改造,满足设备使用要求的电磁场、震动、温度、湿度、噪声及地线的指标。品目1-2 200KV冷冻透射电子显微镜一、技术参数:▲1、信息分辨率:≤0.23nm。2、加速电压2.1、最高加速电压:≥200kV2.2、加速电压通过软件控制切换2.3、高压稳定性:≤1ppm/10min3、电子枪3.1电子枪类型:场发射超亮型电子枪,使用寿命≥1年▲3.2 束流:≥0.5nA@1nm束斑4、放大系统4.1 放大倍数:低倍≤100倍;高倍≥650,000倍 4.2 相机长度范围:250mm-2.5m5、真空系统5.1、采用无油真空系统,由机械泵、涡轮分子泵和离子泵等构成5.2、真空度:电子枪真空度≤5 x10-7 Pa;样品区真空度≤2.7 x10-5 Pa6、物镜6.1、球差系数:≤3mm6.2、色差系数:≤3mm7、自动进样系统7.1 一次能够装载和更换≥10个样品,并能够自动更换和转移样品。待用样品在低温样品停泊装置保持在冷冻状态连续无污染存放时间≥72小时。样品可以回收和重复使用。7.2、能够自动补充液氮。7.3、冰生长率:≤5%/24小时 (透射信息损耗)7.4、最低温度:≤-170 ℃7.5、样品交换后漂移:交换60分钟后,≤0.05nm/s8、样品台 8.1、X/Y轴行程:不少于±1mm;8.2、Z轴行程:不少于±0.35mm;8.3、最大倾斜角度:不少于±70°;9、直接电子探测系统 9.1、像素矩阵≥4000×4000像素9.2、像素大小≥5μm9.3、超分辨读出模式下,最大画幅≥ 10000×8000像素9.4、原厂集成数据采集软件。9.4.1、能够自动化地进行单颗粒数据收集——自动扫描整个样品,测定冰层厚度,进行低剂量数据收集。9.4.2、能够进行自动化的电子断层扫描数据采集。10、相机系统10.1、像素数≥4000 ×4000像素10.2、像素大小≥10μm10.3、读取速率:≥1 fps@4kx4k;≥25 fps@512x51211、电镜操作11.1、具有低剂量曝光功能。11.2、可设置多个用户等级,每个用户之间的参数设置相对独立。二、主要配置:1、200kV冷冻电镜主机:1套2、直接电子探测器系统:1套3、相机:1套4、备用场发射灯丝:1根 5、配套UPS电源(断电情况下维持一小时):1套6、三维重构软:1套 7、电镜主机配套操作和数据收集软件:1套三、售后服务:1、供货周期:合同签订后12个月内。2、质保期:验收合格后3年(包括相机,循环水机和空压机、电镜主机)。3、负责电镜安装场地(≤60㎡)环境改造,满足设备使用要求的电磁场、震动、温度、湿度、噪声及地线的指标。品目1-3 冷冻双束电镜一、设备用途: 用于冷冻电子断层三维重构样品的制备工作。二、技术参数1、电子源: 1.1、肖特基场发射电子枪;1.2、使用寿命:≥9个月;1.3、束流范围:1.5pA-300nA;1.4、加速电压范围:500V-30kV;▲1.5、冷冻状态分辨率(冷台):≤6nm@ 2kV2、 离子源 2.1、离子源寿命:≥1000小时;2.2、加速电压范围:500V -30kV; 2.3、离子束流:1.5pA–50nA范围内≥12挡可选;2,4、具备针对非导电样品的漂移抑制模式;▲2.5、离子束分辨率(冷冻状态):≤7.0nm@30kV3、真空系统 3.1、无油真空系统;3.2、仓室真空度:室温,≤4*10-4 Pa;冷冻,≤8*10-5 Pa;4、冷冻样品台 4.1、可旋转冷台,冷冻条件下旋转范围:≥360°;4.2、冷冻降温时间:≤30min;4.3、XY轴行程:≥50mm;4.4、Z轴行程:≥40mm;4.5、冷冻状态下倾斜角范围:-10°~ +50°;4.6、冷冻温度:≤ -170℃;5、图像处理 5.1、图像存储格式:TIFF(8bit, 16bit或24bit)、BMP、JPG;5.2、图像存储矩阵:≥ 6000×4000像素;5.3、电子扫描旋转:≥360°5.4、驻留时间范围(扫描):25ns/pixel-25ms/pixel;6、冷冻机械臂6.1、机械臂针尖温度:≤-160°6.2、机械臂漂移:≤250nm/min6.3、集成红外观测相机,用于样品和腔室观测;6.4、内置样品沉积保护层,可以待剪薄切片层保护,避免被离子束损伤; 6.2、内置喷镀装置,对冷冻下的剪薄切片进行导电化处理。三、主要配置:1、双束主机:1套2、空压机、循环水机、UPS电源:1套3、光电联用软件:1套4、电镜主机操作系统软件:1套5、耗材5.1、备用场发射灯丝:1根5.2、备用离子源:2个5.3、上样耗材:100个四、售后服务:1、供货周期:合同签订后12个月内。2、质保期:验收合格后3年(包括相机,循环水机和空压机、电镜主机)。3、负责电镜安装场地(≤40㎡)环境改造,满足设备使用要求的电磁场、震动、温度、湿度、噪声及地线的指标。品目1-4 120kv透射电子显微镜一、技术参数:1、物镜1.1、线分辨率≤0.2nm 1.2、放大倍数:30×-600,000×,放大倍数全程连续可调,包含所有模式。1.3、恒定功率双物镜设计,具备高对比度模式,配置物镜高对比度极靴。1.4、焦距≥3mm1.5、极靴间距:≥10mm2、电子源2.1、热电子型电子源 ▲2.2、加速电压:20 kV-120kV2.3、高电压切换时间:≤1分钟3、照明系统3.1、照明模式:具备平行光模式和汇聚束模式3.2、透镜级数:≥2级聚光镜,用户可选强度限制(用于样品保护)和缩放限度(用于恒定屏幕强度)。4、成像系统▲4.1、成像系统:CPU控制≥6级透镜系统,物镜、中间镜和投影镜均≥2级。4.2、图像不随放大倍数放大而旋转, XY样品移动方向,XY坐标不变。4.3、衍射长度:0.1-8m。4.4、探测相机(速度≥40fps)和主相机,探测相机实现远程控制电镜。4.5、全自动控制聚光镜光阑、物镜光阑系统。4.6、可自动聚焦,并调整欠焦量。4.7、自动补偿:可以自动补偿合轴、自动补偿图像旋转。5、真空系统5.1、配置机械泵、分子泵和离子泵构成的无油真空系统。5.2、镜筒真空度:冷却温度下,≤2×10-5 Pa;环境温度下≤3.5×10-5 Pa6、样品台6.1 样品杆:单倾样品杆6.2、样品移动:6.2.1、样品移动:CPU控制≥5轴马达驱动。6.2.2、样品位移:X/Y:≥2 mm,调节步长≤0.05 μm;Z:≥0.70 mm。6.3、样品台倾斜角:不少于±80◦,调节步长≤0.5◦6.4、漂移:≤1 nm/min(标准样品杆)7、主相机 7.1、像素矩阵:≥4k×4k 7.2、像素大小:≥10um7.3、冷却方式:水冷7.4、图像存储模式:tiff、jpg、bmp、gif等各式自由转换。二、主要配置要求:1、120kV冷冻电镜主机:1套2、主相机:1套3、备用六硼化镧灯丝:3支4、备用钨灯丝:50支 5、120kv配套 UPS电源:1台6、主机配套标准操作软件:1套三、售后服务:1、供货周期:合同签订后12个月内。2、质保期:验收合格后3年(包括相机,循环水机和空压机、电镜主机)。3、负责电镜安装场地(≤20㎡)环境改造,满足设备使用要求的电磁场、震动、温度、湿度、噪声及地线的指标。品目1-5 工作站一、用途:用于300kv和200kv 冷冻电镜的数据存储和数据处理。二、技术参数: 1. 工作站:4台1.1架构:4U机架式服务器 1.2内存:32*32G DDR4 ECC1.3 GPU:8*英伟达 V100 1.4 CPU:2*英特尔Gold 6230R CPU1.5 SSD:2*4TB;机械硬盘≥14T1.6网络连接:2*万兆网口 1.7电源和风扇:配置2000W冗余电源及风扇2.存储服务器:1台2.1架构: 4U机架式服务器 2.2内存: 4*32G DDR4 ECC2.3 CPU:2*英特尔Silver 4210 CPU2.4 SSD:2*480G2.5加速盘:4*480G SSD2.6机械硬盘:1P 2.7网络连接: 2*万兆网口 2.8电源和风扇: 配置2000W冗余电源及风扇3. 下载服务器:1台3.1 CPU:1*英特尔W-22453.2 内存:2*32GB DDR4 ECC 3.3 硬盘:1*480G SSD;2*8T HDD4.提供配套的机柜,万兆网线,交换机,服务器搭建的配套附属设备。5.提供配套的软件部署,数据采集,数据处理等技术支持培训的服务。6. 负责工作站安装场地(≤40㎡)环境改造,满足设备使用要求的电磁场、震动、温度、湿度、噪声及地线的指标。品目1-6 高压冷冻仪一、主要技术指标:1. 电量消耗2. 维持主机运行液氮消耗≤80L/天。3. 高压冷冻每样品液氮消耗≤80mL。4. 允许冷冻不同样品,≥9(3x3)个冷冻循环。5. 样品存储杜瓦瓶可自动旋转定位多个存储位置。6. 无需乙醇等溶液作为冷冻同步溶液。7. 每次冷冻循环之间的复原时间≤1分钟。8. 维持主机运行时噪声值9. 高压冷冻样品时噪声值10. 玻璃化厚度(有效冷冻固定厚度),≥200μm。11. 工作压力2000-2600 bar。12. 彩色图像触摸屏设计控制面板,(用户可自行设置工作流程),冷冻完成后数据可通过USB导出。13. 冷冻速率:12000K/s -25000K/s。14. 剩余液氮自动排放。15. 设有工作照明灯:LED环形照明。16. 样品冷冻杜瓦瓶监测液面高度,自动填充。17. 配备观察用显微镜。 17.1光学系统:变焦,变倍式光路系统,保证在任何倍率下都可以呈现鲜明、清晰的图像。17.2变焦比≥6.3 :1,变焦范围:0.65X-4X。17.3观察镜筒:高眼点双目镜筒,大倾角(≥35°),瞳距可调节。 17.4配备宽视野*10倍目镜、视场数≥23 mm,屈光度可调节。17.5 至少内置1倍物镜,且工作距离≥110mm。品目1-7 冷冻电镜投入式冷冻制样设备一、数量:2套二、主要技术指标:1. 工作温度:18-25℃2. 相对湿度:90%-100%3. 液氮环境下栅格从冷却剂转移至栅格盒:半自动4. 双面拍合或单面拍合5. 可编辑拍合时间6. 吸附压力可调7. 有杜瓦瓶液氮可烘烤8. 触屏控制和踏板控制9. 一次可转移≥2个Grid box10. 小体积样品:可使用吸液管通过人工气候室左侧和右侧的小口手动应用11. 应用时间和等待时间:由软件控制,可在用户界面设置。12. 多样品应用、吸干动作和玻璃化时间控制:精确定时控制13. 吸干设备14. 样品吸干方式: 过滤纸吸15. 吸干动作次数和吸干持续时间:≥10次/样品,由软件控制,可在用户界面设置。16. 吸干补偿及排液时间:软件控制,可由用户定义17. 玻璃化18. 自动遮板控制19. 冷却剂容器和微栅样品杆温度控制:同步降低温度可保持微栅浸没在冷却剂内20. 冷却剂容器包括整合式抗污染圈品目1-8 辉光放电仪一、主要技术指标1. 辉光放电电流 0-30mA2. 样品台直径≥75mm,带玻片用滑槽3. 样品台高度1-25mm可调4. 样品腔内腔尺寸:直径≥100mm,高度≥90mm5. 工作真空范围1.1-0.20mbar 品目1-9 等离子清洗仪一、主要技术指标1. 清除系统:芯片控制系统2. 工作模式:真空清除透射样品杆和污铜网样品的污染3. 样品杆:TEM4. 时间设定:0-30min , 1min/步5. 真空系统:干泵无油真空系统6. 真空级别:120秒内达到最高真空7. 室温控制:15℃-30℃8. 电源:AC100V-240V,50Hz±1 Hz品目1-10 真空离子溅射仪一、主要技术指标1. 真空度:5x10-5 mbar2. 样品仓大小:硼硅酸盐玻璃工作腔室,内径≥100mm,高≥125mm3. 靶面至样品台距离:可调范围为20-50mm4. 溅射电流:0-40mA5. 溅射时间:0-999s6. 溅射速率:(在压力为7Pa,放电电流40mA,靶材距离样品30mm时)Pt≥15nm/min,Pt-Pd≥20nm/min,Au≥35nm/min,Au-Pd≥25nm/min7. 最大样品尺寸:直径≥60mm,高度≥20mm8. 靶材:根据需要,可选配Au,Pt,Au-Pd,Pt-Pd,C 品目1-11 正置荧光显微镜 (FIB光电联用光镜)一、主要技术指标1. 光学系统:无限远校正光学系统,保证光通过目镜到物镜整个光路中的所有棱镜及镜片时的绝对平行;2. 具有明场、相差功能,具有顶部双摄像出口;3. 物镜转换器≥七孔位;4. 放大倍数:50X-1000X;5. 透射光照明:12V100W卤素灯照明器;6. 调焦:带有三档调焦装置;调焦旋钮高度可调节;7. 宽视野三目镜筒:视野≥25mm,分光比例0/100%,50/50%,100/0%(可100%分光给照像部分);8. 载物台:低位置同轴驱动旋钮的高抗磨损性陶瓷覆盖层载物台;用户可自己将操作杆左右手更换;X-Y移动无暴露齿条;9. 荧光光源:光源寿命≥2000h,红绿蓝三色带滤块;10. 光学部件:10.1万能聚光镜:带有孔径光阑的聚光镜,有效光阑刻度上具有彩色标注且与物镜颜色代码对应;10.2目镜:10X宽视野目镜,视野数为≥22mm;11. 图像捕捉及分析系统;12. 摄录系统;12.1数字式科研级数码、彩色冷CCD;12.2 CCD芯片规格:≥2/3”,≥500万像素;12.3像素大小≥3μm;13. CCD工作温度:低于室温20℃;14. 曝光时间:1msec- 60sec;15. 彩色深度:36位RGB色彩深度。品目1-12 倒置荧光显微镜一、主要技术指标1. 研究级高端倒置显微镜手动版,支持明场、荧光、相差功能。支持多模块扩充功能;2. 主机:2.1手动物镜转换器和手动粗微轴调焦(最小微调刻度单位:≤1μm),行程≥12mm,粗调旋钮扭矩可调,备有上限调节;2.2侧光路出口,视野直径≥19mm;2.3具有控制面板,含光强控制和光强按钮;2.4备有6孔物镜转盘;2.5具有侧接口,可百分百手动分光至相机或目镜。3. 光学系统:无限远校正光学系统,齐焦距离≥45mm。4. LED透射光照明装置:带TTL光闸,寿命≥30000小时。5. 观察镜筒:双目镜筒,观察角度可在30-45度范围内调节。6. 目镜:10×,视场直径为≥24mm。7. 手动载物台,配有样品移动尺、通用型标本托板和各种孔板夹,可匹配多种培养板、皿及玻片。8. 聚光镜:8.1编码型固定式,配备相差环。8.2聚光镜顶透镜:数值孔径≥0.4;工作距离≥40mm。9. 物镜:9.1 4X或5X:平场半复消色差荧光相差物镜,数值孔径≥0.12,工作距离≥14.0mm。9.2 10X:平场半复消色差荧光相差物镜,数值孔径≥0.32,工作距离≥11.13mm。9.3 20X:半复消色差长工作距离荧光相差物镜,数值孔径≥0.55,工作距离≥6.9mm。9.4 40X:半复消色差长工作距离荧光物镜,带矫正环,数值孔径≥0.6,工作距离3.3-1.9 mm。10. 荧光设备:10.1光学载体:保护荧光无杂散光干扰。10.2手动外置荧光轴模块,内含透镜组。10.3荧光滤块转盘:≥6位,可最多安装5个荧光滤块。10.4荧光挡板:荧光使用期间可保护使用人眼睛。10.5荧光激发块 10.5.1 DAPI(蓝色)荧光滤块,激发350/50nm,分光镜400 nm, 发射460/50 nm 带通10.5.2 FITC(绿色)荧光滤块,激发470/40 nm,分光镜510 nm,发射515 nm长通10.5.3 TXR(红色)荧光滤块,激发560/40 nm,分光镜585 nm,发射630/75 nm带通10.6荧光光源:长寿命荧光光源,质保寿命≥3000小时,随开随关,不影响使用寿命,≥5档光强调节。11. 彩色制冷相机:≥500万真实像素,拍摄时分辨率可调,支持彩色、黑白模式,致冷温度-20℃,曝光时间4微秒-200秒,全像素模式下≥40帧/秒。品目1-13液氮罐一、技术参数1. 250L 22psi低压液氮罐 6个2. 165L 22psi低压液氮罐 1个3. 200L 350psi高压液氮罐 1个4. 35L样品存储罐 4个 5. 4L样品转移罐 8个6. 样品运输盒 8个6.1 旋转透明盖,底座内螺纹,四孔各有编号6.2 常温TEM载网和冷冻载网通用第2包 品目2-1高通量数字玻片成像系统一、工作条件1、环境温度:20°C-30°C;2、环境湿度:≤85%(25℃);二、技术要求1、扫描系统主机:1.1、全自动数字玻片扫描系统具有明场扫描、荧光扫描等多种成像功能,不同成像方式电动切换;1.2、单次样品装载量≥90张,可以持续添加玻片;1.3、系统具有显微成像光路,明场科勒照明;1.4、可通过软件编辑控制流程;1.5、多相机配置。预览相机快速识别拍摄样品及标签,明场扫描通过彩色相机成像;荧光扫描通过黑白相机成像;1.6、聚光镜:电动聚光镜1个,兼容强度传输方程(TIE)成像模式;1.7、像素分辨率:20x物镜下,≤0.50μm/pixel;40x物镜下,≤0.50μm/pixel;60x以上物镜下,≤0.30μm/pixel;1.8、电动扫描载物台,行程≥300×100mm;1.9、Z轴对焦范围≥3mm;1.10、可识别条形码,二维码,OCR码;2、物镜:2.1、≥20×物镜:平场复消色差物镜,数值孔径≥0.75,W.D.工作距离≥0.6mm2.2、≥40×物镜:平场复消色差物镜,数值孔径≥0.95,W.D.工作距离≥0.2mm▲2.3、≥60×物镜:平场复消色差物镜,数值孔径≥1.4,W.D.工作距离≥0.1mm▲2.4、配自动加油器,配合60X以上油镜使用,实现全自动扫描;3、样品舱室及兼容玻片:3.1、单次装载数量≥90片(玻片尺寸≥25mmx75mm),可以持续添加玻片;3.2、每张玻片相互隔离,待机和扫描时始终保持水平状态;3.3、配备样品上样器,用于快速装载玻片;3.4、兼容多种规格的玻片。4、扫描速度:4.1、明场扫描:使用20×/0.75物镜、扫描分辨率≤0.50μm /pixel、扫描面积15mm×15mm时,所用时间≤75s;4.2、荧光扫描:使用20×/0.75物镜,≥6个荧光通道成像,扫描分辨率≤0.50μm/pixel、扫描面积15mm×15mm时,所用时间≤500s。5、明场扫描:5.1、光源:LED光源,波长范围:400-700nm;▲5.2、具有自动Z轴扫描成像及景深扩展功能;5.3、明场扫描配置彩色相机,物理像素≥2400(H)×2000(V)。6、荧光扫描: 6.1、光源:配备LED光源或长寿命金属卤化物光源,激发波长范围400-700nm; ▲6.2、电动荧光转盘孔位≥6位,通道之间切换时间≤50ms;6.3、具有强度传输方程(TIE)照明模式,并能为一个单独通道成像,可与荧光图像叠加;6.4、荧光滤色片:可实现多色荧光标记的样品成像;6.5、荧光扫描单色相机:物理像素≥2000(H)×2000 (V)。7、扫描工作站:7.1、硬件7.1.1、CPU:≥6核,主频≥3GHz7.1.2、内存≥128G;固态硬盘≥4TB7.1.3、独立显卡,显存≥8GB7.1.4、彩色液晶显示器≥32英寸7.1.5、操作系统:Windows系统 7.1.6、打印机:彩色激光打印机7.2、扫描及图像处理软件:7.2.1、控制所有电动硬件、识别处理信息、图像可视化;7.2.2、自动程序化图像采集:个性化设定图像采集程序,自动完成≥150张样品扫描;7.2.3、具有预扫描和导航功能;7.2.4、多维图像采集:多通道成像、Z-Stacks成像、拼图及多点成像等;7.2.5、多种聚焦策略可选,满足不同类型样品的大视野拼图;7.2.6、自动对焦:可设定相应的聚焦地形图,自定义编辑样本聚焦点位置;7.2.7、具备图像压缩模式,可设定图像压缩比率7.2.8、图像格式:JPG、TIFF、BMP等;7.2.9、可进行同屏比较;7.2.10、测量参数包含长度、面积和角度等7.3 图像分析软件7.3.1 全景图像数据分析软件,具有免疫组化/免疫荧光切片中细胞核、细胞质、细胞膜染色的识别、阴性/阳性细胞计数、 染色强度分析、细胞阳性比率统计。7.3.2可进行明场图像免疫组化组织及细胞定量分析,自动化进行单个视野或者整张玻片阳性及阴性组织的精确识别,阳性及细胞的细胞核,细胞浆,细胞膜等区域的精确识别,并导出各类分析结果数据;7.3.3免疫荧光组织及细胞定量分析,自动化进行单个视野或者整张玻片多通道荧光图像的阳性及阴性组织的精确识别,量化细胞核、细胞膜、细胞浆中免疫荧光标记物表达,并导出各类分析结果数据。7.3.4 可自定义输出分析数据,包括:组织面积,阳性及阴性区域面积数据及阳性区域百分比等数据;阳性及阴性细胞数量、细胞长度、面积、周长、交界长度、H-Score评分等数据;光谱特征、真实染色空间、滤镜和(前后关联)特征。8、数字玻片成像系统的全部软硬件均为同一厂家提供,产品软硬件售后支持和维修也由同一厂家负责。三、主要配置:1、高通量玻片成像主机:1台2、图像扫描工作站:1台3、图像扫描软件:1套4、图像分析计算机:1套5、图像分析软件:1套6、校正用明场校正玻片、荧光校正玻片各1个四、售后服务1、质保期:安装完毕后24个月或发货之日起30个月免费质保,以先到为准。2、安装调试及应用培训:由专业人员负责安装、调试;安装过程中负责介绍仪器操作、日常保养注意事项;提供现场操作培训及操作手册。3、培训:仪器到位之后,由工程师完成培训,帮助用户掌握仪器的基本操作。4、出现问题在报修后24小时内相应,3个工作日内相关人员到达机器所在地点启动后续维护维修工作。
  • 冷冻真空干燥技术的主要应用
    (1)生物制品的冷冻真空干燥我们做过生物制品冷冻真空干燥的品种有皮肤、角膜、海参、螺旋藻等;从文献中看到其他人做过的冻干产品有心瓣膜、活菌、活毒、骨骼、各种疫苗、血液制品等。生物制品的冻干要求保持产品的活性,活菌、活毒等微生物真空干燥后的存活率要求80%以上,以便于应用。因此,对冻干机工艺要求严格,预冻温度、速度、时间的控制很不容易,保护剂配方、剂量、加入时间和加入方法非常关键,不同的人可能采用不同的配方,达到的效果可能相同。一般各种保护剂的配方都是互相保密的。(2)药材和药品的冷冻真空干燥我们做过的品种有人参、山药、纳豆激酶、北冬虫夏草、林硅油、鹿茸等;从文献中看到其他人做过的品种有各种粉针制剂、中草药制剂、抗生素、布洛芬、脂质体和其他纳米颗粒等。药材和药品需要长期保存,真机需要速溶,放置氧化,避免污染杂菌,保持药效的长久稳定。这些要求都需要通过冷冻真空干燥技术来实现。药材和药品的冷冻真空干燥工艺要求也很严格,寻找合适的冻干保护剂、添加剂、赋形剂都很困难,生化干燥阶段的温度控制、加热速率控制都很关键,严格防止塌陷。(3)食品的冷冻真空干燥我们做的食品有菠菜、苹果、香蕉、库尔勒香梨等;从文献上查到其他人做过的品种有咖啡、茶叶、大蒜、鱼肉、调料等。食品种类繁多,形状、性质相差较大,冻干工艺需要在实验中确定。冻干食品时间较长、耗能较多、价格较高,应该合理选择冻干参数,优化冻干过程,降低冻干昂成本,根据市场需要,选择性价比较高的食品做冷冻真空干燥。(4)冷冻真空干燥在其它领域的应用冷冻真空干燥除了在生物制品、药品、食品和纳米材料制备方面的应用之外,还可以干燥超市的木质文物、古画等,冻干发出来的这些产品能恢复物品的原样;还可以干燥动植物标本,使标本长期保存,栩栩如生;医疗事业做实验用的、具有毒害物质的动物尸体采用冻干干燥法的处理,可以实现环保等。
  • 二期4台冷冻电镜进驻 商业冷冻电镜服务商佰翱得坐拥8台
    日前,4台高端冷冻电镜顺利进驻无锡佰翱得生物科学有限公司。至此,江阴企业佰翱得坐拥8台冷冻电镜,其中包括3台国际最先进的第四代冷冻电镜Titan Krios,一举成为全球最大商业冷冻电镜服务供应商。图自佰翱得冷冻电镜国际创新中心(笔者注:佰翱得早在2012年,就拥有当时最完善的室内晶体衍射平台。为适应全球结构解析需求,2018年,采购了一台200kv的TF20冷冻电镜,大大提高了样品优化的效率。 在2020年,为进一步整合上下游能力加速研发,采购了最新一代的300kv的冷冻电子显微镜,此时,平台的冷冻电镜数量为4台。日前,二期佰翱得冷冻电镜平台的4台冷冻电镜(2台Krios G4、1台Glacios、1台120Kv冷冻透射电镜)顺利入驻,平台冷冻电镜数量达到8台)冷冻电镜技术于2017年摘得诺贝尔化学奖,是指不需要晶体就能在原子分辨率水平上解析药靶结构的新崛起技术。经过4年沉淀,佰翱得成功把冷冻电镜SPA和MicroED两大技术应用到新药研发过程中,可为国内外生物医药企业提供药靶蛋白制备、生物分析与化合物筛选、复合物晶体结构与冷冻电镜结构解析,以及结构模拟、三维结构计算、化合物虚拟筛选等计算结构生物学技术服务,大幅加速“源头创新”新药研发进程。据了解,由于拥有国际领先的蛋白制备平台,佰翱得冷冻电镜技术具备得天独厚的技术优势,促使该企业实现了多项行业领先:2017年在国内率先筹建商业化冷冻电镜平台;2018年引进国际顶尖的冷冻电镜专家,打造国际领先科学团队;2019年装备了中国生物医药工业界第一台冷冻电镜设备,成为全球首家推出从基因到冷冻电镜结构一体化服务的标杆企业。无锡佰翱得生物科学有限公司由双良集团与多名拥有国际药企工作经历的海归科学家联合创立,截至目前已为近200家国内外客户的超过3000个新药研发项目提供服务。
  • 规划300kV冷冻电镜20台!水木未来全球冷冻电镜与AI药物创新中心投用
    7月4日,清华大学-北京大学生命科学联合中心青山湖平台挂牌暨2022年暑期学校启动及水木未来冷冻电镜项目投用仪式在青山湖科技城举行。清华大学校长助理、清华大学-北京大学生命科学联合中心主任王宏伟,西湖大学校长助理王廷亮,北京大学生命科学学院副院长、教授高宁,清华大学生命科学学院副院长欧光朔,杭州城西科创大走廊党工委委员、管委会副主任施黄凯,临安区领导杨泽伟、陈立群、蔡萌、裘凯,以及临安区有关部门、清华大学、北京大学、浙江大学等高校师生参加活动。活动现场青山湖科技城是浙江建设科技强省和创新型省份的重大工程,也是杭州城西科创大走廊的重要一极。自成立之初起,青山湖科技城就高度重视科技创新,集聚了36家科研院所,拥有众多共享仪器设备和研发平台;近年来,更是聚焦高端装备制造、未来微电子、新材料等领域,打造成为城西科创大走廊“硬科技”创新策源地。水木未来冷冻电镜项目投用仪式在杭州市临安区政府推动下,水木未来“全球冷冻电镜与人工智能药物创新中心”设立于青山湖科技城,旨在建立全球最大的冷冻电镜平台和生物大分子高精度结构数据库,面向全球科研机构和创新药企提供服务和创新疗法共同开发;与清华大学和国内外顶级科研机构合作,提升基础科研水平,整合基础研究、技术开发和成果转化,打造全球化结构与AI药物创新发现基地。水木未来源自清华,是一家基于冷冻电镜和AI的精准创新药和疗法研发企业,拥有亚太区第一个商业化冷冻电镜服务平台,在小分子、抗体药、RNA药物、蛋白降解、基因治疗等领域,助力全球创新药企药物研发。经过一年的紧张筹备,水木未来“全球冷冻电镜与人工智能药物创新中心”在青山湖科技城投用。参观水木未来冷冻电镜实验室目前,6台300kV高配电镜已就位,结合自主研发的AI驱动的新一代电镜结构解析和建模软件平台、GraFuture™ 石墨烯载网冷冻制样技术,水木未来青山湖基地在推动冷冻电镜效率、分辨率和产业化方面,又向前迈出一大步。据青山湖科技城管委会相关负责人介绍,该项目的投用,将有力提升科技城乃至临安、城西科创大走廊的生物医药创新研发水平,并加快生物医疗领域产业集聚,助力城西科创大走廊打造生命健康产业创新策源地,以“结构+计算”助力加速全球创新药物发现。会议期间,与会人员参观了水木未来冷冻电镜项目实验室、青山湖科技城规划展览馆,并举行了政校深化合作座谈。笔者注:据了解,此次在青山湖科技城投用的水木未来冷冻电镜研发平台,规划了20台高规格300KV冷冻电镜,不久的未来还将引入用于原位高分辨解析的新型高端电镜。水木未来“全球冷冻电镜与人工智能药物创新中心”一期正在装机6台300KV新型高端冷冻电镜、2台200KV冷冻电镜,旨在建立全球最大的冷冻电镜平台和生物大分子高精度结构数据库,推动新一代AI精准化药物和疗法的源头创新。据悉,电镜平台综合实验室由上海音宁电子科技有限公司设计施工一体化建设。有关负责人透露,全球已有多家顶尖实验室表达合作意愿。
  • 南方科技大学冷冻电镜实验室将揭牌 拟安装10台冷冻电镜
    p  在深圳市的大力支持下,南方科技大学冷冻电镜实验室即将在南科大校园内落成,并投入使用。/pcenterimg alt="" src="http://www.sustc.edu.cn/upload/images/news/%E7%A7%91%E7%A0%94%E6%96%B0%E9%97%BB/1.gif" height="282" width="500"//centerp/pp  2017年10月4日三位科学家因为开发并发展了冷冻电镜技术而获得诺贝尔化学奖。南科大在学校发展的战略布局上充分展现了前瞻性,早在2017年6月 10日,冷冻电镜项目就已正式立项,并邀请我国目前最优秀的青年结构生物学家之一杨茂君教授主持。“栽下一棵梧桐树,凤凰就来了”,南科大冷冻电镜实验室主任王培毅教授这样形容实验室对海内外人才强大的吸附力。自项目启动以来,实验室已吸引了来自海内外诸多青年才俊和重量级专家学者的加入。其中包括行业内唯一的中科院院士、我国最早使用冷冻电镜开展生物大分子研究工作的隋森芳院士。今年7月,2017年诺贝尔化学奖的三位得主之一、美国哥伦比亚大学 Joachim Frank教授将应我校陈十一校长邀请到访南科大,探讨开展进一步合作。/pcenterimg alt="" src="http://www.sustc.edu.cn/upload/images/news/%E7%A7%91%E7%A0%94%E6%96%B0%E9%97%BB/%E5%86%B7%E5%86%BB%E7%94%B5%E9%95%9C2%201.gif" height="282" width="500"//centerp/pp  南方科技大学冷冻电镜实验室拟于今年年底正式挂牌成立,届时将同时举办国际研讨会,几乎所有在冷冻电镜方面的国际著名科学家都将出席,包括另一位2017年诺贝尔化学奖得主、剑桥大学MRC-LMB的Richard Henderson教授。/pp  冷冻电镜技术改变了许多生物领域的研究方式,使得诸多研究能够快速取得重大突破。冷冻电镜技术已成为结构生物学研究的利器,这项技术克服了生物分子结构解析中的许多难点,被诺贝尔奖官方称为“使得生物化学进入一个新时代”。图像是我们理解一切事物的关键所在,将那些人眼不可见的物体成功地可视化,通常是科研产生突破的基础。 长久以来,人们认为电子显微镜只能用于非活性生物样品的成像,因为电子显微镜的高强度电子束会严重损伤生物样品,是冷冻电子显微技术改变了这一切。现在,研究人员可以将具有活性的生物大分子快速冷冻到液氮温度(-196度),并在此温度下保持和转移,使样品最大限度保持原来形态。并将那些以前无法看见的生物变化的动态过程实现可视化——这对我们从原子尺度了解生命过程,以及研发药物带来决定性的影响。/pcenterimg alt="" src="http://www.sustc.edu.cn/upload/images/news/%E7%A7%91%E7%A0%94%E6%96%B0%E9%97%BB/%E5%86%B7%E5%86%BB%E7%94%B5%E9%95%9C3%201.gif" height="282" width="500"//centerp/pp  南方科技大学冷冻电镜实验室拟安装300千伏冷冻电镜6台,200千伏冷冻电镜2台,120千伏电镜2台,共计10台冷冻透射电子显微镜及其它71台/套相关辅助仪器和样品制备设备,全部建成后,将是我国配套最齐全、最先进的冷冻电镜实验室。目前,两台300千伏冷冻电镜已完成安装,进入电镜性能综合调试阶段,预计将于8月开始试运行。一台120千伏电镜将于7月上旬投入使用。据悉,有关冷冻电镜的配置,我校前期作了大量调研工作,包括与实验室科学顾问委员会成员Richard Henderson教授进行了深入探讨,以保证每台冷冻电镜除了拥有一般共性之外,在配置上同时各具不同特性,以适应与支持南科大冷冻电镜实验室在接下来即将开展的一系列世界前沿性基础及应用研究。此外,实验室将积极开展多学科交叉研究,力争在冷冻电镜的软、硬件技术,设备和应用方面取得新的突破,克服冷冻电镜目前操作复杂、控制程序繁琐及应用成本较高的缺陷,实现冷冻电镜的常规应用。并与学校已经建成的X射线晶体学平台、生物质谱蛋白质组学分析平台形成互补,开展国际上最前沿的蛋白质科学研究,为结构生物学、细胞生物学、神经科学,化学、材料科学等领域搭建交叉学科平台。/pcenterimg alt="" src="http://www.sustc.edu.cn/upload/images/news/%E7%A7%91%E7%A0%94%E6%96%B0%E9%97%BB/%E5%86%B7%E5%86%BB%E7%94%B5%E9%95%9C4%201.gif" height="282" width="500"//centerp/pp  地处粤港澳大湾区核心的深圳是一座新兴科技产业云集的城市,也被人们誉为中国最具有硅谷气质的城市。今年5月26日在深圳举行的“未来论坛X深圳峰会” 上,我校校长陈十一曾指出:和硅谷相比,深圳欠缺的还是基础研究能力,也包括应用基础研究,产业和研究的对接。南方科技大学建设的世界一流冷冻电镜实验室,旨在通过利用这一国际最先进的科学技术之一,大力发展基础科学研究,聚焦重大疾病诊断、新药开发、精准医疗、功能材料研发和基础学科建设等领域,促进深圳新材料、医疗卫生、健康产业和高等教育的发展。同时积极服务于国家战略需求,造福14亿中国人。/pcenterimg alt="" src="http://www.sustc.edu.cn/upload/images/news/%E7%A7%91%E7%A0%94%E6%96%B0%E9%97%BB/%E5%86%B7%E5%86%BB%E7%94%B5%E9%95%9C5%201.gif" height="282" width="500"//centerp/pp  在新一轮科技革命和产业变革中,中国将创新作为引领发展的第一动力,把科技创新摆在国家发展全局的核心地位,大力实施创新驱动发展战略。在国家重大需求的牵引和顶层设计的指导下,利用冷冻电镜的技术优势,在核心技术和关键领域实现重大突破,对产业升级、经济转型发展产生巨大推力,正是南方科技大学冷冻电镜实验室建立的初衷和目标。/pp style="text-align: right "  文字:任亦/pp style="text-align: right "  视频制作:李艺松/pp style="text-align: right "  摄像:蔡秉伦 黄立斌/p
  • 南科大冷冻电镜中心正式揭牌,将成为中国规模最大的冷冻电镜设施中心
    p style="text-indent: 2em text-align: justify "2018年11月19日,南方科技大学冷冻电镜中心揭牌仪式在南科大生物楼举行。2017年诺贝尔化学奖获得者、冷冻电镜技术开创者之一Richard Hendersen,深圳市发改委副主任蔡羽,南方科技大学校长陈十一,中国科学院院士隋森芳等出席仪式。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201811/uepic/b83644de-356d-4e5f-9341-72a1a5e4725a.jpg" title="1.png" alt="1.png"//pp style="text-indent: 2em text-align: center "揭牌仪式现场/pp style="text-indent: 2em text-align: justify "南科大冷冻电镜中心是深圳市政府出资、我校牵头建设的重大基础科学设施平台,旨在支撑深圳市、粤港澳大湾区及中国南方在生物医药、精准医学、新能源新材料方面的科学研究及产业升级。南科大冷冻电镜实验室拟安装300千伏冷冻电镜6台,200千伏冷冻电镜2台,120千伏电镜2台,共计10台冷冻透射电子显微镜及其它71台/套相关辅助仪器和样品制备设备,全部建成后,将是我国配套最齐全、最先进的冷冻电镜实验室。经过一年多的前期准备工作,目前项目一期的2台300kv冷冻电子显微镜已经完成安装调试,投入使用。冷冻电镜技术改变了许多生物领域的研究方式,使得诸多研究能够快速取得重大突破。冷冻电镜技术已成为结构生物学研究的利器,这项技术克服了生物分子结构解析中的许多难点,被诺贝尔奖官方称为“使得生物化学进入一个新时代”。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201811/uepic/7a1b61e0-a88d-4542-9e00-fb3cdc96a122.jpg" title="2.jpg" alt="2.jpg"//pp style="text-indent: 2em text-align: center "陈十一致辞/pp style="text-indent: 2em text-align: justify "陈十一在仪式上致辞,他代表南科大对与会嘉宾的到来表示欢迎,对深圳市委市政府对南方科技大学冷冻电镜中心的支持表示感谢,同时也对冷冻电镜中心负责人王培毅和工作人员前期的辛勤工作表示肯定。他表示,未来几年,冷冻电镜中心将致力于把基础知识和药物开发结合起来,在深圳的工业发展中扮演重要角色。南科大将以此为契机,秉承和发扬“敢闯敢试、求真务实、改革创新、追求卓越”的创校精神,为深圳市社会和经济的发展继续贡献力量。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201811/uepic/17b55b90-20aa-4b77-85b2-0fddf9d79466.jpg" title="3.jpg" alt="3.jpg"//pp style="text-indent: 2em text-align: center "Richard Henderson致辞/pp style="text-indent: 2em text-align: justify "Richard Henderson在致辞中对南科大冷冻电镜中心的落成表示祝贺,并表示为这个优秀的冷冻电镜中心的建立感到由衷高兴。他指出,南科大冷冻电镜中心落成之后,将会成为全球最大的三个冷冻电镜中心之一,另外两个分别在美国和英国。目前,世界上大概有100个类似的研究机构,南科大冷冻电镜中心落成之后,其研究能力将会达到全球的前5%,对相关科研领域的研究产生更大的影响。/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201811/uepic/524b4e7f-e049-43a5-8cb4-e08283ee6ed4.jpg" title="4.jpg" alt="4.jpg"//pp style="text-indent: 2em text-align: center "蔡羽致辞/pp style="text-indent: 2em text-align: justify "蔡羽表示,南科大冷冻电镜中心是生命科学、新材料、新能源领域基础性、关键性的重大科研设施,填补了深圳市、广东省、中国南方地区在该领域的空白,为我市及地区相关领域内的科学研究及产业升级转型提供了支撑平台,希望冷冻电镜中心为深圳市、粤港澳大湾区的产业升级及进一步经济社会全面发展提供新的动力源泉。/pp style="text-indent: 2em text-align: justify "随后,冷冻电镜中心负责人王培毅、Richard Henderson、蔡羽、隋森芳共同为南方科技大学冷冻电镜中心揭牌。/pp style="text-indent: 2em text-align: justify "Thermofisher Scientific亚太区材料与科学事业部总经理Marc Peeters、Thermofisher Scientific公司代表Jonathan Jing、中国航天科工深圳航天工业技术研究院董事长崔玉平、中国国际金融集团董事总经理陈十游也在仪式上致辞。/pp style="text-indent: 2em text-align: justify "南方科技大学第二附属医院、深圳市第三人民医院院长刘磊,加州大学洛杉矶分校教授周正洪,加州大学旧金山分校教授程亦凡,牛津大学教授章佩君等参加了揭牌仪式。/pp style="text-indent: 2em text-align: left "冷冻电镜发展国际研讨会也于同日在南科大图书馆111报告厅举行。/p
  • “单颗粒冷冻电镜之父” Joachim Frank
    祝冷冻电镜之父Joachim Frank82岁生日快乐!约阿希姆弗兰克,德裔生物物理学家,美国国家科学院院士,现任美国哥伦比亚大学教授,研究领域包括生物化学、分子生物物理学等。1975年到2008年间,弗兰克教授完善了电子显微镜图像处理的单颗粒算法,发明了SPIDER软件,该软件至今为全世界上百家实验室广泛使用。弗兰克教授应用冷冻电镜和单颗粒技术,在解析原核和真核细胞核糖体结构和功能领域做出了非凡的贡献。2017年10月,弗兰克教授与雅克杜波谢、理查德亨德森共同获得诺贝尔化学奖,以表彰他们在“冷冻电镜用于生物分子结构的高分辨率解析领域”做出的巨大贡献。本期水木视界对约阿希姆弗兰克教授的诺奖感言自传进行翻译,期望更多冷冻电镜领域的同僚们能够了解这位冷冻电镜之父的传奇过往。原文:"Joachim Frank Biographical"Copyright The Nobel Foundation 2017“Normally, my dog wakes me up in the morning. But today, it was the Nobel Prize!”—Joachim Frank以下内容为弗兰克教授诺奖感言:我于1940年9月12日出生在德国的魏德瑙镇。自1972年以来,魏德瑙镇一直是锡根市的一部分。锡根市拥有约10万左右的居民,位于北莱茵威斯特法伦州的南端。它周围的山区被称为锡格兰,在过去的几个世纪,锡格兰的铁矿开采、加工和冶炼行业都欣欣向荣。作为传统技术,铁矿的开采可以一直追溯到两千年前的凯尔特人。不过,在采矿和加工业转移到发达的鲁尔区后,留给锡格兰的任务就只剩钢铁的冶炼了:锅炉、铁管、铁轨、铁桶和许多其他由铁和钢制成的部件。魏德瑙镇的地标是“富士山”,一个巨大的铁矿渣堆,与日本的名山形状一致。此外,锡根也是奥兰治拿骚家族的所在地,他们是荷兰皇室的血脉。作为画家彼得保罗鲁本斯的出生地,锡根市为此而自豪。然而,画家彼得在锡根出生的原因则是一场闹剧:他的父亲与有身孕的母亲从科隆出发,在乘坐马车途径锡根时被逮捕。三个城市,锡根、科隆和安特卫普都声称彼得是他们的儿子,城市之间的争执是锡根上城区喷泉的永恒主题:在雕塑上,三位母亲一同抱着婴儿彼得保罗,并为之争吵。彼得保罗鲁本斯(Sir Peter Paul Rubens)1577年6月28日-1640年5月30日比利时画家,巴洛克画派早期的代表人物我的父亲威廉弗兰克是锡根法院的一名法官。他于1896年出生在魏德瑙。不过,他并没有完成全部的法律学业:他被征召并参加了一战中的凡尔登战役,并由于受伤而失去了大半个左手。他的母亲,也就是我的奶奶,出身于当地的一个富裕家族:施莱芬鲍姆家族,他们经营着繁荣的钢铁企业。我的爷爷是一名高中教师,来自锡根郊区的一个乡村家庭。我的母亲夏洛特来自杰出的曼斯科普夫家族,该家族在锡根的渊源可以追溯到15世纪。在18世纪,曼斯科普夫家族的一个分支在法兰克福定居,并通过国际葡萄酒贸易获得了无尽的财富和声誉。而在19世纪初,他们则与歌德的家族关系密切。左侧:1940年,与我的母亲夏洛特、父亲威廉、他的妹妹伊丽莎白、我的祖母阿玛莉-施莱芬鲍姆、哥哥赫尔穆特和妹妹英格伯格在一起。我的妹妹雷娜特将在四年后出生。右侧:我父母在魏德瑙的家,恩格斯巴赫大街3号,1905年的建筑图纸显示了原来的两层楼的阳台。我的母亲毕业于Stift Keppel高中,这是一所创办于13世纪的女子高中。婚后,她留在家里照顾她的四个孩子:我、我四岁的妹妹雷娜特和两个哥哥姐姐,英格伯格和赫尔穆特。我们的家宅大而庄严,是我的祖父母在1905年用红色双层玻璃砖建造的,极为坚固。它坐落于一块大小适中的土地上,与街道接壤的地方有一道锻铁栅栏。家宅的一楼和二楼有阳台,可以俯瞰后院。外侧的步道上铺满了装饰性碎石,并种着几颗黄杨树。[战争年代]锡根市,北莱茵威斯特法伦州,德国我出生于二战期间,而战争影响了我的整个童年。由于锡根市发达的钢铁制造业,它是盟军空袭的首要目标。在战争结束时,锡根市80%的建筑物都被夷为了平地。大约是我四岁的时候,一些邻居的房屋被陆续地炸毁了。在1944年2月的一次凌晨空袭中,我父母的房子也被炸毁。由于屋顶和上层被毁,其余的部分也因漏水而无法居住,我们不得不搬到北部20公里左右的希尔兴巴赫镇,在那里,我父亲的同事为我们提供了一套公寓。这套公寓位于威廉斯堡,它是一座18世纪依水而建的城堡,也是当时的法院大楼。在我的记忆中,我当时坐在城堡地下室的防空洞里,周围萦绕着婴儿的哭闹,飞机、空袭和无线电广播声,这些声音充斥着我青少年时期的噩梦。战争结束后的那段时间尤为艰难。母亲常常会乘坐去往乡下的火车,用我们家中剩余的铁制品换取黄油、火腿、面包、面粉和鸡蛋。“天然的黄油”来之不易,母亲会把它们搅拌进人造黄油中,但并不会稀释太多,这样我们就能尽可能长地记住黄油真正的味道。我们也有一个很大的花园,种植了苹果树、梨树和樱桃树。有一段时间,我们为了制作糖浆而种植了一些甜菜,并种植了烟草来满足父亲的吸烟习惯。我们还会在后院养鸡,甚至一度在阳台下面养了一头小猪。这些花园中的时光,使我得以近距离欣赏大自然。附近烧毁和倒塌的房屋瓦砾对我有一种错综复杂的吸引力,令我既恐惧又着迷。恐惧是对混乱和破坏的自然反应,特别是对一个孩子来说,这意味着危险无处不在。着迷的部分源自和其他同龄男孩一起在荒凉的土地上玩耍的经历,到处都堆满了砖头、罐子、扭曲的电线和塑料碎片。我们经常能发现老鼠窝,里面有一些尚处目盲的粉红色鼠崽。[启蒙教育]锡根市,北莱茵威斯特法伦州,德国我的小学就在家的街道对面,在那里我度过了四年的启蒙时光。八岁时,在还没有任何科学概念的时候,我在阳台下面的阴凉处开始了第一次实验,是天生的好奇心驱使我这样做的:我搭了一个架子,收集了一些利口酒的酒瓶,并用它们去装满我能得到的每一种液体:食用油、水、汽油,以及我长大一点之后得到的盐酸。凭着直觉,我把这些液体混合起来,把金属置入其中,并记录结果。我看着碳化钙在水中溶解,并着迷于激烈的反应和逸出气体的气味;我看着锌在盐酸中溶解并冒出气泡;我在一个与管子相连的金属容器中加热煤,因为我听说会有可燃的气体冒出来。迈耶百科词典,这是我在被毁的老房子里发现的一套20卷百科全书,每卷约1000页。这套百科全书登陆了海量的学术文章、技术图纸、彩色照片和世界各地的地图。在我识字之后,它们陪伴我度过了整个童年和青少年时期。我花了几年的时间把它们都读完了。这套出版于1905年的百科全书信心满满地宣称:人类已经把世上所有的东西都研究得不能再透彻,不过,1905年恰好也是爱因斯坦发表光电效应论文的一年,那篇论文证明了能量的量化,也就是量子力学的前身。对于那套百科全书来说,这还是挺讽刺的。如今,这套书的内容并没有太多的参考价值了,却对我来说有相当的纪念价值:它们被我视作纪念那套祖宅的传家宝。高中的科学课。在我身后右侧的两个身位处,他们是霍斯特施密特博金和乌尔里希梅博尔德。在未来,他们将成为物理学家。照片由@弗里德海姆施克提供。从五年级开始,我转学到了莫里茨文理中学,这是以奥兰治拿骚家族一位著名公爵命名的学校,而我是小学班20名学生中仅有的4名升学者之一(在德国的体系中,文理中学将初中和高中合并到一起)。在那里,我对科学课,特别是物理课产生了强烈的兴趣。同时,我扩大了实验范围,并在阁楼开辟了第二个试验场地。在那里我会尝试修补一些小玩意,例如用废弃或邮购的零件组装收音机:哥哥曾向我演示过如何组装一个水晶收音机,而我很快就痴迷于这些精巧的小物件,不可自拔。之后,我制作了几个花哨的微型收音机,并装在肥皂盒里。我的大部分零花钱都用在了阀门、晶体管、电阻器和电容器的购买上,而阁楼上则充满了松香焊接时产生的"蒸汽"味。幸运的是,我在学校里结识了一个志同道合的朋友,他就住在街对面。这时我应该补充一下,我的三个兄弟姐妹都在同一所文理中学上学。在获得高中毕业证后,我的哥哥去攻读并完成了工程博士学位,成为了一名职业安全领域的公务员。我的两个姐姐都在高中二年级时转去了职业学校,进行理疗师的就职培训。在结婚并将几个孩子拉扯大之后,长姐完成了她中断的高中学业,并进入大学,获得了生物化学的博士学位。而二姐从理疗师转型成了一位艺术家,她制作了许多漂亮的被子,直至1998年她因癌症早逝。[进入大学]弗赖堡市,巴登符腾堡州,德国我始终觉得,在大学里我注定会选择物理专业。而我的父亲常常质疑这个选择,理由是这个专业并不能糊口。1960年,在完成高中学业后,我去了弗赖堡大学(University in Freiburg),并从省会城市搬到了僻静的小镇,镇上有一些大型哥特式教堂和许多迷人的中世纪建筑,这令我恍如隔世。我学习了微积分和线性代数,并学会如何去撰写严格的数学证明。此外,我也学习了数学物理学科的特殊函数和统计力学的课程。我视在亚琛攻读工程博士的哥哥为榜样,加入了著名的弗莱堡大学Suevia兄弟会,结识了一些朋友。但后来,受60年代政治动荡的影响和启发,我逐渐意识到了那些扎根于德国学生组织中的民族主义和右翼思想,并退出了兄弟会。当时的弗莱堡大学校长,臭名昭著的马丁海德格尔(Martin Heidegger)公开地支持元首。我曾经看到年迈但瘦小的海德格尔在大学门口发表公开演讲,这一举动在外界看来极为罕见。不过,他被一群学生簇拥着,我几乎看不到他。由于在学士毕业考试中表现突出,我得到了德国学术研究基金会的提名:这是一项特殊的奖学金,并在日后极大地拓宽了我的视野,使我能了解其他学科和人文领域。通过组织科学前沿会议,基金会促进了跨学科的讨论。在1964年的一次会议上,我第一次了解到 "中央教条"原则和DNA结构。也是在这里,我和神经生理学家沃尔夫辛格(Wolf Singer)初识,并开启了直至如今的长远友谊。我和辛格,以及志同道合的学生们一起成立了讨论小组,专注于当时的热门话题—“控制论”。[硕士与博士]慕尼黑市,巴伐利亚州,德国为了得到硕士学位,我前去慕尼黑大学物理系做毕业论文相关的工作。论文项目与液态金上的电子后向散射有关,这个深奥的课题与当时新兴的高能电子束技术息息相关。我的导师恩斯特金德(Ernst Kinder)曾在早期使用电子显微镜做了一些工作:他发现蝴蝶翅膀的彩色图案源自于微小鳞片处于亚显微排列时产生的光干扰。现在,他的办公室里仍然保留着一台古老的电子显微镜。这段经历让我对涉及电子显微镜的项目颇有好感。最终,我选择了沃尔特霍普(Walter Hoppe)作为我的博士导师,他是马克思普朗克蛋白质皮革研究所的X射线晶体学家,后转为电子显微镜专家,该研究所后来迁至马丁斯里德(Martinsried),更名为马克思普朗克生物化学研究所(Max Planck Institutes)。霍普的研究内容是利用电子显微镜对生物分子进行三维成像的方法。我的论文则侧重于利用统计光学等领域的方法探索电子显微照片的特性。我在Optik杂志上发表的第一篇论文,研究了样品漂移对显微照片的光学衍射图案产生的影响,并以傅里叶理论解释了观察到的条纹。当霍普承认这是一项完全独立的工作,拒绝在作者栏签署他的名字时,我无比自豪。我的首次计算机编程使用了ALGOL编程语言,每次编译和运行新写的程序之前,我都要花费20分钟左右步行到大学。后来我学会了用FORTRAN语言进行编程,所使用的设备是IBM1130,它建造于我们研究所的一个小地下室里,我有时会在那里工作到深夜。研究所的生活方式十分独特,具有明显的巴伐利亚色彩,只需要步行短短的几分钟,就能从研究所步行到举办啤酒节的大草坪。在蘑菇生长的季节,人们会在清晨组织采摘蘑菇的活动。三至四名学生会组成户外小组,与一位对蘑菇了如指掌的专家一同出发,带回许多真菌和鸡油菇。我们会用锥形瓶和烧瓶将它们煮熟,撒上盐,与巴伐利亚面包一同食用。我们也曾在图书馆中用一桶啤酒和大块的肉饼来庆祝论文的刊登。当时的慕尼黑和现在一样,是一个文化活动丰富的城市,到处都是娱乐场所:每天去听一场古典音乐会算得上是日常了。我的一个古典音乐爱好者朋友也从弗莱堡搬到了慕尼黑,并邀请我去看了许多出色的演出。耳濡目染下,只靠几个开场音符,我就能辨认出许多古典交响曲。此外,慕尼黑歌剧院的票价平易近人,却总能提供宏大的体验。在那段时间里,我主要有两批朋友,一批是扬格罗内博格等人,格罗内博格是一位具有乌托邦思想的大学辍学生,住在慕尼黑郊外的小屋里。另一批是沃尔夫辛格等人,我通过学术研究基金会认识了他们,靠着沃尔夫辛格的介绍,我认识了我的第一任妻子凯茜恩格伯格。我们于1969年结婚,但这段婚姻只维持了不到10年。1968年,一次在希尔谢洛镇的会议让我有机会认识了几个未来在这个领域举足轻重的人。这次研讨会是由瓦尔特霍普和剑桥MRC分子生物学实验室的马克斯佩鲁茨(Max Perutz)共同组织的,佩鲁茨因在蛋白质X射线晶体学方面的开创性工作而闻名。在那里,我遇见了哈罗德埃里克森、理查德亨德森、肯霍姆斯、休赫胥黎和奈杰尔昂温等人。在下午,与会者们可以自由地滑雪,而上午和晚上都保留给讲座和讨论,其形式类似于戈登会议。与我的论文相关的两篇德文论文后来发表在了会议记录中,载于Bunsengesellschaft für Physikalische Chemie特刊。[博士后阶段]加利福尼亚州,美国1970年初夏,在慕尼黑工业大学的论文答辩结束后,我获得了哈克尼斯奖学金(Harkness Fellowship),这使我可以前往美国两年,并自行决定进入哪些实验室。我选择了加州理工大学的喷气推进实验室(JPL)、加州大学伯克利的唐纳(Donner)实验室、和康奈尔大学。来自欧洲的我,却搬去了帕萨迪纳这样好莱坞一样的地方,那里有繁华的高速公路、紧靠棕榈树的小房子以及穿着网球鞋的小老太太,这种文化冲击难以言喻。事后看来,这三个实验室都给了我未来方向的重要推动力。当时的JPL拥有世界上最好的图像处理设备,并开发了一个模块化的图像处理系统VICAR,我可以将自己的程序挂在上面。这个软件包后来成为我开发SPIDER系统的模型。在唐纳实验室,我和鲍勃格莱泽的小组在一起,他专注于用电磁波进行结构研究的两个典型问题:样品的辐射损伤和对水合环境的需求。他和他的学生肯泰勒(Ken Taylor)已经在试验冷冻水化样品的制备,但当时雅克杜博歇(Jacques Dubochet)决定性的玻璃态冷冻技术还没有被发明出来。在康奈尔大学的本杰明西格尔小组里,我认识了肯唐宁(Ken Downing)和威廉戈德法布(William Goldfarb)。后来我邀请威廉加入了我在奥尔巴尼的团队。这时我需要提一句,1972年我在康奈尔大学时,我的儿子霍西亚扬弗兰克(Hosea Jan Frank)出生了。从美国回来后,我在1972年的冬天短暂地回到了马克思普朗克研究所,研究电子显微镜的部分相干性理论。这项工作使我与世界级的电子光学专家彼得霍克斯(Peter Hawkes)有了接触。1973年,我加入了剑桥大学卡文迪许(Cavendish)实验室的弗农埃利斯科斯莱特(Vernon Ellis Cosslett)小组,担任高级研究助理。与我往来的人中有欧文萨克斯顿(Owen Saxton)和彼得霍克斯(Peter Hawkes)。在卡文迪许的几年里,我进一步研究了部分相干理论,并找到了一种方法:通过计算同一区间的两个连续图像的互相关性来获得电子显微照片的信噪比。这时,单颗粒平均和重建的设想在我的脑海中占据了一席之地:将电子剂量分散到网格上随机排列分子的多个"副本"中。1975年,我发表了一篇概念性的论文,提出了利用溶液中重复出现的分子来检索分子结构的想法。之后,我和欧文一起研究了生物分子的明场图像,并确定了它们在特定的条件下能够以足够的精度排列,从而使图像达到了一定的平均分辨率,这项研究的结果在1977年共同发表。自此我开始相信,单颗粒的方法即使在弱原生对比度的条件下(即蛋白质与水)也能发挥作用。[Wadsworth研究中心]奥尔巴尼市,纽约州,美国1975年,我收到了纽约州Wadsworth研究中心的唐帕森斯(Don Parsons)发来的工作邀请。在那里,我最初的任务是细胞切片的断层重建,但我继续将研究重心放在了单颗粒方法的应用上。这两个领域的交叉使我意识到,我需要一个程序框架来确保后续程序设计的灵活性。因此,我开始对SPIDER进行开发,这是一个模块化的图像处理系统。随着单颗粒技术的发展,SPIDER成为向社会传播单颗粒技术的工具。它最初采取了买断制,只收取一次性费用,后来,它补充了创意共享许可,能够被免费地使用。之后,过了很多年的时间,单颗粒概念才得以被证明有效,我们收到了生物分子的实际图像:由加州大学洛杉矶分校的大卫艾森伯格(David Eisenberg)提供的谷氨酰胺合成酶,戈廷根大学的彼得辛斯海姆(Peter Zingsheim)提供的乙酰胆碱受体,以及罗氏的米罗斯拉夫布布里克(Miloslav Boublik)提供的核糖体。我的朋友马丁凯塞尔也利用休假的时间帮助我进行了一些研究。在每个案例中,二维平均数的可重复性证明了这种方法是合理的。然而,电子显微镜业内仍有不少人持怀疑态度。转折点出现1980年,我和荷兰学生马林范海尔(Marin van Heel)共同开发了一种解决异质性问题的方法。为了寻找具有挑战性的合适分子来尝试这项技术,我开始与法国图尔的让拉米(Jean Lamy)以及他的学生尼古拉斯博伊赛(Nicolas Boisset)合作,对各种节肢动物的血蓝蛋白进行成像。多年来我一直与尼古拉斯保持联系,直到他于2008年不幸去世。他的记录方式一丝不苟,并为单颗粒重建的原理制作了精美的幻灯片。奥尔巴尼镇是纽约州的首府,却淹没在了纽约市的光辉下。该镇被美丽的乡村所包围,仅靠步行便能进入阿迪朗达克山脉。搬到奥尔巴尼不仅让我得到了第一个独立职位,还释放了我在科学之外的领域进行创造性表达的冲动。我加入了一个艺术家集体,名为WORKSPACE,由杰西加雷特(Jacy Garrett)创立。当时,行为艺术正在全美范围内被重新定义,艺术家组织也如雨后春笋般出现。激浪派(FLUXUS)运动将大众的注意力引向了一些边缘的、偶然的东西。我并没有艺术相关的文凭,却凭借创造性的贡献成功地被WORKSPACE接纳了,这让我感觉不错。我参加了他们的邮件通信,并在几年内为一本名为PROP的小型文学杂志提供编辑工作。70年代末,我的第一次婚姻结束了。离婚协议使我们拥有对儿子的共同监护权,这让我在城里呆了相当长的一段时间,并见证我的儿子霍西安成长为一个多才多艺的艺术家,他之后将名字中的扬(Jan)改名为了泽(Ze)。1982年,我在奥尔巴尼遇到了我现在的妻子卡罗尔萨吉诺(Carol Saginaw)。卡罗尔最初在纽约州心理健康办公室工作,并在多年以来担任纽约州几个非营利组织的执行董事,从事心理健康工作,后来,她又从事了早期护理和教育工作。卡罗尔来自密歇根州的一个犹太家庭,她的许多家庭成员都在我祖国建造的毒气室中丧生了。尽管我们之间不同的背景带来了很多麻烦,但我们还是在1983年完婚,并幸福地生活到现在。在很大程度上,是卡罗尔的支持和对我的信任使我取得了胜利,并走到了我职业生涯的今天。同时,我也开始尝试用英语写小说,当威廉肯尼迪,以及后来的史蒂文米尔豪斯和尤金加伯对我的手稿给予非常积极的反馈时,我感到受宠若惊。对我来说,用第二语言去创造性地表达自己的想法是令人兴奋的,因为我当时并不确定未来是否会回到德国生活。在纽约州立大学的尤金加伯(Eugene Garber)教授的小说写作课程结束后,他班上的学员,包括我在内,决定继续以作家小组的形式聚会。这个小组内的一些建设性批评,以及我后来加入的其他小组,都磨练了我的写作,帮助我认识到“自己的声音”。自此,写作成为了我生活的一部分。现在回过头来看,我早期对单颗粒冷冻电镜的贡献主要是由三个因素促成的:我工作的地方安静祥和,也没有任何教学要求,此外,美国国立卫生研究院的稳定支持也必不可少。这种支持一直持续到了今天。我很幸运地在1982年邀请到迈克尔雷德马赫加入了我的团队,他是一名德国学生,也曾师从于沃尔特霍普,在任意几何形状的三维重建方面颇有建树。在我的实验室里,迈克尔一手设计了随机圆锥形重建程序,在1986年完成了第一个完全不对称分子的三维重建,即大肠杆菌核糖体的大型亚单位。采用雅克杜波谢的新型快速冷冻和玻璃化技术,我们很快就能重建水合、原生状态的生物分子。从那时起,也就是20世纪80年代末,我们一直努力研究的技术逐渐走向了成功,尽管我们并不能确定单颗粒冷冻电镜技术是否能够在分辨率方面和产生原子结构的倾向性方面与X射线晶体学竞争。1985年,在第一届戈登3DEM会议上,以前和现在的实验室成员在奥尔巴尼重聚。从左到右:马林范海尔,让皮埃尔布雷图迪尔,阿德里安娜弗尔肖尔,布鲁斯麦克伊文,约阿希姆弗兰克,泰瑞瓦根克内西,迈克尔拉德马赫,马丁凯塞尔在1985年,我们的女儿玛丽尔贝丝出生,并成为了我们生活的中心。在她两岁的时候,我收到了在英国剑桥的分子生物学实验室(MRC-LMB)休假的邀请,邀请者是理查德亨德森。我们在小谢尔福德村(Little Shelford)的国王小屋租了一个迷人的小房子,小屋后有一个花圃,女儿玛丽尔会在那里与其他孩子玩耍。我们在康河上划船,并在剑桥周围美丽的公园里散步。在实验室里,我的大部分互动对象都是赵华(Wah Chiu),他是我第一次访问罗伯特格雷瑟(Bob Glaeser)的实验室时遇到的学生,也和我在同一个时间段加入了分子生物学实验室。利用赵华收集到的响尾蛇毒素二维晶体数据,并在他的帮助下,我成功开发了斑块平均法,这是一种结构重建的方法,利用了晶体小区间的"局部"平均数:基本上是应用于晶体碎片的单颗粒方法。在奥尔巴尼,我们重建的第一批分子是血蓝蛋白,这是我们与法国的让拉米研究小组合作的延续。与范德比尔特大学的悉尼弗莱舍(Sydney Fleischer)的另一项合作,使我第一次有机会研究鱼尼丁(Ryanodine)受体的结构。不过,关于核糖体结构的工作仍然最让我着迷。早在1990年,我就深信自己的实验室能够对核糖体的结构和功能作出重大贡献,我开始招募有核糖体背景的生物化学家。阿金德拉阿格瓦尔(Rajendra Agrawal),他在贝拿勒斯印度大学的缅甸实验室接受过培训,是第一个将"核糖体专家级"的知识带入实验室的人。其他人后来也陆续地加入进来,其中包括在柏林Knud Nierhaus实验室受训的克里斯蒂安斯佩恩(Christian Spahn)。三维电子显微镜戈登会议(3DEM)是促进冷冻电镜社区讨论和传播样品制备、仪器和数据处理新技术的重要会议。该会议成立于1985年,最初每两年召开一次,后来改为现在的年度会议。我在1987年当选为会议的副主席,随后在1989年与David DeRosier一起当选为主席,这标志着单颗粒技术得到了整个学界的认可。1994年,马克思普朗克医学研究所的肯霍姆斯和拉斯姆施罗德为我提供了再次在德国工作的机会。通过我的研究生朱军(音译)和博士后帕维尔潘切克的努力,在X射线结构出来之前,我们得到了大肠杆菌核糖体的第一个高清密度图。也是在海德堡,我写出了一本关于三维电子显微镜的书,该书于1996年出版,并在和2006年第二次出版。1998年,我被任命为霍华德休斯医学研究所(HHMI)的研究员,并在之后任职了19年,直到最近我才退休。在这些年里,我的实验室继续开发冷冻电镜,并与几个合作者实现非常具有挑战性的生物项目,这都离不开霍华德休斯医学研究所的资助。也是在那个时候,Wadsworth中心与纽约市的八个机构一起组成了一个结构研究的联盟,称为纽约结构生物学中心,该中心支持核磁共振、X射线晶体学和冷冻电镜。这让我能够与哥伦比亚大学和纽约的其他领先机构建立密切的联系。2005年3DEM戈登会议上的奥尔巴尼团聚照片。从左到右:比尔巴克斯特,马丁凯塞尔, 尼古拉斯博伊塞,约阿希姆弗兰克,克里斯蒂安斯帕恩,坦维尔谢赫,帕维尔佩内泽克,阿金德拉阿格拉瓦尔,刘铮(音译),何塞玛利亚卡拉索2000年,在我60岁生日的时候,我在伦斯勒维尔镇(Rensselaerville)组织了一次会议,以延续安德斯利尔哈斯(Anders Liljas)在瑞典发起的一系列关于翻译功能的结构基础相关会议。会议的地点坐落在一个美丽的公园里,离奥尔巴尼有一个小时的车程。在这次会议期间,我和曼斯艾伦伯格(Mns Ehrenberg)花了不少时间,就核糖体结构和功能的合作制定了具体计划。这开启了一个令人振奋的研究旅程,并一直持续到现在,我们研究了启动、解码、mRNAtRNA转位、终止和循环过程的结构基础,为关于翻译机制的丰富知识库做了很多的贡献。2017年夏天,我的家人在我们位于伯克希尔的阿尔福德的房子里。上方,从左到右:霍西阿(泽)和他的儿子约拿,汤姆墨菲(玛丽尔的丈夫),约阿希姆弗兰克下方,从左到右:泽的妻子乔迪布兰特和他们的女儿罗丝,玛丽尔,我的妻子卡罗尔萨吉诺。这时,我的孩子们都长大成年了,有着自己的生活。我的儿子泽弗兰克在布朗大学主修神经科学,并出于弹吉他的爱好成立了一个乐队。他在音乐和艺术方面的特殊才能在少年时期就得到了体现。后来他搬到了纽约,开始做网页设计。通过一个偶然的途径,他登上了TED演讲的舞台,随后在一夜之间成为了一个互联网人物。最近,他任职于Buzzfeed,职位是媒体总监。他现在与妻子和两个孩子住在洛杉矶。我的女儿玛丽尔弗兰克在巴纳德学院主修语言学。她会说多种语言,在日本教过英语,还曾为一个拉丁裔非营利组织工作,现在是代码学院的程序员和课程开发人员。她已经结婚了,并定居在纽约布鲁克林。[哥伦比亚大学]纽约州,纽约市,美国2008年,我加入了哥伦比亚大学,成为生物化学、分子生物物理学系和生物科学部门的职员。在30多年的奥尔巴尼牧区生活后,重返纽约是相当令人兴奋的,这为我提供了许多合作机会。我带来了HHMI的FEI Polara显微镜,连同后期购买的FEI F20显微镜一起,在哥伦比亚大学建立了冷冻电镜实验室。之后,我立刻被单分子FRET合作领域所吸引,这是由斯坦福大学Puglisi实验室的鲁本冈萨雷斯建立的领域。在哥伦比亚大学的头四年里,我们的冷冻电镜项目进展缓慢,因为它仍然受到记录介质的限制。当直接电子检测相机被商业化后,发生了翻天覆地的变化,冷冻电镜领域被彻底改变了,也为我的实验室开辟了许多新的合作途径,特别是在通道结构方面。最近,哥伦比亚大学建立了一个冷冻电镜设施,由于捐助者的慷慨,以及和三个校区院长的合作,哥伦比亚大学现在正朝着成为世界领先的冷冻电镜中心之一前进。看着新技术在整个工业化领域广泛传播,我十分振奋,单颗粒冷冻电镜现在能够填补分子结构研究的巨大空白:膜结合的通道和受体,以及许多高柔性的大分子结构都可以被解析。冷冻电镜技术有望在未来几年大大增加人类医学的成就。[末尾致谢]诺贝尔颁奖典礼,斯德哥尔摩市,瑞典在过去五年中,一些实验室陆续解析了许多近原子结构,这引起了全世界对冷冻电镜领域之前数十年工作的关注,这些工作不仅仅归功于受到表彰的诺贝尔奖获得者和他们的小组,更是整个冷冻电镜领域的成就。因为从长远来看,自1990年冷冻电镜技术开始得到认可,许多团体在各个方面都做出了重大贡献:样品制备、数据收集自动化、计算、验证和原子模型的建立。这些贡献不胜枚举。在走到这一步的整个过程中,我受到了不少眷顾。我想对我的家人们表示感谢,特别是我的妻子卡罗尔,感谢她/他们在漫长时间里的稳定支持。我的妹妹英格伯格接受过生物化学方面的培训,她是我家庭中唯一能够理解我工作内容的人。在我的朋友中,我需要特别指出马丁凯瑟(Martin Kessel)对我早期工作的鼓励和支持,以及何塞玛丽亚卡拉索(Jose-Maria Carazo)对我一路走来的许多启发。最后,得到诺贝尔奖的认可令我激动,且受宠若惊。用阿尔弗雷德诺贝尔遗嘱中的话来说,诺贝尔奖的得主将是那些造福全人类的终身成就者,只有少数人能够达到这个目标。那些先行者,欧内斯特卢瑟福、莱纳斯鲍林、玛丽居里...他们的成就是难以逾越的。于我而言,一夜之间,我的人生被完整地定义了,或者说,许多与我未曾谋面的人能够了解我的经历,听我用自己的言语讲述我的故事,我感激这个机会。引用资料1. Frank, J. (1975). “Averaging of low exposure electron micrographs of non-periodic objects.” Ultramicroscopy 1, 159–162.2. Frank, J., Shimkin, B., and Dowse, H. (1981). “SPIDER — A modular software system for image processing.” Ultramicroscopy 6, 343–358.3. Frank, J. (2006). Three-Dimensional Electron Microscopy of Macromolecular Assemblies (New York, Oxford U. Press).4. Frank, J. (2015). “Generalized single-particle cryo-EM – a historical perspective.”再次祝愿Joachim Frank教授生日快乐!
  • 祝建:关于原位冷冻电镜技术的一点想法
    仪器信息网讯 2015年5月29日-6月2日,&ldquo 2015全国生物医学农林电镜技术研讨会暨生物电镜前沿技术培训班&rdquo 在浙江大学举行。本次会议特别邀请了国内外知名专家教授和电镜工作者讲授生物电子显微镜技术的最新发展,交流生物样品制备和应用方面的技术经验,并安排部分学员参加实验操作及演示。  上海同济大学生命科学学院祝建教授作了题为&ldquo 关于原位冷冻电镜技术的一点想法&rdquo 的报告。祝建教授  祝建介绍说:&ldquo 冷冻电镜技术可以分为单颗粒冷冻电镜技术和原位冷冻电镜技术。其中单颗粒冷冻电镜技术目前国际上做了许多工作,近来也比较火。近年来,我国为了开展这方面工作,购置了许多相关的高端仪器设备。该技术需要将细胞内的活性蛋白分子提纯后在体外分析,但是在体外做的不错的结构最终还需要到体内去验证,如在体内蛋白质是否也是按照相应的结构来执行功能。所以这方面的工作还需要进一步深入。&rdquo   祝建表示,原位冷冻电镜的最终目的是研究大分子的结构、功能和机制统一的问题,从而解释生命现象。原位冷冻电镜技术包括冷冻固定、超薄切片,再加上电镜分析、数据采集、三维重构等。冷冻固定可以分为快速冷冻和高压冷冻。高压冷冻技术就是为了使组织的冷冻成为可能而问世,可以冷冻200&mu m厚的样品。而快速冷冻技术只能冷冻30&mu m厚的单细胞层。从冷冻速度来看,快速冷冻的速度稍快一些。  祝建说:&ldquo 目前,国内购买了多台高压冷冻仪。其实并不是所有的样品都适合高压冷冻,大组织块、一定厚度的样品用高压冷冻最好,其他的单细胞样品用快速冷冻一样能达到很好的效果,而且快速冷冻技术更简便。&rdquo   &ldquo 冷冻固定之后,如果在冷冻电镜下分析需要与冷冻超薄切片技术相结合。如果在常温电镜下分析,则还需要冷冻置换、包埋、切片等步骤,现在买高压冷冻仪的单位基本都是要和冷冻置换结合起来。冷冻置换是冷冻固定之后非常必要的低温脱水技术,脱水过程中脱水剂中所含有的固定成分还将在合适的低温温度下对样品进行二次固定。如果要减少样品收缩,则需要快速冷冻固定,慢慢脱水。&rdquo 祝建说道。  另外,祝建还谈道:&ldquo 原位分析的另外一种途径是标记,通过标记实现定位、定性、定量分析。因为我们无法看到一些结构细节和大分子,所以用抗体来标记连接我们能看到的荧光分子或金颗粒来实现间接原位分析。&rdquo   最后,祝建总结说,在实际应用中,要根据样品的特点,从快速冷冻、高压冷冻、冷冻置换、超薄切片、冷冻超薄切片、离子束切片等制样技术中选择合适的组合方法来制样。还有我们要考虑将原位冷冻电镜与单颗粒冷冻电镜结合起来获取有效的分析结果。撰稿:秦丽娟
  • 案例:冷冻干燥机冻干蛋白酶的操作流程
    冷冻干燥蛋白酶是在生物制药、生物化学实验和分子生物学研究等领域中常见的操作,该过程能够保留蛋白酶的活性,延长其保存时间。以下是冷冻干燥蛋白酶的一般操作流程:1. 准备工作:选择蛋白酶: 根据实验需求选择合适的蛋白酶,确保其适用于冷冻干燥的过程。准备样品: 准备含有蛋白酶的溶液。注意溶液的浓度和成分,确保其适用于冷冻干燥处理。 2. 冷冻:样品冷冻: 将蛋白酶溶液以合适的体积倒入冷冻盘或其他冷冻容器中,然后放入冷冻设备冷阱室中,确保冷冻过程中样品均匀冷却。冷冻温度: 控制冷冻温度,通常是零下温度,使蛋白酶迅速冻结。 3. 冷冻干燥:转移: 将冷冻的样品迅速从冷阱室内转移到冷冻干燥机的干燥架上。真空抽气: 启动冷冻干燥机的真空泵,建立真空环境,抽除样品中的水分。升温阶段: 开始升温(提供样品中水分升华时所需的热量),使蛋白酶在真空条件下升华,从而去除水分。等温阶段: 在升温后的一定温度下保持稳定,确保样品中的水分充分升华。 4. 收集和存储:冷冻干燥结束: 当冷冻干燥结束后,停止真空,关闭冷冻干燥机。收集样品: 从冷冻干燥机中取出样品。注意避免受潮,尽快妥善保存。存储: 将冷冻干燥后的蛋白酶样品存储在防潮、密封的容器中,最好在-20°C以下的低温环境中保存,以确保长期稳定性。 注意事项:操作过程中要防止样品过度升温,以免影响蛋白酶的活性。确保冷冻干燥机和其他设备的清洁和维护,以保证实验的准确性和重复性。操作过程中要避免样品受到空气湿度的影响,尽量在湿度低的环境中进行。这个操作流程是一般性的指导,具体操作可能因使用的冷冻干燥机型号和蛋白酶种类而略有不同。在操作过程中,请参考设备和试剂的使用说明书,确保按照正确的步骤进行操作。
  • 新品发布丨新型冷冻等离子体聚焦离子束电镜推进细胞冷冻电子断层成像研究
    俄勒冈州希尔斯伯勒市,2022年8月1日讯。赛默飞世尔科技推出了Thermo Scientific Arctis冷冻等离子体聚焦离子束电镜(Cryo-PFIB),这是一款全新的自动化显微镜,经过设计可用于加快冷冻电子断层成像(Cryo-ET)研究的步伐。冷冻电子断层成像(Cryo-ET)技术使得细胞生理环境中的蛋白质研究和其他分子的运行机制研究成为可能,与其他显微镜技术相比,其分辨率达到了前所未有的水平,而且可以在细胞生物学研究方面发挥巨大的潜力,包括传染性疾病、神经退行性疾病和其他具有全球影响力的结构生物学应用。然而,为冷冻电子断层成像技术制备最佳样品的过程仍然耗时且复杂。Arctis Cryo-PFIB通过为用户提供先进的自动化和全新的连接解决方案能力,可以解决工作流程中的多种挑战,与其他的解决方案相比,Arctis Cryo-PFIB极大地提高了通量,可以快速、持续制备适用于冷冻电子断层成像技术的样品。该系统旨在提供厚度均一的高质量样品,同时最大限度地降低样品污染风险。用户可以享受到内置一体化光电联用显微技术、专用等离子体FIB技术、先进的自动化和全新的连接功能,包括简化上样和样品转移功能。亮点包括:1、一体化光电联用显微镜技术(CLEM):用于快速定位感兴趣的区域。2、等离子体FIB技术:用于快速减薄大块样品并快速定位到感兴趣的区域。3、自动化功能:可简化样品制备并实现远程操作,与当前基于镓的冷冻FIB解决方案相比,可实现长时间的自动化运行、可重复的结果和更高的通量。4、工作流程中的连通性:可简化将样品转移到Thermo Scientific Krios或Glacios冷冻透射电子显微镜(Cryo-TEM)的过程。Arctis Cryo-PFIB 配备了赛默飞世尔科技推出的行业领先的自动上样系统(Autoloader),可自动装载多达12个载网。全新的专用TomoGrid可以确保减薄后的样品与透射电子显微镜倾斜轴实现最佳对齐。如要报名参加9月21日的全球新品发布网络研讨会,请扫描下方二维码注册研讨会。
  • 冷冻电镜:正在并将为中国提供广阔的研究“舞台”
    仪器信息网讯 2014年7月28日-30日,&ldquo 2014冷冻电镜三维分子成像国际研讨会&rdquo 在中国科学院上海生科院生化与细胞所/国家蛋白质科学中心&bull 上海(筹)召开。  冷冻电镜三维分子成像国际研讨会源起于2008年由郭可信先生的学生组织发起的&ldquo 郭可信电子显微学和晶体学暑期学校&rdquo 。当时我国在电子显微学领域的研究实力非常强,但主要体现在材料物理方面,在生物领域的研究应用还基本处于空白状态。会议的组织者希望能通过举办这样的会议将国内生物电镜的应用带动起来。第一届主要以培训的形式为主,到2010年第二届会议时,组织者提出了在培训同时举行冷冻电镜三维分子成像国际研讨会,以促进冷冻电镜前沿研究的交流。  本次大会主席由海外华人学者加州大学旧金山分校副教授程亦凡、美国纽约州立大学石溪分校教授李慧林,联合中科院上海生化细胞所/国家蛋白质科学中心&bull 上海(筹)的丛尧、何勇宁研究员四位专家构成主席团。  会议参会人员近300人,远远超过了原计划的150人的预期。主办方邀请了来自世界各地的30余位杰出的电子显微学家作大会报告及培训指导,如美国贝勒医学院教授、美国科学院院士Wah Chiu (赵华),美国加州大学旧金山分校教授、美国科学院院士David Agard,美国加州理工学院教授、霍华德休斯研究员Grant Jensen,美国加州大学洛杉矶分校教授、纳米机器电子成像中心主任Z. Hong Zhou (周正洪)、中国科学院院士隋森芳等。  冷冻电镜技术发展迎来新纪元  2014年年初,冷冻电镜曾被《Nature Methods》杂志评选为&ldquo 2014年最受关注的技术&rdquo 。从此次会议的盛况来看,这一称号冷冻电镜可以说&ldquo 当之无愧&rdquo ,会议甚至吸引了此前一直利用X射线晶体学进行结构生物学研究的清华大学教授施一公前来参加。  冷冻电镜突然之间如此备受关注,和去年年底华人学者程亦凡发表的一项成果有着莫大的关系。2013年12月5日,程亦凡与同事David Julius两个实验室合作,以近原子分辨率(3.4 埃),确定了在疼痛和热知觉中起中心作用的一种蛋白质TRPV1的结构。这项成果可以说是冷冻电镜应用研究的一个分水岭,因为在此之前结构生物学研究主要依赖X射线晶体学,也可用核磁共振(NMR)来研究部分小分子的结构。人们认为冷冻电镜的分辨率不够高,如果研究分子量较大的病毒、核糖体等还可以,而研究小分子量的蛋白质则无法实现。  另外,由于TRPV1属于膜蛋白,膜蛋白是重要的药物作用靶点及细胞信号传导通道,所以自1997年它被发现以来,许多研究者都希望能够解析它的结构。但这类蛋白嵌在细胞膜中,很难得到蛋白结晶,因而很难利用X射线晶体学方法对其进行解析。而如今,冷冻电镜以接近X射线晶体学的分辨率成功解析了TRPV1膜蛋白质的结构,可以说是结构生物学研究的一个里程碑事件。程亦凡认为将来会有不少从事X射线晶体学研究的结构生物学家将冷冻电镜作为自己的重要研究工具。  李慧林表示:&ldquo 亦凡的工作可以说为冷冻电镜的应用打开了一个新的局面。膜蛋白是重要的药物靶点,因此会有越来越多的制药公司关注这一技术。而现在的制药公司会做很多X射线晶体学的研究工作,以后他们可以有新的选择了。&rdquo   我国冷冻电镜技术研究渐入佳境  冷冻电镜技术最先由欧美国家在上世纪70、80年代开发并应用,我国科学家在90年代开始冷冻电镜技术的研究,起步比较晚,但近年来伴随海外华人学者的大力帮助,以及近十年来一批优秀的科学家学成回国,我国在这一领域的研究开始蓬勃发展。  今年是该会议第四次举办,程亦凡参加了每一届会议,在他看来这四届会议可以说很好的见证了国内冷冻电镜的发展历程。他说:&ldquo 2008年、2010年两届会议我们所有的报告人都来自海外,而到了2012年就有不少国内的学者带来精彩的报告,今年无论是报告人还是参会人数又达到了一个新的高度。&rdquo   李慧林则表示:&ldquo 2008年国内当时只有一两个课题组从事冷冻电镜应用研究,而到今年粗略估计已有近20个课题组。清华大学、生物物理所、国家蛋白质科学中心、中科大、中山大学、厦门大学、兰州大学等都有老师在做这方面的研究。&rdquo   此外,为了推动我国生物学的快速发展,政府对于这一领域的研究也投入了大量的财力。Wah Chiu在参观了本次大会举办地国家蛋白质科学中心&bull 上海(筹)后感叹地说:&ldquo 我在美国从来没有看到像这样完备的蛋白质研究平台,这为中国和世界上的科学家的提供了非常好研究条件。&rdquo   政府科研投入的增加也在一定程度上推动了我国冷冻电镜的技术研究。程亦凡说:&ldquo 2008年时国内还只有清华大学订购了一台300kV的Titan Krios冷冻电镜,到2010年生物物理所和清华大学各有一台,2012年国家蛋白质科学中心&bull 上海开始筹建,订购了3台冷冻电镜,包括一台Titan Krios,今年我们看到这些仪器都已到位,另外浙江大学也开始筹建冷冻电镜实验室,计划采购两台冷冻电镜。&rdquo   经过各方面的努力,当前我国的冷冻电镜研究已经取得了一定的成绩,与国际先进水平的差距逐渐缩小。就在今年,生物物理所李国红与朱平研究员合作在《Science》杂志上发表了冷冻电镜30纳米染色质高级结构解析 清华大学施一公院士与剑桥生物医学院Sjors H. W. Scheres教授合作在《Nature》杂志上发表了利用冷冻电镜技术解析人类&gamma -分泌酶(&gamma -secretase)的三维结构。  另外,据介绍生物物理所研究员孙飞已经在开始做冷冻电镜技术开发方面的工作。程亦凡说:&ldquo 我觉得他们的工作非常有意义,我们不能只是用别人的技术来做我们的研究,而是不仅要会用这一技术,还要尽力去发展完善这一技术,这样才能有更好的成就。&rdquo   冷冻电镜发展前景广阔 人才需求缺口大  随着冷冻电镜技术的发展,对于人才的需求也越来越大。我国在冷冻电镜人才培养方面,经过几年时间的积累,也有一些优秀的青年人才成长起来,这其中郭可信电子显微学和晶体学暑期学校发挥了重要作用。丛尧说:&ldquo 我们希望通过暑期学校能培训一批高技术冷冻电镜人才,为冷冻电镜技术在我国的后续发展打下坚实基础。&rdquo   程亦凡介绍说:&ldquo 我们现在培养的学生在海外很受欢迎。像隋森芳院士培养的学生很轻松就能拿到几个国际顶级科研机构的博士后offer。&rdquo   但是现在对于冷冻电镜人才的需求非常大,我们培养的学生数量还远远不够。程亦凡说:&ldquo 虽然目前冷冻电镜的研究很活跃,但是这一技术还非常不完善,所以有许多的工作要做,需要很多人力。同时,对于一个电镜实验室,往往需要从实验员、到中级管理人员、高级管理人员等各个层次的人才。另外,随着冷冻电镜技术的发展,如果从事X射线晶体学研究的课题组要进入这一领域,最快捷的方法就是招聘从电镜实验室毕业的学生。&rdquo   &ldquo 不过在中国,好在我们有一个优势,就是我们的材料电镜非常强,培养的人才已趋于饱和。材料电镜领域的学生他们虽然不懂生物学,但是有着非常强的电镜技术背景,如果他们当中有人愿意转向生物学应用方向,一定会有非常好的发展前景。可以说今后5-10年电镜实验室培养的学生都不愁找工作。我们希望能够吸纳更多的优秀人才从事冷冻电镜的研究,推动这一技术的快速发展。&rdquo 程亦凡说道。(撰稿:秦丽娟)2014冷冻电镜三维分子成像国际研讨会与会人员合影  附录:  第七届郭可信电子显微学和晶体学暑期学校举办  http://www.instrument.com.cn/news/20140728/137553.shtml  国家蛋白质科学中心&bull 上海(筹)  http://www.sibcb-ncpss.org/(原标题:2014冷冻电镜三维分子成像国际研讨会召开)
  • 徕卡推出冷冻光镜电镜联用新品
    仪器信息网讯 &ldquo 2015全国生物医学农林电镜技术研讨会暨生物电镜前沿技术培训班&rdquo 日前在浙江大学举行。本次会议由中国电子显微镜学会生物医学电镜专业委员会和农林电镜专业委员会主办,浙江大学农生环测试中心与德国徕卡公司联合承办。  在本次会议上,徕卡正式发布了最新推出的冷冻光镜电镜联用系统(Leica EM Cryo CLEM System)。徕卡显微系统总部产品及市场经理Ruwin Pandithage博士、徕卡显微系统中国LNT产品经理童艳丽在会议中介绍了该产品的特点及应用情况。Leica EM Cryo CLEM系统  Leica EM Cryo CLEM系统采用了徕卡特别设计的冷冻物镜,这也是世界上第一个商业化生产的冷冻CLEM物镜,因而能够获得比直接用普通物镜观察冷冻样品更高的分辨率,其最大冷冻图像分辨率可达364nm。而配套设计的冷冻传输系统、冷冻物镜接口的冷冻样品台则确保了样品能够从冷冻制样设备中快速、安全、无污染的装载进冷冻荧光显微镜。  由于细胞内的生理状态变化非常迅速,所以如何确保在光镜和电镜下观察的样品生理状态的一致性一直是光镜电镜联用的一个核心问题。而如何获取同一个位置的光镜电镜信息则是另外一个核心问题,一般来说,X-Y平面的样品定位是比较容易的,如何实现Z轴方向的精确定位却是一个问题。  而通过冷冻制样技术,可以很好的解决以上两个问题。首先冷冻固定是保持样品生理状态的最佳的技术手段,而冷冻超薄切片技术则能实现Z轴方向的精确定位。Leica EM Cryo CLEM系统工作流程图  因此,徕卡推出的这款冷冻光镜电镜联用系统不仅能通过荧光显微成像对样品的大面积区域进行快速定位,为电镜观察快速确定目标观察区域。还可以通过冷冻固定和冷冻切片技术保持在荧光显微镜和电镜下观察的样品处于同样的生理状态,以及同样的位点,保证高度的重复性。并可将在光镜下观察到的信息和电镜的超显微结构信息进行叠加,使得用户可以对样品有更加深入的认识。  另外,利用该产品能够在低温下,更好的实现样品荧光显微成像 还可以检查高压冷冻或投入冷冻后的质量好坏,及时淘汰冷冻质量不高的样品,降低操作冷冻电镜所花费的时间,从而降低实验成本并节约时间。徕卡显微系统总部产品及市场经理Ruwin Pandithage博士
  • 生物电镜冷冻制样:做了才知道有多难
    p strong 仪器信息网讯/strong 2015年5月29日-6月2日,“2015全国生物医学农林a href="http://www.instrument.com.cn/zc/1139.html"电镜/a技术研讨会暨生物电镜前沿技术培训班”在浙江大学举行。本次会议特别邀请了国内外知名专家教授和电镜工作者讲授生物电子显微镜技术的最新发展,交流生物样品制备和应用方面的技术经验,并安排部分学员参加实验操作及演示。/pp  台湾中央研究院植物暨微生物学研究所简万能博士作了题为“Ultrastructure of plant cells using high pressure freezing and freeze substitution”的报告。/pp style="text-align: center"img alt="" src="http://img1.17img.cn/17img/old/NewsImags/images/201565105212.jpg" style="width: 500px height: 333px"//pp style="text-align: center"strong简万能博士/strong/pp  据介绍,由于早年看到所有的教科书都说想要获得更好的电镜观察结果,就要用冷冻制样技术,简万能便开始了这方面的研究,然而不做不知道,一做才知道有多难。冷冻制样对于动物来说比较简单,而对于植物来说由于细胞壁的影响却非常难。20年来,在研究当中,他碰到的失败的次数永远比成功多。“但是当你成功后,你会发现你的眼界比以前做化学固定大得多。”简万能这样说道。/pp  “电镜是生物学研究非常有用的工具。由于生物细胞的含水量可以达到80%-90%,所以制样能否成功主要是解决水的问题。传统的透射电镜制样技术,对样品损伤最大的步骤是脱水,往往使得细胞结构发生很大的变化。而利用冷冻制样最大的优点就是可以保持细胞原来的结构,并保持一些可溶性的物质。如果要做溶在细胞质里的元素分析,一定要采用冷冻制样技术。”/pp  由于水在冷冻的过程中会形成冰晶影响观察,所以在如何避免形成冰晶是冷冻制样的一个关键点。简万能表示:“在制样中一定要注意一些关键的温度节点。如-137℃是水的重结晶点,如果能迅速降低到这一温度,样品中的水就会形成玻璃态的冰。如果超过-70℃,玻璃态的冰就会形成二次冰晶。”/pp  在报告中,简万能介绍了目前常用的冷冻方法,如投入式冷冻、冷金属块撞击式冷冻、丙烷喷射冷冻、高压冷冻等。并指出高压冷冻的优点是可以做活的生物样品,可以做超过200& #956 m厚的样品。/pp  此外,简万能还介绍了在冷冻固定之后,如何更好的实现冷冻置换。他表示,如果要做超薄切片,高压冷冻和冷冻置换是最好的选择,可以获得非常好的样品形态,会有更多的信息被保留。/pp  在研讨会之后,简万能博士亲自指导参加培训的学员,进行了投入冷冻、高压冷冻、冷冻置换等实验操作。/pp style="text-align: right "撰稿:秦丽娟/pp style="text-align: left " 第一届电镜网络会议:a href="http://www.instrument.com.cn/webinar/icem2015/" _src="http://www.instrument.com.cn/webinar/icem2015/"http://www.instrument.com.cn/webinar/icem2015//a/p
  • 我国海洋领域首个冷冻电镜中心在青建成
    我国海洋领域首个冷冻电镜中心建成,目前已全面对外开放共享,为用户提供样品制备、数据解析等服务。冷冻电镜也称低温电子显微镜,是一种能够对生物样品实现高分辨三维结构解析的高精尖设备。“如果说天文望远镜观测的是极宏观的天体,那么冷冻电镜则是针对极微观的生物大分子,观测水平达到十分之一纳米(百亿分之一米)级别。” 海洋试点国家实验室冷冻电镜中心主任沈庆涛教授说,冷冻电镜技术目前还非常新颖,但已经在生物学领域产生了极大影响,被诺贝尔奖官方称为“使得生物化学进入一个新时代”的技术。自2013年开始,冷冻电镜成为诸多诺奖级论文成果的得力助手。海洋试点国家实验室建设的冷冻电镜中心,是山东省首个冷冻电镜中心,也是我国乃至全球首个聚焦海洋生命科学的冷冻电镜中心。“生命来源于海洋,但目前国内外对陆地生物的研究比海洋生物更全面更系统,冷冻电镜的工作也多集中在陆地模式生物上。” 沈庆涛介绍,针对生命科学回归海洋的趋势,充分发挥海洋试点国家实验室的“向海”特长,他们建立了海洋领域首个冷冻电镜中心,以海洋生物为研究目标,推动海洋生物学从宏观走向微观,从生态、细胞水平走向分子水平。为了保证冷冻电镜的高分辨率解析能力,海洋试点国家实验室同时配备了冷冻电镜中心环境适配系统。“冷冻电镜设施昂贵精密,对于每个样品通常需要花费2-3天拍摄成千上万张照片,提取近百万生物大分子颗粒进行后续的图像处理。” 沈庆涛表示,在此过程中,环境适配系统能够对温度、湿度、磁场、震动等因素进行控制并适配,从而保证冷冻电镜自始至终状态稳定。
  • 冷冻电镜:2015年最受关注的新技术
    细胞里面的生命活动井然有序,每一个部分都有其特定的结构,承担不同的功能。生物大分子则是一切生命活动的最终执行者,它们主要是核酸和蛋白。核酸携带了生命体的遗传信息,而蛋白是生命活动的主要执行者。自现代分子生物学诞生以来的半个世纪里,解析和分析生物大分子的结构、进而阐释其功能机制一直都是现代生命科学的核心问题之一。  事实上,一切自然科学都涉及物质结构及结构间的相互作用为核心的研究方向,天文学研究宇宙、星体等的结构及其相互作用,粒子物理研究物质世界的基本粒子的结构和相互作用,甚至包括应用性很强的材料科学都是以研究新型材料的结构和性质等为核心。结构生物学研究的直接目的是弄清楚生命大分子结构,从而更好地理解生命,理解这个自然界中“逆热力学第二定律”而诞生的奇迹 最终目标是公众通常关心的实用价值。  像数学物理公式不会直接造出飞机、导弹、计算机一样,蛋白质结构这样的基础研究不会直接转化为人们生产生活的必须物品。比较具体的应用,如药物设计、疫苗开发、医疗诊断和蛋白质分子性能改造(如科学实验或工业生产中酶活性稳定性优化)等是蛋白质结构研究比较容易被大众所理解的一个方向,但却只是其研究价值的一个侧面而已。  蛋白质结构如同生命科学里的数学公式和物理定律,甚至在以后会充当生命科学里面的“化学元素周期表”,除了帮助发现或设计新药等,它更重要的价值是作为最基础最上游的研究之一,通过影响一切与其密切相关的下游科学和技术,从而改变我们的世界。  结构生物学最早诞生于上个世纪中叶,它是一门通过研究生物大分子的结构与运动来阐明生命现象的学科,在其发展史上有两个里程碑式的事件,一个是 DNA双螺旋结构的发现,另一个肌红蛋白(Myglobin)晶体结构的解析,这两个事件都是上个世纪最重要的革命性科学进展,均在剑桥MRC分子生物学实验室完成,并且都于1962年获得了诺贝尔奖(一个生理学或医学奖,一个化学奖)。同时它们都是最早使用X射线的方法来解析生物大分子结构,而这个方法在过去半个世纪里,一直占据结构生物学的统治地位。  在当今结构生物学研究中普遍使用的冷冻电镜,是上个世纪七八十年代开始出现、近两年飞速发展的革命性技术,它可以快速、简易、高效、高分辨率解析高度复杂的超大生物分子结构(主要是蛋白质和核酸),在很大程度上取代并且大大超越了传统的X射线晶体学方法。  革命性的冷冻电镜技术  冷冻电镜并不是这两年才建立的。在蛋白质X射线晶体学诞生大约10多年以后的1968年, 作为里程碑式的电镜三维重构方法,同样在剑桥MRC 分子生物学实验室诞生,Aron Klug教授因此获得了1982年的诺贝尔化学奖。另一些突破性的技术在上世纪70年代和80年代中叶诞生,主要是冷冻成像和蛋白快速冷冻技术。这里面的代表科学家有Ken Taylor, Robert Glaeser和Jacques Dubochet等。  快速冷冻可以使蛋白质和所在的水溶液环境迅速从溶液态转变为玻璃态,玻璃态能使蛋白质结构保持其天然结构状态,如果以缓慢温和的方式冷冻,这个过程会形成晶体冰,生物分子的结构将被晶格力彻底损坏。低剂量冷冻成像能够保存样品的高分辨率结构信息,确保了从电镜图形中解析蛋白质结构的可能性。与此同时Joachim Frank等则在电镜图像处理算法方面奠定和发展了这项技术的理论基础。由此冷冻电镜的雏形基本建立,总的思路为:  1)样品冷冻(保持蛋白溶液态结构)   2)冷冻成像(获取二维投影图像)   3)三维重构(从二维图像通过计算得到三维密度图)。  该方法为生物大分子结构研究提供了一个和X射线晶体学完全不一样的、全新的思路。但是由于技术方法的瓶颈,在此后30多年的时间里只能做一些相对低分辨率的结构解析工作,在分辨率上一直不能和X射线晶体学比较,甚至一度被嘲笑为”blob-ology“(英文讽刺语,“一坨轮廓的技术”)。冷冻电镜三维重构得到的电子云密度图和原子模型(局部)。张凯供图  但对于冷冻电镜来说,技术难点远非单纯冷冻。冷冻成像和图像处理算法一直都是瓶颈。从冷冻电镜技术诞生以来的近30年时间里,其一直都有进展,只是相对比较缓慢。  最重要的革命性事件大约发生在两三年前:一个是直接电子探测器的发明,另一个是高分辨率图像处理算法的改进。MRC分子生物学实验室的两位科学家Richard Henderson和Sjors Scheres在这次革命中起了关键作用(作者注:现代科技革命往往是诸多研究机构若干团队共同参与,此处仅列举关键代表,并且仅从技术角度讨论,不涉及生物学应用)。  Richard Henderson是探测器方面的先驱,而Sjors Scheres则因他设计的Relion程序而名声大噪,他们由此当选为《自然》杂志2014年“十大科学进展年度人物”。两位科学家一个从硬件,一个从软件将冷冻电镜技术推向了巅峰,将冷冻电镜技术的分辨率推向了新高度。(作者注: Henderson教授的贡献远非探测器一个方面,包括冷冻电镜理论基础、算法、软件,重要生物大分子应用,如曾首次解析视紫红质跨膜螺旋等等方面 早在20多年前,他就通过一系列理论分析,预言了冷冻电镜研究的尺度、分辨率极限、技术瓶颈等等,并且断言:冷冻电镜将超越其它一切技术方法,成为蛋白质结构研究的主导工具,如今这些预言全部应验。)  和此前使用的CCD相比,新发展的直接电子探测器不仅在电镜图形质量上有了质的飞跃,同时在速度上大幅提高,还可以以电影的形式快速记录电镜图像。这些特性同时也伴随着电镜图像处理方面的重大变革,电镜技术此前在分辨率上的一个主要瓶颈是电子束击打生物样品造成的图像漂移和辐射损伤。有了快速电影记录,我们就可以追踪图像漂移轨迹而对图像做运动矫正和辐射损伤矫正,大大提高数据质量。  尽管如此,电镜图像处理一直都是一项极具挑战性的任务,主要的问题是冷冻电镜的图像噪音极高、信号极低,而我们的目标是从中提取近原子分辨率的结构信息,这就像在一个机器轰鸣的工厂里监测一只蚂蚁爬行的声音。冷冻电镜科学家就是要完成这项艰巨的任务,并且真的做到了。有了硬件和软件方面的双重提高,冷冻电镜的分辨率目前已得到了极大的提高,可以和晶体学相媲美 并且在其它方面已经大大超越了晶体学。  主要体现在下面几个方面:  第一,不需要结晶,研究对象范围大大扩展,研究速度大大提高。对于小分子,比方说无机盐矿物质等自发就能长出晶体,小而且稳定的蛋白质目前来说结晶并不困难,但是这类意义重大的蛋白几乎都已经解析完了,在科学上没有任何重大意义 当今时代,小蛋白已经完全不能满足科学家们强烈的探索欲望,结构生物学研究的对象越来越大,体系越来越复杂,结晶几乎成为不可能的事情,即使能结晶,也不一定衍射,有衍射也不一定能得到原子分辨率结构。  很多年前,许多蛋白质晶体科学家为了完成一项艰巨的任务,一个课题少则5到10年,多则20年,核糖体从上世纪80年代初首次长出晶体到 2000年左右最终拿到原子分辨率结构整整经历了20年 线粒体呼吸链复合物I从上世纪90年代初研究,第一次报道完整晶体结构大约是20年以后。  而冷冻电镜方法跳过超大分子复合物结晶难的这层技术屏障,以直接解析复合物的溶液状态的结构为目标。  现在利用这项技术,在MRC-LMB一周时间就可以解析一个新的核糖体结构 英国皇家学会主席、MRC-LMB结构中心主任 Venki Ramakrishnan 教授,因为核糖体的晶体结构研究而获得2009年诺贝尔化学奖。他的实验室在2014年发表了最后一篇晶体结构文章,此后的文章全部以冷冻电镜为主。哥伦比亚大学有一个非常执着的博士后,研究兰尼碱受体(Ryanodine Receptor)晶体结构长达十年之久,最后放弃了晶体,转向了冷冻电镜技术,同时与清华大学教授颜宁和LMB的Scheres研究组合作,几个月就解决了这个难题,并且达到近原子分辨率。  第二,样品需求量小,样品制备快,可重复性高。重要生物样品都是非常珍贵的,总体来说是以微克或者最多以毫克来计量,即使得到这点样品,也要花费生物学家几周、几个月甚至更长的时间(大多数时候都需要摸索各种条件使样品处于相对稳定的状态,以便做进一步结构研究)。  蛋白质晶体一般要求高浓度大体积,没有量变就没有质变。而同样量的蛋白可以稀释以后制备若干冷冻电镜样品,每个样品有成百上千的区域,每个区域有几百个小孔,每一个小孔甚至可以收集多张照片。解析一般蛋白的原子结构需要几万个颗粒,而对于高对称性的样品几千个颗粒就足够。  第三,可以研究天然的、动态的结构。X射线晶体学研究生物大分子结构的一个主要弱点是无法拿到天然的动态的结构,这是因为研究人员无论如何也无法绕开结晶这个过程。冷冻电镜就是要做这件事情:直接解析天然的、溶液态的、动态的(dynamic),甚至原位(in situ)的结构,从而理解生命分子如何在空间和时间两个尺度上以活的动态的方式发挥功能。  晶体学只能尝试不同的条件获得生物大分子某个或者某些固定的状态,而且容易出现晶体堆积引起的不真实相互作用方式。形象地说,冷冻电镜可以制作完整的高清电影,晶体学只能从电影里截屏。  第四,技术革命还将开启巨大的潜在医疗价值。冷冻电镜技术方法在时间和精度方面的大幅度提高有时会导致不可预测的重大科学和应用价值。比如,活体病毒结构分析如果可以在分钟级别完成,这将有可能转化为潜在的医疗检测手段:从病人体内抽取血样或感染组织细胞,几分钟以后,非常清晰明了地展现病人在细胞内部结构层面的异常状况,甚至给出局部的原子结构图,从而给出精准的治疗方案。这个想法现在可能听起来有点像笑话,或许再过若干年人们就不这样认为了。  当然冷冻电镜的革命性不仅仅体现在上述四方面,在此就不一一列举。有关冷冻电镜更加详细的介绍,可参见笔者等2010年的中文综述(《生物物理学报》,2010年7月,第26卷,第7期: 533-559)。文章中对未来几年的发展趋势所做的展望,如直接电子探测器的普及、非对称性蛋白复合物近原子分辨率结构解析、冷冻电镜相关计算性能的大规模提升等等,目前绝大多数都在过去的两三年内得以实现并飞速发展。  华人学者在冷冻电镜领域的贡献  在冷冻电镜的这场技术革命中,华人科学家功不可没,在某些方面甚至独领风骚,做出了诸多重大成果。  加州大学旧金山分校(UCSF)的华人科学家程亦凡教授在2013年底,首次利用冷冻电镜技术解析近原子分辨率膜蛋白结构,这项成果在业界引起了巨大轰动。原因在于当所有电镜结构生物学家还在讨论膜蛋白到底能不能利用冷冻电镜技术看到二级结构,也是通常我们认为的中等分辨率水平的时候,程亦凡教授研究组直接解析了TRPV1 这个膜蛋白3.3埃近原子分辨率的结构(Nature,504:107–112)。  笔者曾在该文章发表的半年前在一次国际会议上和冷冻电镜领域顶级学者深入讨论过如何获得清晰的膜蛋白α -螺旋结构,对方给出了悲观的结论:“恐怕不太可能,至少最近两年不可能”。  事实上,此前蛋白质晶体学家已经有所耳闻“冷冻电镜可能在未来几年会超越并且取代晶体学”,但是谁也没想到会是以这样快速和震撼的方式登场,这在某种程度上引发了不少蛋白质晶体学家的“职业恐慌感”。这项成果的两个共同第一作者廖茂福、曹尔虎也都是非常杰出的青年华人科学家。  加州大学洛杉矶分校的周正洪教授早在2008年到2010年左右,在这场电镜技术革命来临之前,在各项技术条件尚未成熟的情况下解析了一系列近原子分辨率病毒结构。当时采用的是传统胶片来成像,任务非常艰巨,连他还在上学的儿子也都帮忙一起洗胶片。张兴博士在这一系列稍早的重要成果中充当了先锋。早在2008年,第一个近原子分辨率的冷冻结构,也即3.8埃轮状病毒就是张兴博士作为第一作者完成的(PNAS, 105(6): 1867-1872)。从1968年Aaron Klug创立电镜三维重构理论,到2008年人们首次看到通过冷冻电镜获得近原子分辨率结构,整整用了40年。  在国内,清华大学的隋森芳院士是我国冷冻电镜领域的先驱,不仅德高望重,还培养了一大批优秀的青年科学家,包括清华大学的王宏伟教授以及 MRC-LMB的白晓晨和畅磊福博士等等。王宏伟早年在隋老师实验室做研究生的时候,在我国研究设备和条件全面落后于国外的情况下依旧做出了许多非常出色的工作。  MRC-LMB的多位青年华人研究人员对冷冻电镜发展都做出了重要贡献。白晓晨博士在MRC-LMB首次使用直接电子探测设备Falcon I 和Sjors Scheres博士的新程序Relion,获得了第一个不对称样品核糖体的近原子分辨率冷冻电镜结构,打响了冷冻电镜革命的第一枪,随后解析了一系列核糖体和蛋白复合物结构。畅磊福博士在LMB首次获得非核糖体不对称蛋白样品APC复合物的近原子分辨率结构,阐明了蛋白质泛素化的重要机理。笔者主要在LMB的Andrew Carter博士实验室从事动力蛋白结构和功能研究,并成功解析动力蛋白激活因子Dynactin结构,提出了目前为止动力蛋白最详尽可靠的运动和激活机制(Science, 347(6229):1441-1446. 封面文章),同时独立发展冷冻电镜技术方法。  1953年4月25日,MRC沃森和克里克在《自然》杂志发表DNA双螺旋结构,61年后的同一天,我国科学家、中科院生物物理研究所的朱平和李国红研究员在《科学》杂志以长文形式发表了30nm染色质冷冻电镜结构(DNA双螺旋之双螺旋)(Science , 344(6182): 376-380)。这项工作是冷冻电镜在核心生命科学问题中的成功应用,冷冻电镜部分的工作主要是笔者在生物物理所的同学宋峰博士完成的。  生物物理所的程凌鹏博士(当前单位为清华大学)获得国内本土第一个原子分辨率的冷冻电镜结构,构建了蚕多角体病毒(CPV)的完整三维原子模型(PNAS,108(4):1373-1378)。笔者也参与了部分工作, 被其高质量、干净的电子密度图震撼。近期程凌鹏与刘红荣博士合作,在国际上首次发表了CPV完整基因组和RNA聚合酶“原位三维结构” (Science, 2015, 349(6254):1347-50), 引起了很大轰动,这项成果是我国本土冷冻电镜技术和生物学应用的双重突破,被多名同行科学家称赞为”里程牌式发现“。  我国著名科学家施一公最近发表了一系列重大蛋白复合物的冷冻电镜结构,包括γ -secretase、spliceosome等,被誉为过去几十年我国科学家对基础生物学领域的最大贡献。  另外,在欧美和中国本土还有一大批华人学者在冷冻电镜或密切相关领域(cryoET等)做出诸多突破性成果,例如匹兹堡大学的张佩君教授(艾滋病毒结构研究),德克萨斯大学的刘俊教授(细菌运动,噬菌体结构等研究)等,由于时间和篇幅问题,无法一一介绍。  冷冻电镜的未来展望  冷冻电镜技术目前仍然在快速发展中,未来冷冻电镜能做什么取决于这项技术能发展到什么程度。现代科学技术革命的一个最大特点是发展速度极其迅速,谁也不知道明天会发生什么,当然也不能十分准确的预知一个领域的发展方向。即便如此,笔者还是对这个领域有一些预测或期待(仅技术角度,不涉及具体生物学研究)。  1)超大规模、超快速度数据采集和处理。和晶体学相比,冷冻电镜的效率在某些方面已经异常惊人。比如笔者近期与牛津大学王祥喜博士合作,在几个小时以内就可以拿到完整甲肝病毒原子结构,而此前王祥喜博士花费近一年时间结晶才最终拿到原子结构。但是科学技术发展是永无止境的̷̷  但目前来说,结构生物学的巨大转型必须建立在速度和效率的双重前提下。这需要硬件、软件以及其它交叉学科等多方面的共同发展。  除了生物学研究应用,笔者一直致力于冷冻电镜技术的发展,最近在提高电镜数据处理结果可靠性和分辨率前提下,上千倍地提高了其中几个环节,过去几百到上千CPU小时的事情,现在几分钟到几十分钟就完成了。但是这只是部分环节,在其它方面依旧非常耗时,整个技术的各个环节如何全面高效高速地完成还需要更多的优秀人才参与。对硬件的发展方面笔者并不是很熟悉,预计在未来会出现超高速度的电子显微镜,大幅度提高电镜原始数据的数量和质量。  2)大尺度、高分辨率、高动态的生物大分子结构解析。理论上,冷冻电镜可像高清数码摄像机拍电影一样对生物大分子成像和重现其动态结构,研究深层机理。就目前而言,这一方面在技术上远未成熟。大尺度、高分辨率、高动态这几点拆解开来,每一个都不算太难,但是同时满足这几项需求几乎成为不可能的事情。但是这是未来结构生物学的方向,我们不仅仅要看简单的几张静态照片,我们还想看高清电影。  关于这一点,笔者需要强调一下结构生物学和动力学模拟的区别。结构生物学的动态结构目的是以实验手段完整复原自然状态的动态结构,理解其中机理,是从实验数据出发“重现大自然原貌”的过程,是完完全全可靠的实验结果。而动力学模拟是从已有的理论或经验性的物理学规律出发预测一个生物大分子的动态特性,存在巨大的不确定性,其结果可靠性较差。期待在未来的某个时刻,两者会像上个世纪的理论物理和实验物理一样完美地结合,相互促进。  大尺度复杂生物系统的高分辨率、动态机理研究涉及诸多学科,不是冷冻电镜一项技术就可以完成的,需要多学科科学家共同参与完成。  3)高分辨单分子及原位结构研究。目前的结构生物学,无论晶体学、冷冻电镜还是核磁共振主要还是在研究“群体”结构。冷冻电镜相对晶体学在这一方面已经有了大幅度提高,可以通过分类的方法研究群体结构中的每一类结构。但实际上每个分子在时间和空间上除了共性,也必然有特性,如果一种方法强大到可以测得单个分子的高分辨率结构,这必然导致巨大革命,使得人们发现许许多多在群体结构研究层次上无法发现也无法理解的大量规律。  注意这里强调的是单分子“高分辨率”结构,而不仅仅是单分子结构。单分子结构我们目前可以使用比如冷冻断层成像(cryoET)的手段获得,但是分辨率非常低,在如此低分辨率情况下,别说个体差异,很多群体结构差异都值得严重质疑。或许冷冻电镜技术若干年以后会实现这个目标,或许永远都不可能,或许这个目标被另外一个全新的技术彻底取代,冷冻电镜从此退出历史舞台。  冷冻电镜:一个高度交叉的学科  冷冻电镜领域一直是多学科高度交叉和相互促进才诞生的一个奇迹。数学、物理、化学、材料、计算机、软件、机械及自动化、精密仪器仪表等等缺一不可,当然最终的核心是生命科学(作者注:此处仅从结构生物学角度分析,并非泛指一般意义上生命科学是一切学科的核心)。生命科学提出问题,其它所有学科相互结合产生更好的解决方案。通过这些解决方案,发现更多神秘的生命现象,从而提出新的问题,诞生新的技术。  举个例子,冷冻电镜图像信噪比极低,没有科学家的雄心勃勃,没有大批信号分析、图像处理甚至数学家的参与是不可能完成这样艰巨的任务。同时冷冻电镜领域的一些发现或需求,也为其它领域的科学家提供灵感来源和新的研究思路。MRC-LMB作为现代分子生物学的发源地和近两年来飞速发展的冷冻电镜技术核心研究机构,其一大特点就是多学科“零距离交叉”。从半个世纪前的DNA双螺旋模型、肌红蛋白晶体结构等到近两年冷冻电镜技术革命,一直将这一理念体现得淋漓尽致。技术的发展和重大科学问题的解决几乎都是同时进行的,当然科学问题或应用价值始终是核心和最终驱动力,脱离科学和应用需求的技术发展是没有意义的。  另外一个比较具体的例子是笔者此前思考过的一个问题。在电镜领域出现直接电子探测设备之后,MRC-LMB的两台高端电镜,每天产生5到10T 的数据量,近期正在调试第三台,也许不久的将来,超大数据、超快速度电镜就会投入生产,这些将会导致全世界各个研究机构普遍出现一个严重的技术问题,就是如何高效、无损、快速地进行数据压缩存储和数据处理,当然这里的无损是相对特定生物样品和特定目标分辨率而言。这或许会引起一些信号处理和图像压缩方面的研究人员的兴趣。  随着冷冻电镜对生物大分子复合物高分辨率结构研究趋于成熟,更加复杂的动态机理研究是必然趋势,这是冷冻电镜技术发展的一个潜在可能性。但是复杂生物体系的深入研究需要解决一系列数学理论、物理、计算难题,有的可能甚至超出了这些学科目前的研究范畴。近些年比较现实可行的是通过冷冻电镜手段,对特定蛋白复合物非随机情况下的高分辨连续动态构象进行分析。笔者认为,专业数学家的参与会大大加速冷冻电镜技术在这些方面的发展。  生命体高度复杂,充满很多未知的和未被阐述清楚的规律,这里面有成千上万的生物大分子复合物,每一个复合物又与其它若干分子或复合物相互作用、相互影响,深入再深入地理解生命本质一直都会是冷冻电镜的重要方向。冷冻电镜是强大的基础研究手段,它通过解析高度复杂的生物大分子结构,帮助人们更好地理解生命规律,从而影响生命科学相关的一切下游学科和技术,当然也包括更好的发现和设计药物、医疗诊断等具体应用。我们期待在不久的将来,冷冻电镜技术会对科学研究和社会发展等方方面面都产生巨大影响。
  • 真空冷冻干燥机制冷系统常见的故障及排除方法
    真空冷冻干燥机制冷系统常见的故障及排除方法 真空冷冻干燥机广泛用于医学、制药、生物研究、化工和食品等领域。经冷冻干燥处理的物品易于长期保存,加水后能恢复到冻干前状态并保持原有生化特性。LGJ-18N系列立式冷冻干燥机,适用于实验室使用或少量生产,可满足大多数实验室常规冻干的要求。   真空冷冻干燥机制冷系统常见的故障及排除方法:   1)高压报警。出现高压报警的主要原因有:   ①冷却水水温过高或冷却水量不足。   ②冷凝器内部结垢,导致换热效率降低。   ③压缩机工作时,低压管道发生泄漏,从而导致外界空气进入制冷系统。   ④制冷管道存在未开足阀门或因管道被堵而造成排气不畅的情况。   解决办法:   ①降低冷却水温度或增加水流量。   ②清洗冷凝器的冷却水管路。   ③对制冷管道进行检漏,如果在工作中无法实现该项操作,可将水冷凝器上方的截止阀打开,使存在于冷凝器中的空气排放出一部分。   ④将压缩机管道.上的阀门开启到最大。   2)水压报警。水压报警的主要原因有:   ①冷却水供水压力不足或供水泵不运转。   ②水压力控制器故障。   解决办法:   ①增大外部供水压力或检修供水泵。   ②检查压力控制器的触头是否能正常工作或检查在其线路.上是否存在其他问题。   3)压缩机吸气温度异常。吸气温度异常的主要原因是膨胀阀调节不当,开启度过小或过大,导致回气量过小或过大。其解决办法是对膨阀进行调节,如回气量过大,应关小开启度,如回气量过小,应开大开启度,调节过程中以微调为主,多观察压缩机的回霜情况。   4)膨胀阀堵塞。堵塞分泌物物堵塞(脏堵)和冰堵塞两种。   ①杂物堵塞。在堵塞不严重时,可用扳手轻轻敲打阀体,经振动使阀体疏通。若不奏效或膨胀阀很快又重新堵塞,则说明堵塞严重,应拆卸膨胀阀,对膨胀阀滤网进行清洗,清洗完后重新装上即可。   ②冰堵。出现冰堵,应更换冷凝器出液端过滤器。   5)载冷剂泄漏   可用肉眼观察,查找板层,软管上的泄漏点。若发现可疑漏点,应放空板层或软管内的载冷剂,对泄漏点进行充压确认,确认后放气补好泄漏点,重新加入载冷剂并排出板层和软管内气体。
  • 冷冻显微镜:制药研究中最酷的技术
    在过去的二十年中,冷冻显微镜方法已经成为生命科学家、制药研究人员等广泛使用的有效工具,用于检查接近其原生状态的生物结构1。冷冻显微镜能够可视化蛋白质和蛋白质复合物等物质的生物分子结构,是对现有的方法如x射线晶体学和核磁共振(NMR)等的有价值的补充。确定蛋白质和蛋白质复合物的结构是药物发现的一个重要部分,这对研究药物靶点非常有意义,也是深入了解疾病机制的重要课题。在这篇文章中,我们将阐述冷冻显微镜技术的使用,包括冷冻光学电子显微镜(cryo-CLEM),冷冻干燥显微镜(FDM),药物研究中的低温保存,以及温度控制显微镜如何使研究人员能够在低温下推进药物发现和开发研究。冷冻光学电子显微镜(Cryo-CLEM)电子显微镜(EM)使用微量材料,具备接近原子的分辨率,可以研究不同功能状态下的分子。冷冻电镜(Cryo-EM)使用极低温度,克服了真空条件下使用电子束测量高含水量生物标本的难题。在20世纪80年代冷冻电镜商业化之前,生物标本是通过化学固定或染色等方法制备的,但这些方法存在保存伪影,会影响图像分辨率。快速冷冻通常用于将样品保持在与自然生理环境相似的冷冻状态,在临床前阶段取得的结果必须在临床研究中可复制,这在药物研究中尤其重要。Cryo-CLEM结合低温荧光技术和冷冻电镜技术,提高了活检细胞内生物、化学和遗传过程的灵敏度。Cryo-CLEM能够对冷冻固定样品中的分子或分子组件(如细胞内膜、DNA或细胞结构元件)进行直接荧光标记和靶向,精确定位区域,以便后续使用EM进行高分辨率成像。为了使生物样品与EM中发现的真空条件兼容并保存结构细节,样品被嵌入玻璃状的冰中,需要保持在-140°C以下。必须避免与空气中水分接触,因为一旦接触会形成冰晶并污染样品。在低温条件下,荧光信号的结构细节被保留,光漂白显著减少。冷冻光学电子显微镜技术的进步体现在它包含了创新的冷冻荧光级,如Linkam CMS196,它能够自动获取整个电镜网格的高分辨率荧光图。这也用于样品导航,并将cryo-CLEM的案例情况与EM或与x射线显微镜等其他技术相关联。西班牙巴塞罗那的一组研究人员和临床医生使用荧光显微镜、透射电子显微镜(TEM)和低温软x射线断层扫描(cryo-SXT),可以观察到抗癌药物顺铂在极低浓度下的有效性,确定产生效果所需的最低剂量,以最大限度地降低毒性2。该小组在荧光显微镜上对低温冷冻的细胞样本进行成像,使用CMS196冷冻荧光台在液氮温度下将它们玻璃化,然后使用cryo-SXT对样本进行分析,这使得在纳米尺度上进行3D研究成为可能。得益于现有的低温成像技术,研究结果表明,三甲碱(研究的两种佐剂之一)促进了顺铂在较低剂量下的有效治疗,这可能为化疗治疗的发展铺平了道路,减少了对患者的副作用。冻干显微镜许多药物生产为冻干或冻干配方,以增加稳定性和延长保质期。药物开发人员必须为新的药物化合物创建一个优化的冷冻干燥过程,这可能是一项复杂而昂贵的工作。为了简化流程和开发更高效的冷冻干燥循环,了解三个主要冷冻干燥步骤的温度和压力要求是很重要的。使用冷冻干燥显微镜(FDM),研究人员可以直接可视化每个步骤,并确定药物产品在不同热条件下的行为。FDM包括一个专用的光学显微镜和一个专用的热工作台,它可以准确地控制样品的温度和压力,并允许实时进行热测量。冷冻干燥的一个关键参数是塌陷温度(Tc),即产品失去结构完整性并导致加工缺陷的温度。FDM使药物开发人员能够密切监测样品并快速有效地调整冷冻干燥方案。英国国家生物标准与控制研究所(NIBSC)的一个研究小组正在利用先进的FDM技术研究冷冻干燥药物的复杂性。该小组由Paul Matejtschuk博士领导,正专注于研究优化冻干脂质体药物的配方。由于冻干脂质体药物物理和化学性质不稳定,这对开发提出了挑战。Matejtschuk博士和他的团队使用安装在光学显微镜上的专用冷冻台(FDCS196, Linkam科学仪器)(图1),通过估计冻结、塌陷和融化温度,预测脂质体-冷冻保护剂混合物的理想的冷冻干燥条件3。图1:NIBSC实验室的仪器配置。Linkam FDCS196冷冻干燥冷冻台,T94控制器和液氮泵,真空泵,奥林巴斯BX51光学显微镜。图像显示FDM系统的旧版本图2: Linkam FDCS196冻干显微镜系统的最新版本这样的实验对于继续努力开发快速、可转移和可扩展的冷冻干燥方法来稳定脂质体等药物化合物至关重要。低温贮藏储存用于研究的生物标本有赖于有效的保存技术,以保持细胞的物理和生物完整性。冷冻或冷冻样品可能会导致冰晶的积聚,导致终端细胞损伤。冷冻保护剂是在冷冻过程中通过降低水的熔点来防止细胞损伤的重要物质。许多生物,如极地昆虫、鱼类和两栖动物,会产生自己的冷冻保护剂或防冻化合物。科学家们正在研究这些化合物,以开发新的冷冻保护剂来保存研究用的细胞。例如,由Matthew Gibson博士领导的英国华威大学的研究人员,正在研究防冻剂(糖)蛋白(AFP),目的是开发新的合成AFP模拟化合物。该实验室使用低温生物学工作台(BCS196,Linkam Scientific Instruments)来测量细胞中的冰晶生长,依靠该仪器的温度控制能力来观察AFP。Gibson博士研究了使用金纳米颗粒作为探针来测量冰再结晶抑制活性现象,使用低温生物学工作台来改变温度,并开发出一种高通量方法来筛选类似AFP具有结构特征的材料。4诸如此类的发现为开发新型冷冻保护剂提供了潜力,这种保护剂可以防止冷冻保存细胞中冰的生长,从而保持细胞的完整性,因此在生物医学和药学研究中具有潜在用途。未来药物研究本文中描述的技术强调了目前已有的各种冷冻显微镜方法的选择,这些方法有助于推进药物研究。Cryo-CLEM结合了cryo-EM和低温荧光的力量,作为一种相对较新的技术,它的成功依赖于专用冷冻工作台的发展,从而促进了Cryo-CLEM工作流程。这种工作台能够在液氮温度下保持玻璃化样品,使它们在从荧光显微镜移动到冷冻电镜成像时保持无污染。其他专用的冷冻台可与广泛的显微镜技术兼容,如FDM,可在成像过程中精确控制样品的温度,低至-196°C。这些创新为制药研究人员新疗法和生产工艺评估,以及生物样本保存以供未来研究等大量应用提供了工具。 作者:Linkam Scientific Instruments销售及市场部经理Clara Ko参考文献:1. Booy, F. and Orlova, E.V. Cryomicroscopy, in: Chemical Biology: Applications and Techniques (eds Larijani, B., Rosser, C.A., and Woscholski, R.) 2007.2. Gil, S., Solano, E., Martinez-Trucharte, F., et al. Multiparametric analysis of the3. effectiveness of cisplatin on cutaneous squamous carcinoma cells using two different types of adjuvants. PLoS ONE. 2020 15(3): e0230022.4. Hussain M.T., Forbes N., Perrie Y., Malik K.P., Duru C. and Matejtschuk P. Freeze-drying cycle optimization for the rapid preservation of protein-loaded liposomal formulations. International Journal of Pharmaceutics 573, 2020 118722.5. Mitchell, D. E., Congdon, T., Rodger, A., and Gibson, M. I. Gold Nanoparticle Aggregation as a Probe of Antifreeze (Glyco) Protein-Inspired Ice Recrystallization Inhibition and Identification of New IRI Active Macromolecules. Scientific Reports, 2015 5: 15716.
  • 【莱恩德新品】生物病理冷冻切片机的性能特点
    点击此处可了解更多产品详情:生物病理冷冻切片机  生物病理冷冻切片机 ,是对人体及动植物组织作快速病理切片分析的设备。 它广泛应用于医院、 医学院、法医、动植物科研单位作病理诊断、分析、研究之用。    生物病理冷冻切片机的性能特点:  1、彩色液晶触摸显示屏,可分别显示切片总数量和切片总厚度、切片厚度、标本回缩值、温度控制及日期、 时间、温度、定时休眠开关机、手动及自动除霜等功能。  2、人性化休眠功能:在选择休眠状态后,冷冻室温度可自动控制在-5 至-15℃之间,取消休眠后,可以在 15 分钟内达到切片温度。  3、温度传感器自检功能 ,可自动检测传感器工作状态。  4、双压缩机为冷冻箱、冷冻台、刀架及样本夹头、组织压平器五点分别制冷。  5、刀架配彩色刀片推进器及护刀杆覆盖刀片全长 ,安全保护使用者。  6、配置:X 轴 360° .Y 轴 12°万向旋转卡扣式组织夹头 ,安装组织更加快捷。  7、防粘组织压平器加入制冷 ,温度可达-50° ,方便急冻组织 ,节省操作时间。  8、单层加热玻璃视窗 ,有效防止水雾凝结。  9、手轮定位 360°任意点锁紧功能。  10、消毒方式: UV 紫外线消毒。    生物病理冷冻切片机的主要组成部分:  1. 该机上部分为微机控制部分及面板操作 ,温度显示 ,工作状态显示部分。  2. 中间部分为低温冷冻室 ,为活检组织速冻 ,切片操作部分。  3. 下半部分为压缩机组制冷部分。  4. 中后部分为机械传动、 电机驱动部分。【莱恩德新品】生物病理冷冻切片机的性能特点
  • 北京四环发布北京四环冻干机LGJ-S40冷冻干燥机压盖型新品
    北京四环冻干机LGJ-S40冷冻干燥机压盖型主 要 特 点:1. 符合生物制药标准的结构设计。冻干腔体内部圆角、表面粗糙度、搁板平整度、腔体内部材料均满足制药标准;2. 控制系统稳定可靠。采用PLC可编程逻辑控制系统和7寸彩色触摸屏,系统运行更稳定可靠,人机交互友好,中英文语言转换,可以实现手机端、电脑端远程控制,具有三级权限;3. 实时显示记录真空度、冷阱温度、物料温度、搁板温度并形成冻干曲线,每分钟存储一次数据,可连续记录物料和设备状况数据,支持数据离线浏览、分析、打印及存储,配置USB通讯接口和TCP接口;4. 冻干过程可控制。冻干过程均由可编程程序自动控制,半自动或全自动控制可实时切换,实现冻干过程全程参数控制;5. 冻干室与冷阱腔体分离设计,实现了药品级中试机标准的同时更大的提高了捕水效率和能力;6. 采用中间介质循环技术。搁度控温,板层温度均一、可控性强,板层平整,冷热量传导良好;7. 双机复叠制冷技术。采用原装进口全封闭式压缩机组和国际标准绿色环保冷煤,制冷迅速,冷阱温度低,捕水能力强;8.具有压缩机二次启动廷时保护及压力过载保护系统;9.干燥室采用耐高压、耐低温航空亚克力材质高透明门,可观察物料冻干变化全过程;10.搁板硅油制冷及加热,具有温度、速率可调、可控,运用PID模糊控制计算,实现原位预冻及升华功能;11.冷阱具备自动化霜功能;12.可选配负压掺气系统接口。内置0.2μm滤芯,减少样品二次污染,可回填氮气或惰性气体;13.配备压盖系统;14. 可选配洁净室安装方式,并提供洁净室安装解决方案;15.可选配真空度调节功能实现冻干工艺摸索;16.可选配共晶点在线测试功能,更好的优化样品升华工艺;17.可选配计算机上位机实时监控和图表记录; 北京四环冻干机LGJ-S40冷冻干燥机压盖型技 术 参 数 1、达标冷阱温度(空载):≤-80℃ (环境温度≤30℃)2、极限冷阱温度(空载):≤-85℃ (环境温度≤25℃)3、达标真空度(空载):≤10 Pa4、极限真空度: 1 Pa5、捕水量:8Kg6、物料托盘、冻干量:4+1搁板,层间距65mm,冻干面积0.4㎡,φ16西林瓶约1650个,φ22西林瓶约870个7、搁板尺寸(长×宽):280mm×360mm8、搁板控温范围:-50℃~70℃(控温精度:±0.5℃)9. 物料温度探头:每层搁板1支(可选配四个)10、主机外形尺寸(长×宽×高):760mm×800mm×1600mm(不含压盖)11、整机功率:3300W12、适用电源:AC380V 25A 50Hz(可选配AC220V 16A 50Hz)13、整机重量:285KG14、适用环境:环境温度≤30℃ 15、主要配置:主机一台、真空泵一台. 可 选 配 件: 真空度调节、进口真空泵、高速真空泵油、真空泵进气口粉尘过滤器、真空泵排气口油雾过滤器、惰性气体充气接口、共晶点测试仪 GMP洁净室安装创新点:在仪器的自动化、原位化、实时化等方面有了显著提高;实时显示记录真空度、冷阱温度、物料温度、搁板温度并形成冻干曲线,每分钟存储一次数据,可连续记录物料和设备状况数据,支持数据离线浏览、分析、打印及存储,配置USB通讯接口和TCP接口北京四环冻干机LGJ-S40冷冻干燥机压盖型
  • 冷冻干燥机应用范围
    冷冻干燥机是目前较为先进的一种物质脱水干燥的设备,其原理是将含水物质在低温下冻结,而后使其中的水份在真空状态下直接升华,并用冷凝的方法捕凝升华的水汽,达到物质脱水干燥的目的。冷冻干燥机也因此被广泛应用到各行各业. 冷冻干燥机应用范围: 食品行业:冷冻干燥机常用于果蔬、肉禽、水产、调味品、方便食品及名优特产等干燥,因此冷冻干燥机也称为食品冻干机,保持食品原有的色、香、味、形、新鲜度不变的目的,且复水性好,成品便于储存和运输,费用降低,保存期延长。 药材保健:在干燥蜂王浆、人参、龟、鳖、蚯蚓等营养保健品,采用真空冷冻干燥工艺,更好的保留了原有的营养价值,更使人们相信该营养品纯真自然。 制药行业:用于血清、血浆、疫苗、酶、抗生素、激素等中西药品的脱水与保存。 生物研究:利用真空冷冻干燥技术长期保存的血液、细菌、动脉、骨骼、皮肤、角膜、神经组织和各种器官,在使用时只需供给水份即可再生,仍保持其生物理特性。 文章原创:上海田枫实业有限公司 www.tfsye.com上海田枫实业有限公司,专业生产各类制冷设备,包括层析冷柜,冻干机,冷水机,超低温冰箱,恒温槽等,一流的专业,一流的服务,上海田枫是您的最佳选择!
  • 日立SU8000系列电镜与冷冻联用系统应用
    酵母细胞冷冻断面SEM 图像 SEM: SU8020 FE-SEM, Cryo-SEM 冷冻系统, PP3000T (Quorum) 利用Cryo-SEM冷冻系统可以快速得到芽殖酵母细胞的断面。在SEM下可观测细胞的内部及表面构造。PF, 芽殖酵母EF, 裂殖酵母 芽殖酵母细胞表面冷冻SEM 图像 SEM: SU8020 FESEM, Cryo-SEM冷冻系统, PP3000T (Quorum) 上图中可清晰观测到芽殖酵母细胞表面的内褶和膜蛋白,同时可发现膜蛋白在表面按一定规则分布排列。(表面内褶是芽殖角酵母的独有特征。) CMI, 细胞膜内褶芽殖酵母细胞内部断裂冷冻SEM 图像 SEM: SU8020 FESEM, Cryo-SEM冷冻系统, PP3000T (Quorum) 研究了冷冻芽殖酵母细胞的随机断面,左图中可清晰地观测到细胞壁,细胞膜及细胞器。 右图中,细胞核的三维结构可在断裂细胞内观测到,同时外部(*) / 内部 (#)核膜及核膜孔也清晰可见。 CM, 细胞膜 CW, 细胞壁 ER, 内质网 M, 线粒体 N, 细胞核 NP, 核膜孔 脂质体混悬液冷冻断裂SEM图像SEM: SU8020 FESEM, Cryo-SEM 冷冻系统, PP3000T (Quorum) 利用Cryo-SEM冷冻系统可快速冷冻脂质体并观察其断面。上图中可观测到脂质体表面及内部构造。 该产品更多信息请关注: http://www.instrument.com.cn/netshow/SH102446/C138508.htm 关于日立高新技术公司:   日立高新技术公司是一家全球雇员超过10,000人,有百余处经营网点的跨国公司。企业发展目标是“成为独步全球的高新技术和解决方案提供商”,即兼有掌握最先进技术水准的开发、设计、制造能力和满足企业不同需求的解决方案提供商身份的综合性高新技术公司。日立高新技术公司的生命科学系统本部,通过提供高端的科学仪器,提高了分析技术和工作效率,有力推进了生命科学领域的研究开发。我们衷心地希望通过所有的努力,为实现人类光明的未来贡献力量。  更多信息请关注日立高新技术公司网站:http://www.hitachi-hitec.cn/
  • 柠檬片冷冻干燥机
    柠檬片冷冻干燥机|柠檬片冻干机|柠檬冷冻干燥机| 柠檬冷冻干燥机| 柠檬片冻干设备 近年来,柠檬片受到众多消费者的青睐,但目前市面上销售的柠檬片多为烘干或晒干品,不仅出现干缩及褐变现象,维生素、生理活性成分等热敏性营养素也大大损失。而以冻干机生产出色泽、风味、营养物质都得到较好保存且安全卫生的冻干柠檬片。故此,也被成为柠檬片冷冻干燥机或柠檬片冷冻干燥机。 用柠檬片冷冻干燥机加工的柠檬冻干片没有涩味,没有苦味(柠檬子含有柠檬苦素,是抗癌非常珍贵的产品。这儿说的没有苦味并非指柠檬本身带有的,是没有加工形成的苦味)。 柠檬片冷冻干燥机技术参数: 型号TF-SFD-75 有效干燥面积7.5㎡ 隔板层数7+1 隔板温度范围 -50℃至+70℃ 隔板温差 1℃ 隔板间距100mm 隔板尺寸915*1210*25mm 冷阱温度 -70℃(空载) 捕水能力75KG/24h 真空度 10Pa 整机功率 40KW(含电加热10KW) 柠檬片冷冻干燥机优势: 一.柠檬片冻干是在低温下进行,微生物之类不会发生变性或失去生物活力。 二.在低温下干燥时,柠檬片中的一些挥发性成分损失很小。 三.在冻干过程中,微生物的生长和酶的作用无法进行,因此能保持原来的性状。 四.加水后溶解迅速而完全,几乎立即恢复原来的性状。 五.由于干燥在真空下进行,氧气极少,因此一些易氧化的物质得到了保护,随时享受鲜果的感觉! 转载请注明出处---上海田枫实业有限公司www.tfsye.com
  • 冷冻电子显微学与结构生物学
    冷冻电子显微学近年来在电子显微镜的硬件设备及结构解析的软件算法等方面取得了多个重要的技术突破, 正在成为结构生物学研究的重要技术手段, 为越来越多的生物学研究者所重视. 冷冻电子显微学的技术特点决定了它所具备的一些独特优势和发展方向, 同时作为一个正在迅速发展的科学技术领域, 需要多学科的交叉促进.   近期来自清华大学生科院的王宏伟发文介绍了冷冻电子显微学的研究现状及面临的技术挑战, 并提出未来可能实现结构生物学与细胞生物学不同尺度的研究在冷冻电子显微学技术上融合的新方法.  结构生物学是 20 世纪后半叶, 尤其是在 80~90年代蓬勃发展起来的重要学科. 通过对生物大分子(蛋白质、核酸及其复合体)的三维空间结构的测定, 结构生物学可以在微观尺度上精确地描述复杂生物大分子的形状, 原子与分子组合方式, 及其表面带电、亲疏水等物理性质, 从而为生物大分子发挥生物学功能的机理提供关键的解释. 进入 21 世纪以来, 结构生物学研究的技术手段日益成熟, 在现代生物学研究的各个分支领域中均发挥着重要的作用. 至今为止, 国际蛋白质结构数据库中的结构数据已经超过 100000, 其中绝大部分结构由 X 射线晶体学及核磁共振波谱学解析而来.   近年来, 技术的进步使得结构生物学新的研究手段取得了长足的进展. 2013 年 12 月份发表在Nature 上的利用冷冻电子显微学解析获得 TRPV1 原子分辨率结构的两篇文章, 在结构生物学领域造成了巨大的反响. 美国加州大学旧金山分校的程亦凡研究组与 Julius 研究组合作, 利用冷冻电子显微学技术首次获得了 300 kD膜蛋白 TRPV1的 3.4 Å 分辨率的三维结构, 并建立了该分子的原子模型.  其实在过去的几年间, 已经有若干工作报道了利用冷冻电子显微学解析病毒、蛋白酶体复合物、核糖体等近原子分辨率模型. 这些工作的里程碑式意义在于: 高分辨率结构解析过程不需要生长三维晶体, 样品用量非常少, 而且可以在短时间内同时获得多个复合体状态的三维结构. 短短一年里, 冷冻电子显微学技术作为直接解析生物大分子原子分辨率结构的技术手段受到人们的广泛关注.  事实上, 电子显微学是结构生物学研究中的老兵. 该技术自从 20 世纪 50~60 年代以来, 一直在研究细胞、 亚细胞及生物大分子结构的研究中扮演着独特的角色, 揭示了很多重要的细胞内精细结构. 在研究生物大分子的结构方面, 该技术采取与 X 射线晶体学及核磁共振波谱学迥然不同的原理, 在过去的几十年里逐渐建立了成熟的图像处理及分析算法, 成为结构研究的一种独特技术手段. 近 10 年来, 该领域的日臻成熟以及科研团队的扩大更快地催生了冷冻电子显微学成像技术与结构解析技术的革命性突破. 自从 2008 年以来, 冷冻电子显微学已经连续获得多种生物大分子复合体的原子分辨率结构, 而且高分辨率结构的解析速度正在呈现迅速上涨的趋势。  冷冻电子显微学从 20 世纪中叶开始, 经历了 80年代到 90 年代的技术方法建立时期, 21 世纪初的技术成熟期, 在过去的两年里发生了革命性的技术进步, 进入了快速发展期. 结构生物学和细胞生物学研究者如何抓住这个契机, 如何尽快适应新的局面, 掌握新的技术, 充分发挥该技术的优势从而更加更深入地研究生命现象, 将是未来几年里的一个主题. 数学、物理学、计算机科学、材料科学、化学等众多领域的研究者们必将在未来冷冻电子显微学的新技术新方法的开发中发挥重要的作用, 成为该技术的进一步完善与成熟的重要力量.  冷冻电子显微学领域研究者们则需要以主动开放的态度吸引其他领域研究者的合作, 并积极迎接来自更多领域研究者的挑战, 保持并发展自己的技术特长, 站在技术发展的制高点上选准研究方向, 始终在冷冻电子显微学的技术前沿上开疆拓土.  原文检索:  王宏伟. 冷冻电子显微学在结构生物学研究中的现状与展望. 中国科学: 生命科学, 2014, 44: 1020&ndash 1028  Wang H W. Current status and future perspective of cryo-electron microscopy in structural biology. SCIENTIA SINICA Vitae, 2014, 44: 1020&ndash 1028 doi: 0.1360/052014-140
  • 连接即未来——徕卡真空冷冻传输系统
    童艳丽今年的华东电镜会比以往时候来得更晚一些,经历了漫长的等待,终于10月23日在美丽的宜兴市东氿湖畔举行。会上徕卡纳米技术产品经理童艳丽以《连接即未来 徕卡真空冷冻传输系统》为题做了一个专题报告。报告结束后,老师们对此显示出浓厚的兴趣,纷纷前往展台咨询。徕卡真空冷冻传输系统之核心部分EM VCT500设计理念及其在冷冻扫描电镜,冷冻FIB,真空传输等三个应用方向的相关制样流程及应用实例。徕卡EM VCT500样品传输杆是真空冷冻传输系统的核心,它可以与徕卡各种电镜制样设备相连接,依据样品应用需求实现各种方式样品制备;另一方面,它可以与各种外部设备/分析仪器相连接,依据样品应用需求实现各种方式分析检测。 徕卡EM VCT500样品传输杆是一款货真价实的真空冷冻传输系统,可以长时间保持高真空和低温,并且通过一系列紧密的内部硬件设计及图形化操作界面,实现用户直觉化操作,轻松实现真空冷冻传输。 Cryo-SEM应用方向一个经典制样流程: 如需了解更多详情,可咨询徕卡客户服务热线:400-630-7761.
  • 冷冻研磨在生活垃圾焚烧中的应用
    #Spex 冷冻研磨仪用于生活垃圾焚烧!#Spex SamplePrep冷冻研磨仪用液氮冷却样品,然后用磁力驱动的冲击器粉碎,被公认为世界上最有效的实验室样品前处理仪器。可以广泛应用于RNA/DNA提取、毒性测试、食品安全、草本、农业金属/化合物、RoHS/WEEE。✦ ++冷冻研磨法应用于生活垃圾焚烧SPEX 液氮冷冻研磨仪生活垃圾是由很多不同组分组成非常不均匀的混合物。除了聚合物合成材料和软木、木材和纸张等有机物外,还可能存在无机材料和金属。为了充分利用这些生活垃圾,生活垃圾会在垃圾焚烧厂中燃烧以获得燃烧热。► 样品均质化需求在生活垃圾焚烧领域中除了元素分析外,还对G.H.V.和N.H.V.(粗热值和净热值)感兴趣。为此,必须尽可能地对废物进行研磨和均质。由于样品中含有大量聚合物及其他有机物,使用传统的球磨机或摆动式磨机将改变样品性质。切割机可以研磨这些样品,但不能研磨到有机元素分析所需的粒度:元素分析取样量在毫克级别,要求样品颗粒度在100目以上。► 冷冻研磨处理过程在常规的研磨无法处理样品时,液氮冷冻磨则是一种不错的高效选择方式。塑料和生物样品等柔性材料在液氮温度下会变脆。样品被密封在研磨小瓶中,并浸入液氮中,从而消除了交叉污染。由于液氮冷冻研磨是磁性驱动的,因此驱动部件上没有磨损。为了获得最佳研磨结果,必须将样品冷却至最佳状态。为此,可以在研磨小瓶中预先冷却需要处理的样品,或者将其倒入已经冷却的小瓶中。预冷却20分钟后,将样品研磨三分钟,然后进行一分钟的“中间冷却”以确保良好的脆性,然后进一步研磨。这个循环重复了三次。► 测量结果*在生活垃圾处理领域,液氮冷冻研磨展示了良好的处理结果。处理效果完全可以符合元素分析的要求。分析结果可以用于计算出样品的总热值和净热值。计算结果可得知单位样品能释放出多少热量,从而优化出火电厂的燃烧炉垃圾进料量。*注:该数据使用Thermo FlashSmart 元素分析仪测定,测量数据已得到测样方授权。
  • 冷冻共聚焦光电联用实现三维定位
    冷冻共聚焦显微镜及其在冷冻电子断层扫描中的价值 Cryo ET(电子断层扫描)是一种专用的透射电子显微镜技术,可以重建观察区域的三维体积。借助先进的冷冻EM(电子显微镜),图像分辨率可以提升到令人难以置信的亚纳米等级。因此,可以在细胞内的原生环境中研究蛋白质以及其他生物分子,从而揭示尚未探明的分子机制。由于细胞和组织必须薄到能够透过电子,样品必须进行切片以获取足够薄的样品体积(薄层)。为对样品中的靶区进行精确的三维定位,冷冻共聚焦显微镜是必不可少的工具。 以下部分,我们将描述冷冻电子断层扫描工作流程的主要步骤,以及如何通过冷冻共聚焦显微镜定位靶区并进行切片,以提高整个工作流程的可靠性。 在EM网格上培养细胞 通常,在涂有多孔碳膜(例如 QuantifoilR)或二氧化硅(SiO2)膜的金质或钛金网格上植入急性分离或培养的细胞(图1,Mahamid等人,2019)在后续步骤中,钛金属和二氧化硅似乎更加坚硬而且稳定,无需额外添加碳层(Toro-Nahuelpan 2019) 网格通过Poly-L-Lysin或纤连蛋白(Fibronectin)实现生物激活,胰蛋白酶解离细胞在前一晚植入,以便在后续步骤中附着在碳层表面(Mahamid等人,2019)。 图1:采用12纳米厚多孔二氧化硅膜(R 1.2/20,即孔径1.2微米,间距20微米)的3毫米EM金质(Au)网格的反射图像拼接图。HeLa细胞已经植入并玻璃化。实心箭头:定位用的中心标记;空心箭头:聚焦离子束进入的切片槽;虚线箭头:空的网格方格。一个网格方格的边长:90微米。 添加微型图案 为进入细胞样品以成功实现FIB切片并在冷冻TEM中开展后续分析,必须确保相关细胞位于网格方格的中心位置或其附近。但细胞喜欢在网格条上生长或者集簇生长,因此不适合进行FIB切片和电子透射分析。为了克服这一挑战,微型图案技术允许用户控制细胞在碳膜(图2)上的位置和分布,提高相关工作流程的可靠性。 网格表面涂有聚乙二醇(PEG),可防止生物材料附着。利用紫外激光移除该涂层,即可对细胞的黏附进行针对性控制,保证FIB切片以及TEM的可操作性(Toro-Nahuelpan 2019)。此外,可以创建特定图案,从而影响整个细胞结构并且有助于使用冷冻电子显微镜研究生物力学现象。 图2:有/无微型图案的细胞分布情况左图:分布不均的细胞(小鼠A9成纤维细胞,使用Alexa Fluor 488 Phalloidin标记,以显示纤维状肌动蛋白)。右图:网格方格中心定位精确的细胞,可进行FIB(成纤维细胞黏附在纤维蛋白原微型图案表面;图片由Alvéole与德国汉堡CSSB中心教授Kay Grünewald博士共同提供。) 投入冷冻 为在固定用于电子显微镜检查的同时确保样品接近原生状态,细胞必须极速冷冻,以免产生破坏性的冰晶。这个过程称为玻璃化,因为冰片变成无结晶的玻璃状(玻璃体) 为让样品细胞达到这种效果,网格必须快速投浸到适当的冷冻剂(通常为乙烷,或者乙烷和丙烷)中。1981年,Jacques Dubochet发表了首个手动吸液和投入冷冻方法,该方法仍获广泛使用以获取出色的结果(Dubochet, J.以及McDowall, A. W.,1981)。 在投入冷冻之前,必须去除多余的液体。标准技术是使用滤纸实现受控吸液(图3,Dubochet, J等人,1982;Bellare等人,1988;Frederik, P. M.等人,1989)。 图3:在投入冷冻前,通过吸液处理对多余液体进行受控移除。使用镊子固定网格,并通过单独步骤将吸液纸移向网格。吸液传感器可以自动并反复执行该过程。 市面上有多种不同的吸液设备,例如用于自动吸液和投入冷冻的Leica EM GP2。根据不同样品类型的多种需求,可以使用多种涉及吸液步骤的样品制备方案(另见此处)。 冷冻状况下的存储、装载和转移 玻璃化之后,样品必须在整个工作流程期间处于冷冻状况下。因此,必须对从存储到转移至不同成像系统的所有步骤进行冷冻处理,以免样品析晶和/或污染这尤其困难,因为这种低温冷冻样品会像磁铁一样吸引附近的湿气和灰尘。研究人员和制造商付出巨大的努力来开发并提供解决方案,以便在工作流程的不同步骤中保证样品安全。 样品通常以四个为一组存储在网格盒内,而网格盒又保存在大型液氮(LN2)罐中的Falcon多孔试管中。还可以使用更为复杂的冰球系统。 转移并装载到样品架时,通常使用液态氮(LN2)。不幸的是,LN2往往会在一段时间后,因为空气中的水分而产生结晶冰污染。在转移时,这些冰晶可能会附着到网格上,干扰随后的切片和成像过程。此外,LN2内部的能见度很低,因为它在不断移动,而且始终会有条纹。 因此,最好在LN2上部的气相部分装载并转移样品以保持冷冻条件,同时为装载步骤(图4)提供出色的可见性。 徕卡显微系统在提供GN2(气态氮)装载和转移设备方面拥有30多年的悠久历史。新的冷冻显微镜套件就在这些经验的基础上开发而成,同时融合众多客户的反馈意见打造出先进的转移舱和夹具系统。 图4:在冷冻显微镜套件转移舱的GN2(气态氮)环境中装载网格。转移舱的可见度在冷冻条件下不受干扰。 检查样品质量和靶分布 在冷冻工作流程中,一般而言,EM操作时间尤其宝贵,因此对样品进行早期质量检查至关重要。许多因素会关系到样品能否转移到下一个工作流程步骤,包括碳箔的结构完整性、玻璃化的质量(包括冰层的厚度及其分布)、目标细胞的存在、分布和可及性,以及目标结构的存在和定位。 所有这些参数均可通过基于相机的冷冻光学显微镜(例如THUNDER Imager EM Cryo-CLEM)或使用STELLARIS冷冻共聚焦显微镜上的相机模式来检查(图5)。 透射模式显示网格、箔膜和细胞质量,反射图像显示网格表面,尤其是呈现玻璃化质量和冰层厚度,而荧光图像可以提供有关不同靶蛋白的表达水平及其分布情况的信息。 图5:不同模式呈现出网格的完整性以及靶分布。A——网格表面的反射图像可以显示碳膜或二氧化硅层的缺陷以及冰层的厚度。B——绿色荧光(线粒体)。C——液滴分布以实现高精度关联D——通过Hoechst标记的细胞核E——所有模式的叠加图像细胞由德国海德堡欧洲分子生物学实验室(EMBL)Mahamid Group的Ievgeniia Zagoriy友情提供。一个网格方格的边长:90微米。 在LAS X Coral Cryo软件工作流程中,用户可以在引导下,通过不同图像模式对整个网格自动创建清晰的合焦概览图像。 标记标志点、薄片点以及液滴中心 为了关联冷冻LM(光学显微镜)的3D图像以及后续的冷冻FIB-SEM/TEM图像,首先需要获取网格的概览图像以便大致对齐两种模式的图像(图6)。这里,反射图像非常重要,因为它们类似于SEM图像,但也可以使用透射图像。中心标记以及其他标志点(例如碳层中的缺陷)有助于快速定位并对齐概览图。 图6:以不同模式获取整个网格的合焦概览图像,用于识别网格缺陷、对齐标记和靶分布。中心标记用实心箭头表示,二氧化硅层中的主要缺陷用空心箭头突出显示。HeLa细胞由德国海德堡欧洲分子生物学实验室(EMBL)Mahamid Group的Ievgeniia Zagoriy友情提供。蓝色 – Hoechst染料,细胞核;绿色 — 线粒体绿色荧光探针,线粒体;红色 - 深红色液滴和Bodipy荧光染料,脂滴。一个网格方格的边长:90微米。完整网格直径:3毫米。 其次,需要超分辨率的共聚焦3D图像。这些图像堆栈用于在潜在薄片位置的范围内执行高精度关联。完成概览图对齐后,可以找到3D共聚焦堆栈的正确位置以便后续进行高精度关联这样做的前提是必须提供图像相对于概览图以及相对于彼此的位置。这就是Coral Cryo软件工作流程之后的处理步骤(图7)。 图7:相机概览图像与共聚焦Z-堆栈相机和共聚焦图像的组合含有XY坐标位置,因此可以匹配。所有图像都包含在Coral Cryo软件工作流程期间创建的相关项目文件夹中。HeLa细胞由德国海德堡欧洲分子生物学实验室(EMBL)Mahamid Group的Ievgeniia Zagoriy友情提供。蓝色 – Hoechst染料,细胞核;绿色 — 线粒体绿色荧光探针,线粒体;红色 - 深红色液滴和Bodipy荧光染料,脂滴。一个网格方格的边长:90微米。完整网格直径:3毫米。 必须组合相机概览图像和超分辨率3D图像以检索靶区位置并在FIB-SEM上定义切片位置。这个步骤非常重要,因为在标准FIB-SEM中,无法看到荧光以及相应的靶区点位。 EM(电子显微镜)制造商近期研发出一种集成了FIB-SEM功能的荧光显微镜,可以作为在切片过程中通过检查荧光来提高工作流程的可靠性和准确性的一种绝佳选择。不过,这些系统并不具备必要的分辨率以及采集模式的灵活性,无法像单独的共聚焦系统那样实现精确的3D定位。 如何关联并检索薄片位置 作为常用的最低标准,研究人员使用LM图像的屏幕截图在EM上检索靶区的XY坐标。不幸的是,并排比较图像不仅费力耗时而且很容易出错,因此并不可靠。身为工作流程提供商,徕卡显微系统致力于通过THUNDER Imager EM Cryo-CLEM来改善这种情况。研究人员可以在图像上定位标志点和靶区标记,然后以开放EM格式的完整坐标集导出。首先,这个流程适用于2D图像,因此合乎逻辑的下一步骤就是提高分辨率并将坐标系扩展到3D坐标。 对于高精度关联和3D定位,目前广泛采用的是基于液滴的方法(Alegretti等人,2020;Klumpe等人,2021年;Bieber, A.,Capitanio, C等人,2021)液滴通常在玻璃化之前添加到细胞中,可在LM和EM中观察到,用于通过XYZ坐标对齐图像堆栈,作为图像数据相关性的基础,从而正确定位FIB切片窗口(图8)。 典型液滴的尺寸为1微米,完全呈球形,这使其中心坐标能够进行亚衍射拟合。通过SEM中的背散射电子,可以更清晰地观察到含有金属的微滴,从而将它们与大小相似的冰晶区分开来。优先选择液滴,使其荧光发射不同于实际靶的荧光发射,以便能够更好地分辨。 图8:3D共聚焦图像(左)和俯视SEM图像(右)的最大投影。荧光液滴(1微米)在两种模式中均可以观察到,因此可以用于对齐数据。SEM图像细胞由德国海德堡欧洲分子生物学实验室(EMBL)Mahamid Group的Herman K. H. Fung和Ievgeniia Zagoriy友情提供。一个网格方格的边长:90微米。 要使用来自冷冻LM和FIB-SEM的3D数据,在冷冻LM的引导下,进行薄片制备,可以使用一款开源软件(3D关联工具箱,简称3DCT,Jan Arnold等人,2016)。 将冷冻LM图像载入到在FIB-SEM上运行的该软件中。二维LM概览图和SEM图像之间的三点关联用于初步定位。之后,使用离子束获取相关视场,并手动点击LM堆栈和FIB图像中的相同液滴图10显示了一张LM图像和一张FIB图像,其中的靶区点位以及液滴可以在定位软件中重现其排列组合。 图9:在LM和FIB图像中关联标记。左图:点击观察结构周围的液滴,并在3D图像中执行质心定义(白圈中的绿点)计算得到的位置随后投影到FIB图像(右图)上根据液滴标记,计算目标结构的位置并标记到FIB图像中(红圈中的红点)。离子束图像由德国海德堡欧洲分子生物学实验室(EMBL)Mahamid Group的Herman K. H. Fung友情提供。比例尺:20微米。 该软件通过对X、Y、Z信号进行高斯拟合,精准确定液滴的中心。近期的改进增加了半自动液滴检测功能以及其他功能,从而更加方便地执行冷冻FIB工作流程。(SerialFIB, Klumpes等人,2021)。 在网格条上选择围绕最终目标结构的几处液滴,作为切片处理的坐标系。基本计算方法是考虑缩放、旋转以及平移之后的线性仿射变换最后,在LM图像中选择目标结构并叠加到FIB图像上。 根据目标结构的位置,就可以定位切片窗口(图10)。 图10:定位切片窗口左:离子束细胞图像,含有标记液滴和目标结构根据目标结构的计算位置,在所用FIB-SEM的切片软件中,交互定位上下切片窗口的位置(细薄条纹上方和下方的红色方块)。图像由德国海德堡欧洲分子生物学实验室(EMBL)Mahamid Group的Herman K. H. Fung友情提供。比例尺:20微米。 Coral Cryo工作流程具有哪些优势? Coral Cryo软件工作流程旨在为基于液滴的靶区定位工作流程提供支持。它可以提供创建合焦相机概览图像所需的成像作业(图6和图7)。所有必要的自动对焦功能均可以正确调整并分配,并且可以标记潜在薄片位置,同时能够在定义的位置执行超分辨率共聚焦Z-堆栈。 在定位管理器(图11)中,可以确定所有必要的坐标标记,并且以开放格式(*.xml)提供。此类图像会自动保存,其数据格式可以导入任何FIB-SEM软件。 图11:Coral Cryo软件模块标记点、薄片和液滴标记均可以在软件工作流程中定义。反射图像中细胞的顶部和底部坐标值可以作为在FIB SEM中正确计算靶区3D位置的额外参考。本文前述部分图像中的相同细胞经过突出显示,用于标记定义。 对齐标记用于使用相机概览图像对标记点进行初步的粗略对齐。薄片标记具有双重用途:作为进行超分辨率共聚焦3D扫描的位置标记,或者在图像采集后,作为靶结构的精确3D标记。亚像素插值确保该阶段可以在3D图像内进行高精度定位。最后,插值方法还用于标记液滴坐标,以便在FIB-SEM上进行后续液滴关联。 冷冻FIB切片 进行必要的关联并设置切片窗口,薄片位置通常会粗略切薄至大约1微米,随后进行最终的抛光步骤以达到电子透明(图12)。 图12:目标薄片的离子束图像以及SEM俯视图图像由德国海德堡欧洲分子生物学实验室(EMBL)Mahamid Group的Herman K. H. Fung友情提供。比例尺:10微米。 采用两步方法的原因在于冰污染和/或切片材料可能会沉积在薄片上。为避免在最终薄片上发生冰污染,建议采用快速抛光工艺(Schaffer M.等人,2017)。还可以采用开源的商业软件,以自动方式进行切片。 冷冻透射电子显微镜 进行冷冻FIB切片之后,含有薄片的网格转移至冷冻TEM,通过对网格(连同薄片)逐渐倾斜,采集一系列断层扫描图像。图像经过计算处理以重建所记录体积的3D断层扫描图像。通过对样品的多个图像取平均值,可以降低固有噪点,从而对蛋白质或蛋白质复合物等颗粒获得更高分辨率的结构。这种处理方式称为亚断层图像平均(Wan和Briggs,2016;Zhang 2019)。从概念上说,这相当于通过单颗粒成像(SPA),在原位实现对大分子的亚纳米分辨率。 总 结 本文旨在表明冷冻共聚焦显微镜是冷冻工作流程中的一个重要组成部分,用于评估EM网格上玻璃化样品的质量和靶分布。在冷冻条件下记录的高分辨率共聚焦数据使科学家能够在3D荧光下识别目标结构。此外,3D体积可作为相关方法的参考,以便在FIB-SEM中检索靶结构进行切片,然后在冷冻TEM中进行电子断层扫描,以获得靶区的亚纳米分辨率图像。 Coral Cryo工作流程搭配新的共聚焦平台STELLARIS,再加上Coral Cryo软件,可以帮助新手用户创建网格概览图像、超分辨率3D图像以及精确的坐标标记,为后续的FIB切片和冷冻电子断层扫描奠定坚实基础。 参考文献:(上下滑动查看更多) 1.Allegretti M, Zimmerli CE, Rantos V, Wilfling F, Ronchi P, Fung HKH, Lee CW, Hagen W, Turoňová B, Karius K, Börmel M, Zhang X, Müller CW, Schwab Y, Mahamid J, Pfander B, Kosinski J, Beck M.: In-cell architecture of the nuclear pore and snapshots of its turnover. Nature. 2020 Oct 586(7831):796-800. doi: 10.1038/s41586-020-2670-5. Epub 2020 Sep 2. PMID: 32879490. 2.Arnold, J., Mahamid, J., Lucic, V., de Marco, A., Fernandez, J., Laugks, T., Mayer, T., Hyman, A. A., Baumeister, W., Plitzko, J. M., Biophysical Journal, Vol. 110, Feb. 2016, pp 860-869. 3.Bellare, J. R., Davis, H. T., Scriven, L. E. & Talmon, Y.: Controlled environment vitrification system: an improved sample preparation technique. J. Electron Microsc. Tech. 10, 87–111 (1988). 4.Bieber, A., Capitanio, C., Wilfling, F., Plitzko, J., Erdmann, P.S.: Sample Preparation by 3D-Correlative Focused Ion Beam Milling for High-Resolution Cryo--Electron Tomography. J. Vis.Exp. (176), e62886, doi:10.3791/62886 (2021). 5.Dubochet, J. & McDowall, A. W.: Vitrification of pure water for electron microscopy. J. Microsc. 124, RP3–RP4 (1981) 6.Dubochet, J., Lepault, J., Freeman, R., Berriman, J. A. & Homo, J. ‐C.: Electron microscopy of frozen water and aqueous solutions. J. Microsc. 128, 219–237 (1982) 7.Frederik, P. M., Stuart, M. C. A. & Verkleij, A. J.: Intermediary structures during membrane fusion as observed by cryo-electron microscopy. Biochim. Biophys. Acta 979, 275–278 (1989). 8.Klumpe, S., Fung, Herman K. H., Goetz, Sara K., Zagoriy, I., Hampoelz, B., Zhang, X., Erdmann, Philipp S., Baumbach, J., Müller, C. W., Beck, M., Plitzko, J. M., Mahamid, J. A.: Modular Platform for Streamlining Automated Cryo-FIB Workflows. bioRxiv 2021.05.19.444745 doi: https://doi. org/10.1101/2021.05.19.444745 9.Mahamid J, Tegunov D, Maiser A, et al.: Liquid-crystalline phase transitions in lipid droplets are related to cellular states and specific organelle association. Proceedings of the National Academy of Sciences of the United States of America. 2019 Aug 116(34):16866-16871. DOI: 10.1073/ pnas.1903642116. PMID: 31375636 PMCID: PMC6708344. 10.Schaffer M, Mahamid J, Engel BD, Laugks T, Baumeister W, Plitzko JM.: Optimized cryo-focused ion beam sample preparation aimed at in situ structural studies of membrane proteins. J Struct Biol. 2017 197(2):73-82 doi: 10.1016/j.jsb.2016.07.010 11.Toro-Nahuelpan, M., Zagoriy, I., Senger, F. et al.: Tailoring cryo-electron microscopy grids by photo-micropatterning for in-cell structural studies. Nat Methods 17, 50–54 (2020). https://doi.org/10.1038/s41592-019-0630-5 12.Wan, W., Briggs, J. A. G.: Cryo-Electron Tomography and Subtomogram Averaging. Methods Enzymol. 2016 579:329-67. Doi: 10.1016/ bs.mie.2016.04.014. 13.Zhang, P.: Advances in cryo-electron tomography and subtomogram averaging and classification. Curr Opin Struct Biol. 2019 Oct 58:249-258. Doi: 10.1016/j.sbi.2019.05.021. 相关产品 UC Enuity 超薄切片机 徕卡显微咨询电话:400-630-7761 关于徕卡显微系统 徕卡显微系统的历史最早可追溯到19世纪,作为德国著名的光学制造企业,徕卡显微成像系统拥有170余年显微镜生产历史,逐步发展成为显微成像系统行业的领先的厂商之一。徕卡显微成像系统一贯注重产品研发和最新技术应用,并保证产品质量一直走在显微镜制造行业的前列。 徕卡显微系统始终与科学界保持密切联系,不断推出为客户度身定制的显微解决方案。徕卡显微成像系统主要分为三个业务部门:生命科学与研究显微、工业显微与手术显微部门。徕卡在欧洲、亚洲与北美有7大产品研发中心与6大生产基地,在二十多个国家设有销售及服务分支机构,总部位于德国维兹拉(Wetzlar)。
  • 我国智能冷冻干燥技术取得重要进展
    由军事医学科学院卫生学环境医学研究所、实验仪器厂以及北京四环科学仪器厂有限公司共同完成的&ldquo 智能型冷冻干燥机系列产品的研制与应用&rdquo ,获天津市科技进步二等奖。该项目立足于冷冻干燥技术的学科前沿,将高效与绿色环保制冷系统相结合,完成了多项自主创新技术,拓展了应用领域和推广范围。  冷冻干燥过程是一个复杂的传热传质过程,涉及制冷、真空、电子、化学、低温医学等多个学科,技术含量高、冻干工艺复杂。随着冷冻干燥技术日益广泛应用于医药生产、档案去湿、标本保鲜、食品生产、文物考古等诸多领域,人们对其技术参数、智能化水平的要求也越来越高。我国中小型冷冻干燥机的产品研发始于上世纪80年代,目前生产厂家已有10多家,均处于仅仅满足最基本的冷冻干燥需求状态,整体技术水平始终在低水平徘徊。国外产品虽然技术性能良好,但价格昂贵,无法满足更大范围的用户选择意愿。因此,研制技术上达到国际领先的智能型冷冻干燥机十分迫切。  在军事医学科学院30日举行的媒体座谈会上,项目负责人江建华高级工程师介绍说,该项目组成员历时25年,研发了多功能监控软件,实现了对冻干数据的远程实时采集、跟踪以及对冻干进程的实时监控,研制了高效、绿色、环保的单机混合制冷系统。首次在国内建立以物料阻抗值和阻抗变化率相结合的方式,在线判断物料共晶点;建立以渗气法精确控制真空度,冻干效率提高约30%;建立以真空度、搁板温度及物料温度相结合的冻干终点在线判定方法;建立复杂环境条件下多层搁板温度的精确控制技术;实现了16种冻干工艺流程的全程自动控制;改善了冻干物料的沸腾、玻璃化现象,提高了冻干产品的效率与质量。  项目获得授权专利8项,发表论文10篇,2008年获得国家科技部重点新产品计划项目资助,2009年获得国际科学仪器及实验室设备展自主创新银奖,2012年获得国际发明展金奖。目前,该成果已经进入大批量生产阶段,被广泛应用于教学科研、医学、制药、食品、环保、监测、质检、考古、航天等诸多领域,取得了显著的经济和社会效益。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制