冷冻电子断层扫描

仪器信息网冷冻电子断层扫描专题为您整合冷冻电子断层扫描相关的最新文章,在冷冻电子断层扫描专题,您不仅可以免费浏览冷冻电子断层扫描的资讯, 同时您还可以浏览冷冻电子断层扫描的相关资料、解决方案,参与社区冷冻电子断层扫描话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

冷冻电子断层扫描相关的耗材

  • 断层扫描铜网
    断层扫描铜网这种边长1.5mm、300目的方形铜网,用于Fischione断层扫描的标本支架。该铜网的尺寸允许其在制备好的TEM样品中进一步倾斜。旋转超过90°时,识别标记和方形的形状方便参考。产品信息:货号产品名称规格74357Copper Tomography Grid, 300 mesh断层扫描铜网50/pk74357-01Lacey Carbon on Copper Tomography Grid25/pk74357-02 Lacey Carbon on Copper Tomography Grid50/pk74357-03Carbon Film on Copper Tomography Grid25/pk74357-04Carbon Film on Copper Tomography Grid50/pk
  • 冷冻电镜样品盒
    冷冻样品盒用于存放低温玻璃化冷冻电镜样品。适用于存储和转移的冷冻装置如FEI Vitrobot,Gatan CP3,Leica EM 6P以及其他低温玻璃化系统制备的玻璃化冷冻电镜样品。这些样品盒有两个型号,每个都有4个存储位。有两种颜色和三种版本可供选择:具有透明盖,针式盖,无盖。圆盒可用于Gatan 626和CT3500低温传输系统以及FEI Vitrobot和Gatan CP3。方形冷冻TEM网格盒包括一个非静态旋转盖,适合Gatan CT3500冷冻转移支架和Gatan CP3。在带有透明盖子的型号上,盖子用不锈钢螺丝固定在适当位置。产地#描述单元160-40W冷冻样品盒,圆形,白色,带盖个160-41W冷冻网格盒,圆形,白色,仅底座个160-42W冷冻样品盒,圆形,白色,带针式盖个160-40冷冻样品盒,圆形,蓝色,带盖个160-41冷冻样品盒,圆形,蓝色,仅底座个160-44带盖的冷冻样品盒,适合Gatan CT3500的方形个160-43替换清除盖个160-42冷冻样品盒,圆形,蓝色,带针式盖个160-47针式盖,圆形个
  • C-flat有孔碳膜 ,300目金网,R 1.2 / 1.3
    C-flat和Au-flat于2005年首次推出,已成为结构生物学界的行业标准TEM载网。在很大程度上,冷冻电镜和单颗粒分析(SPA)技术的快速增长的推动下,数百万个C-flat载网已被研究者使用,用来鉴定包括病毒和膜蛋白在内的结构。 C-flat是一种超平坦、多孔的碳支持膜,用于透射电子显微镜(TEM)。与竞争的多孔碳膜不同,C-flat是在没有塑料的作为中间环节的情况下制造的,因此它是干净的,没有残留物。优势C-flat带来更好的数据集。采用专利的技术制成,C-flat提供超平坦的表面,从而有更好的颗粒分散和更均匀的冰厚。C-flat的精确制造工艺消除了诸如多余碳和孔周围边缘等伪影。应用C-flat有孔碳膜提供理想的样品支持,可在冷冻透射电镜中获得高分辨率数据,使其成为单颗粒分析、冷冻电子断层扫描和自动 TEM 分析的理想选择。冷冻电子断层扫描(cryoET)和单颗粒分析(SPA):许多研究人员报告说,C-flat&trade 的超平坦表面能够获得均匀的冰厚和孔区域内均匀的颗粒分布。与其他多孔支撑膜相比,这种最佳颗粒分布可收集出更好的数据。标配2μm孔尺寸。自动透射电镜C-flat提供一系列与Leginon等自动数据收集软件兼容的常规分析站点。这种兼容性,加上许多研究人员报告的更均匀的冰厚度和颗粒分布,使每个网格产生更高质量的目标位

冷冻电子断层扫描相关的仪器

  • Glacios 2 冷冻透射电镜概述Thermo Scientific Glacios 2 冷冻透射电子显微镜 (cryo-TEM) 可帮助您从各种生物靶标中轻松收集近原子数据。与上一代产品相比,Glacios 2 冷冻透射电镜具有更高的通量,而且提升了冷冻电镜的易用性。其配备了集成式 Thermo Scientific Falcon 4i 直接电子探测器、Thermo Scientific EPU 软件和全新的完整机身,致力提高图像质量、实现数据采集自动化并简化您的工作流程。Glacios 2 冷冻透射电镜非常适用于单颗粒分析、冷冻电子断层扫描 (cryo-ET) 和微电子衍射 (MicroED)。Glacios 2 冷冻透射电镜的优势结果更优Falcon 4i 直接电子探测器、新设计的机身和智能 EPU 软件合力为显微镜和用户提供指引,帮助用户从样本中获得最佳结果。实操时间更短智能 EPU 软件的自动化功能和 AI 驱动型插件可在关键决策点为您提供指导,在某些情况下还可自动做出决策,从而减少在手动干预上的需求数据收集更快Falcon 4i 直接电子探测器的采集速率可达 320 fps,而无条纹成像 (FFI) 和自动化操作搭配智能插件可帮助您加快实验流程。简化的工作流程智能 EPU 软件可协助进行实验设置,并在整个实验过程中提供实时反馈,从而减少了对事先专业知识的需求。Glacios 2 冷冻透射电镜的主要特点高分辨率 TEMGlacios 2 冷冻透射电镜提供近原子分辨率。以经改进的硬件和具有可将对环境影响降到最低的全新机身,现在 Glacios 2 冷冻透射电镜的信息限制为 2.1 &angst 。同样,已将24小时内因冰生长而导致的透射损耗减少到 2%,让您在收集高分辨率图像时事半功倍。如果 Glacios 2 冷冻透射电镜配有 Thermo Scientific Selectris X 成像过滤器,还可进一步提升速度和分辨率。高通量冷冻透射电镜图像采集与上一代产品相比,集成式 Falcon 4i 直接电子探测器以更的时间提供更佳的图像质量。为进一步提高生产率和图像质量,Glacios 2 冷冻透射电镜配备了无条纹成像 (FFI) 功能(它可消除电子束边缘的条纹效应)、更稳定的载物台,并加快了自动数据采集。借助这些改进,您可在每个铝箔孔处收集更多图像,加快每个铝箔孔的单颗粒分析,进而加快单颗粒分析和冷冻电子断层扫描。添加 Selectris X 成像过滤器后,您可使用非常稳定的窄缝宽度 (10 eV) 在单颗粒冷冻电镜和冷冻电子断层扫描中获取更佳的对比度,不仅可提高分辨率,还可以更少的数据获得更快的结果,最大限度提高您的解析效率。最大程度提高易用性和效率智能 EPU 软件可实现更快、更简单的设置和处理,显微镜专业用户和非专业用户均可得益于此。已自动化几个关键设置步骤,例如在可能的情况下镜筒对齐和系统状态修复。此外,该软件和各种可选插件还可让用户充分利用操作显微镜时的时间并获取最佳结果。带有 EPU 质量监测软件的可选智能 EPU 软件是一种 AI 型软件解决方案,可分析中间结果、提供即时反馈并指导进行实时数据收集。带有嵌入式 CryoSPARC Live 的可选智能 EPU 软件是一种对数据质量进行实时结构性反馈的整体解决方案,它附带了全方位服务和应用支持。可选 EPU 多重载网软件可在远离显微镜的情况下完成多达12个载网的数据采集,从而确保生产率最大化。开放式应用编程接口 (API) 可让用户自己定制 Glacios 2 冷冻透射电镜功能。工作流程连通性样本筛选是成功冷冻电镜工作流程的重要组成部分,可在生化和玻璃化方面验证样本质量。Glacios 2 冷冻透射电镜可无缝集成到单颗粒分析和冷冻电子断层扫描工作流程中,并且可在整个工作流程中实现便捷、无污染的样本转移。Glacios 2 冷冻透射电镜可轻松接入其他 Thermo Scientific 仪器上的工作流程,包括:Thermo Scientific Krios 冷冻透射电镜Thermo Scientific Tundra 冷冻透射电镜Thermo Scientific Talos Arctica 冷冻透射电镜Thermo Scientific Aquilos 2 冷冻 FIBThermo Scientific Arctis 冷冻等离子体 FIB除了最佳的机械连通性外,由 Thermo Scientific Athena 软件提供支持的智能 EPU 数据管理还可实现数据连接,以便进行可重现的操作及存储采集的数据。占用空间更小Glacios 2 冷冻透射电镜的硬件结构经过专门设计,与其他配备自动上样系统的 200kV 显微镜相比,占用空间更小,样本取放更容易。
    留言咨询
  • Arctis 冷冻等离子体聚焦离子束专为自动化冷冻电子断层扫描成像样品的制备而设计。用户可以稳定地在原位制备厚度约为 200nm 或更薄的冷冻薄片,同时避免产生镓 (Ga) 离子注入效应。与目前市场上的其他 cryo-FIB-SEM 系统相比,Arctis Cryo-PFIB 可显著提高样品制备通量。与冷冻透射电镜和断层成像工作流程直接相连通过自动上样系统,Thermo Scientific&trade Arctis&trade Cryo-PFIB 可自动上样、自动处理样品并且可存储多达 12 个冷冻样品。与任何配备自动上样器的冷冻透射电镜(如 Thermo Scientific Krios&trade 或 Glacios&trade )直接联用,省去了在 FIB-SEM 和透射电镜之间的手动操作载网和转移的步骤。为了满足冷冻聚焦离子束电镜与透射电镜应用的低污染要求,Arctis Cryo-PFIB 还采用了全新的高真空样品仓和经过改进的冷却/保护功能。Arctis 冷冻等离子体聚焦离子束电镜的主要特点与光学显微镜术关联以及在透射电镜中重新定位"机载"集成宽场荧光显微镜 (iFLM) 支持使用光束、离子束或电子束对同一样品区域进行观察。 特别设计的 TomoGrids 确保从最初的铣削到高分辨率透射电镜成像过程中,冷冻薄片能与断层扫描倾斜轴始终正确对齐。iFLM 关联系统能够在电子束和离子束的汇聚点处进行荧光成像。无需移动载物台即可在 iFLM 靶向和离子铣削之间进行切换。CompuStage的180° 的倾转功能使得可以对样品的顶部和底部表面进行成像,有利于观察较厚的样品。TomoGrids 是针对冷冻断层扫描工作流程而特别设计的,其上下2面均是平面。这2个面可防止载样到冷冻透射电镜时出现对齐错误,并始终确保薄片轴相对于透射电镜倾斜轴的正确朝向。 利用 TomoGrids,整个可用薄片区域都可用于数据采集。厚度一致的高质量薄片Arctis 冷冻等离子体聚焦离子束扫描电镜可在多日内保持超洁净的工作环境,确保制备一致的高质量薄片。等离子体离子束源可在氙离子、氧离子和氩离子间进行切换,有利于制备表面质量出色的极薄薄片。等离子体聚焦离子束技术适用于液态金属离子源 (LMIS) 聚焦离子束系统尚未涉及的应用。例如,可利用三种离子束的不同铣削特性制备高质量样品,同时避免镓注入效应。系统外壳的设计考虑到了生物安全,生物安全等级较高的实验室(如生物安全三级实验室)可选用高温消毒解决方案。Arctis 冷冻等离子体聚焦离子束扫描电镜的紧凑型样品室专为冷冻操作而设计。由于缩小了样品室体积,操作环境异常干净,最大限度减少水凝结的发生。通过编织套管冷却样品及专用冻存盒屏蔽样品,进一步提升了设计带来的清洁度,确保了可以进行多日批量样品制备的工作环境。 自动化高通量样品制备和冷冻断层扫描连接性自动上样器可实现多达 12 个网格(TomoGrids 或 AutoGrids)的自动上下样,方便转移到冷冻透射电镜,同时最大限度降低样品损坏和污染风险。通过新的基于网络的用户界面加载的载网将首先被成像和观察。 随后,选择薄片位置并定义铣削参数。铣削工作将自动运行。根据样品情况,等离子体源可实现高铣削速率,以实现对大体积材料的快速去除。自动上样系统为易损的冷冻薄片样品提供了受保护的环境。在很大程度上避免了可能会损坏或污染样品的危险手动操作样品步骤。 自动上样器卡槽被载入到与自动上样器对接的胶囊中,可在 Arctis 冷冻等离子体聚焦离子束扫描电镜和 Krios 或 Glacios 冷冻透射电镜之间互换。
    留言咨询
  • 第二代专为冷冻断层扫描分析制备冷冻超薄切片的冷冻聚焦离子束显微镜Thermo Scientific Aquilos 2 Cryo Focused Ion Beam(冷冻聚焦离子束显微镜,Cryo-FIB)是一款专用的冷冻双束显微镜系统,可为高端冷冻透射电镜断层扫描分析提供最佳的样品制备流程。专为冷冻电镜设计 Thermo Scientific™ Aquilos™ 2 冷冻聚焦离子束显微镜让用户可以控制样品厚度,将生长在电镜载网上的细胞样品进行原位(in situ)的冷冻减薄制备成冷冻超薄切片(cryo-lamellas)。Aquilos™ 2 冷冻聚焦离子束显微镜集成了一个可完全旋转的冷冻载物台以及保护冷冻水合样品免受冰污染的相关硬件设施,从而确保脆弱的生命科学冷冻样品始终保持在玻璃化的温度下。核心优势为使用 Autoloader 的透射电镜制备冷冻断层扫描专用的冷冻超薄切片。仓室内专用的硬件可确保最低程度的样品冰污染,损坏和相关精度的损失。制备没有切割伪影的更薄的冷冻超薄切片。离子束减薄能够制备无压缩的冷冻超薄切片样品,以进行透射电镜断层成像。使用冷冻聚焦离子束减薄可以有效地避免伪影的产生,而使用冷冻超薄切片机制备冷冻超薄切片过程中会形成机械压缩,因而不可避免地会产生伪影。提高样品制备的精度。具有向导式用户软件和 Maps 软件,即使毫无经验的用户也能轻松地操作 Aquilos 2 冷冻聚焦离子束显微镜。将光学显微镜数据导入到 Maps 软件中,可以识别感兴趣区域的特征、瞄准目标并在不同成像方式之间进行关联。自动减薄和冷冻提取系统。具备最先进的自动化冷冻减薄软件,与冷冻提拉系统相配合可处理具有挑战性大块冷冻样品。通宵运行。更长的冷冻工作时间使系统能够通宵运行,以进一步实现冷冻超薄切片制备过程的自动化。
    留言咨询

冷冻电子断层扫描相关的方案

  • 冷冻电子断层扫描 cryo-ET精选参考指南
    FEI 公司是包括冷冻电镜 (cryo-EM) 在内的高性能透射、扫描电镜和聚焦离子束显微镜领域的领导者,其在 2016 年成为 Thermo Fisher的一部分。我们领先的电镜工作流程提供微米,纳米和皮米尺度的图像和信息。
  • 实验室X射线断层扫描显示材料特性和性能与内部结构演变的相关性
    采用LaVision公司的体视数字图像相关分析DVC平台,对实验室X射线断层扫描测量所获得的数据进行体相关处理分析,研究了材料特性和性能与内部结构演变的相关性。
  • 解决方案:如何进一步提高冷冻电镜的成像质量?
    冷冻电镜近几年在分子生物学方向可谓是大放异彩,我国生物学家利用冷冻电镜技术在结构生物学方面也做出了许多举世瞩目的重要成果。冷冻电镜技术几乎的实现了对生物大分子的高精度观察。但在实际应用中仍有很多因素限制了冷冻电镜观测精度的进一步提升。其中重要因素之一是由于电子束照射导致金属网上的玻璃态的水膜发生移动从而影响观测精度。英国剑桥大学的Christopher J. Russo研究组对金属网上玻璃态水膜的移动建立了物理模型,通过分析得出水膜的直径和厚度存在一个临界比值,超过临界比值,水膜在快速冷冻过程中会由于应力作用发生弯曲,并有部分应力冻结在内部。而在电子束照射时,由于电子束照射作用提高了水膜中水分子的扩散系数(~1046倍),玻璃态的水膜便成为了一个“超粘流体”,水膜的应力会进一步的释放使得水膜的曲率发生变化,从而导致了生物大分子的位移,而这个位移只发生在电子束照射时,从而影响成像质量。如果缩小金属网孔的直径,使水膜的直径和厚度比值在临界以内,在冷冻时水膜内聚集的能量不足以使水膜发生弯曲,电子束照射的能量也不会引发水膜曲率的变化,仅仅会引起水分子的扩散,而扩散对成像的影响远小于曲率的变化。从而可以提高冷冻电镜的成像质量。因此制备高精度小孔径金属网格就显得尤为重要。Christopher J. Russo课题组利用了高精的光刻和电子束蒸发薄膜制备技术在硅片上成功的批量制备出了孔径在200 nm尺度的金属支撑网,使得冷冻电镜测量时样品的位移小于1埃米。作者利用制备的“HexAuFoil”金属网对223-kDa DPS蛋白质进行了冷冻电镜的观测。结果表明,采用“HexAuFoil” 金属网可以有效减小样品的移动,使得分辨率轻松突破2埃米(更多细节请参考原文)。该篇文章介绍了一种减小样品位置漂移提高冷冻电镜精度的有效途径。

冷冻电子断层扫描相关的论坛

  • 北京大学冷冻电镜平台正在寻找北大事业编招聘-双束(FIB/SEM)/冷冻电子断层扫描(cryo-ET)技术主管职位,坐标,谈钱不伤感情!

    [b]职位名称:[/b]北大事业编招聘-双束(FIB/SEM)/冷冻电子断层扫描(cryo-ET)技术主管[b]职位描述/要求:[/b]【岗位职责】1、负责平台Cryo-FIB/SEM双束显微镜和冷冻光学显微镜的日常运行及维护;2、培训、协助用户使用Cryo-FIB/SEM双束显微镜和冷冻光学显微镜制备样品;3、辅助相关课题组合作开展光电联用及冷冻电子断层扫描技术路线的研发、优化;4、协助平台管理其他电镜及附属设备。【岗位要求】1、政治立场坚定,具有良好的职业道德,诚实守信,爱岗敬业,工作细心踏实,服务意识和责任心强;2、能够熟练掌握双束显微镜(FIB/SEM)使用,专业不限;3、具有Cryo-FIB冷冻生物样品制备或者电子断层扫描经验者优先;4、具有博士学位,具备较强的语言表达能力,英语水平较好,学术论文写作能力较强 5、热爱仪器管理工作,新技术研发工作,工作积极主动、认真负责,具备良好的团队协作能力。【薪酬福利】此岗位属北京大学事业编人员,可申请副高级职称,可协助申请学校、国家技术创新类基金,可申请学校政策性住房,子女可入学北大附属幼儿园、小学、中学就读,薪资可面议。特别优秀者(比如受过良好的科研训练、有较高的英语或计算机水平)可提供有竞争力的薪酬。[b]公司介绍:[/b] 作为北京大学双一流重点建设项目,北京大学于2015年启动了学校冷冻电镜平台和学科的建设,2017年平台正式运行。平台目前拥有总价值约1.1亿元的电镜和各类样品制备仪器,其中包括2台高端300 kV Titan Krios G3冷冻透射电子显微镜(K2 Gif 相机、相位板)、一台200 kV Talos Arctica(K2相机)冷冻透射电子显微镜。2020年将购置冷冻双束扫描电镜和光电关联显微镜...[url=https://www.instrument.com.cn/job/user/job/position/70076]查看全部[/url]

  • 紧急求助:谁知道国内哪家单位有“冷冻电子显微镜”???

    我主要是想观察一下纳米颗粒在高分子树脂体系里的分布状态,还有加入纳米颗粒前后分子间氢键变化的情况!谁知道国内哪家单位有“冷冻电子显微镜”???最好是能够对外单位开放的,先在这里谢过了!!!问题:冷冻电子显微镜与扫描电镜的区别在何处? 答:冷冻电镜是透射电镜,看物体内的具体结构;而扫描电镜是利用探针扫描,对大分子不能扫到分子内部,而是表面形貌,不可能是分子内部的结构。如果是研究原子水平,没有问题。但一旦涉及到大分子,就要出现问题了。

  • 冷冻光电关联:让原位微观生命过程可视化

    冷冻光电关联:让原位微观生命过程可视化

    结构生物学是用物理学方法在原子水平阐明生物大分子的三维结构,进而诠释生物大分子的生物学功能及其分子机制的科学。近几年,冷冻电镜在生物物理,特别是结构生物学领域掀起了一轮新的革命。冷冻电镜技术包括单颗粒技术和原位冷冻电镜技术,2017年单颗粒技术已获得诺贝尔奖,放眼未来,冷冻电镜更多的是要应用于获取细胞和组织样品的原位信息,尤其是利用冷冻电镜电子断层扫描成像技术(Cryo-ET)获得三维图像,将细胞内的生命过程可视化,在原位对生物大分子的结构进行解析,并进一步分析其与所处周围环境之间的相互作用关系,进而阐明其发挥功能的分子机制。蛋白质聚集是许多神经退行性疾病的典型症状,包括帕金森病(Parkinson’sdisease)、亨廷顿病(Huntington’sdisease)、以及肌萎缩侧索硬化症(amyotrophiclateral sclerosis)等,至今为止还没有针对这类疾病的有效治疗方案,因此了解这类疾病的致病机理尤为重要。在细胞内表达这些疾病相关的蛋白会导致细胞毒性以及形成大的胞内包涵体,然而这些包涵体的具体致病机理还不清楚,而且这些包涵体的组成以及其精细的细胞原位结构信息也无人知晓。为了回答这一科学问题,德国马克斯普朗克生物化学研究所Baumeister教授组的研究人员利用先进的冷冻电镜光电关联技术(Cryo-CLEM)、冷冻聚焦离子束切割技术(Cryo-FIB)、以及冷冻电子断层扫描三维重构技术(Cryo-ET),在小鼠原代神经细胞原位解析了亨廷顿基因1号外显子中衍生的多聚谷氨酰胺(polyQ)所形成的包涵体及其微环境的原位精细结构,相关结果发表在2017年9月的Cell杂志。他们发现polyQ包涵体是由淀粉样肽的纤维构成,与细胞的内膜系统特别是内质网相互作用,使内质网膜发生形变并扰乱其组成,还改变了包涵体周围的内质网膜的动态性。该研究结果暗示淀粉样肽的纤维和内质网的异常相互作用导致了蛋白质聚集物所产生的细胞毒性。[align=center][img=,690,424]https://ng1.17img.cn/bbsfiles/images/2018/11/201811271518599236_8463_3224499_3.jpg!w690x424.jpg[/img][/align]2018年3月,该研究组在PNAS杂志发表在酵母系统内的polyQ原位分子的结构解析,他们发现在酵母细胞内polyQ蛋白聚集体形成了无定形的包涵体以及少量的纤维丝,并使线粒体和脂滴的形态发生变形。对比这两种不同的机体系统下的差异,我们可以看到同样的polyQ蛋白聚集体在不同的环境中采用了不同的构像并利用特定的机制来靶向不同的细胞结构,从而产生细胞毒性。[align=center][img=,690,770]https://ng1.17img.cn/bbsfiles/images/2018/11/201811271519325828_4209_3224499_3.jpg!w690x770.jpg[/img][/align]另外,2018年2月的Cell杂志报道了该研究组在大鼠神经细胞原位解析了一种重复短肽(poly-GA)蛋白聚集体及其微环境的结构,不同于polyQ形成的纤维状结构,poly-GA聚集体是由平面扭曲的长短不一的丝带状结构组成。poly-GA聚集体大量募集了26S蛋白酶体复合物,而其他生物大分子如核糖体或分子伴侣却被排除在聚集体外部。与poly-GA的直接相互作用使蛋白酶体处于失活状态,虽然在整体水平上细胞内的蛋白酶体表达量没有变化,但有功能的蛋白酶体的数量大幅减少,揭示了蛋白质聚集物所产生细胞毒性的另一原因。[align=center][img=,690,378]https://ng1.17img.cn/bbsfiles/images/2018/11/201811271519469883_8555_3224499_3.jpg!w690x378.jpg[/img][/align]Baumeister教授组是Cryo-CLEM、Cryo-FIB以及Cryo-ET等关键技术方法发展的开拓者和领航者。Cryo-CLEM-FIB-ET即是在整个细胞内定位荧光标记的特定目标分子,观察其动态变化并在感兴趣的时刻进行快速冷冻,然后转移到冷冻扫描电镜利用冷冻聚焦离子束进行光电关联匹配,精确定位目标分子位置并进行聚焦离子束切割产生一层100-200nm厚的切片,最后利用冷冻电子断层扫描成像从原子分辨率上解析其未被破坏的天然原位结构信息。目前冷冻光电关联的一大瓶颈是光镜的分辨率较低,虽然超分辨光电关联技术在飞速发展,但是其缺点如高强度激光照射可能使样品升温,成像速度慢等还需要一一克服。超分辨光电关联令人振奋的一大潜在应用是来精确指导冷冻聚焦离子束切割,使得大的细胞样品中的任何感兴趣目标分子都能被精确定位切割,进而进行高分辨率数据收集。另外,随着技术进一步发展,用高电子密度标签来标记目标分子并在电镜下直接成像也将会成为可能。结构生物学的终极目标是了解细胞生命过程中每一个分子的结构、功能以及它们之间的相互作用,Cryo-CLEM-FIB-ET则是在结构生物学与细胞生物学之间架起的一座桥梁,让细胞内的微观生命动态过程可视化![b]参考文献[/b]1. Bauerlein,F. J. B., et al. 2017. In Situ Architecture and Cellular Interactions of PolyQInclusions. Cell 171(1): 179-187.2. Guo, Q., etal. 2018. In Situ Structure of Neuronal C9orf72 Poly-GA Aggregates RevealsProteasome Recruitment. Cell 172(4): 696-705.3. Gruber, A.,et al. 2018. Molecular and structural architecture of polyQ aggregates inyeast. Proc Natl Acad Sci U S A. .4. Wolff, G.,et al. 2016. Towards correlative super-resolution fluorescence and electroncryo-microscopy. Biol Cell 108(9): 245-258.Oikonomou, C. M. 2017. Cellular ElectronCryotomography: Toward Structural Biology In Situ. Annu Rev Biochem 20(86):873-896.来源:【生物成像中心】

冷冻电子断层扫描相关的资料

冷冻电子断层扫描相关的资讯

  • 2020年蛋白质冷冻电子断层扫描三维重构技术应用研讨会成功召开
    p style="text-indent: 2em "strong style="text-indent: 2em "仪器信息网讯/strongspan style="text-indent: 2em " 12月16日,由国家蛋白质科学研究(北京)北大分中心、北京大学生命科学学院和赛默飞世尔公司共同主办,中国生物物理学会冷冻电子显微学分会承办的2020年蛋白质冷冻电子断层扫描三维重构技术应用研讨会在北京大学中关新园成功举办。研讨会主席由北京大学郭强研究员、高宁教授、伊成器教授和赛默飞电镜生命科学亚太区市场拓展总监Eric Fung Chen共同担任,主题是“蛋白质冷冻电子断层扫描-桥连细胞生物学和分子生物学时代”,围绕三维冷冻电子断层扫描重构技术(Cryo-ET)样品制备、算法数据处理、应用以及交联质谱、FCS技术等方面进行了广泛研讨。本次研讨会共组织安排了11场精彩报告,其中来自德国马普生化所冷冻电子断层扫描技术的先驱Wolfgang Baumeister教授应邀作了主旨报告。作为冷冻电子断层扫描三维重构技术盛会,会议吸引了来自全国高等院校、科研院所、企事业单位的知名专家学者等共240余人。/span/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 400px " src="https://img1.17img.cn/17img/images/202012/uepic/7f9c68cf-1c1c-4fad-a95f-f2a154a2a686.jpg" title="1.jpg" alt="1.jpg" width="600" height="400" border="0" vspace="0"//pp style="text-align: center "span style="color: rgb(0, 176, 240) text-align: center text-indent: 0em "全体合影/span/pp style="text-indent: 2em "strong北京大学生命学院副院长高宁教授/strong和strong赛默飞材料与结构分析业务高级商务总监陈厅行/strong分别为大会致开幕辞。高宁教授指出在过去几年内,冷冻电镜技术的革命性发展非常深刻的改变了生命科学很多领域的研究范式。冷冻电镜技术未来的一个重要突破将是冷冻电子断层扫描三维重构技术(Cryo-ET),这些技术发展离不开国家层面鼓励的多学科交叉的方向。将来除了生物学、电子显微学还有材料、化学、大数据技术、人工智能等各学科的深度融合,我们坚信在5 ~ 10年内各项基于冷冻电镜的技术,特别是冷冻电子断层扫描三维重构技术将迎来新的突破,这将是一个新的革命性的时代,在座学生可以做好迎接新时代的准备。陈厅行在致辞中表示赛默飞在结构生物学领域和北大以及国家蛋白质中心都一直有着非常密切的合作,从仪器、服务到技术的普及和相关的学术活动。他希望凭借赛默飞仪器技术的升级能帮助科学家们攻克一个又一个的生物学问题,探究更多的人类的未解之谜,让我们的世界更健康,更清洁,更安全。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 199px " src="https://img1.17img.cn/17img/images/202012/uepic/93502dfe-279d-4ace-a365-a45683d57aab.jpg" title="2.png" alt="2.png" width="600" height="199" border="0" vspace="0"//pp style="text-align: center "span style="color: rgb(0, 176, 240) text-align: center text-indent: 0em "高宁教授(左)和陈厅行先生(右)/span/pp style="text-indent: 2em "随后在上午的学术报告中,strong清华大学欧光朔教授/strong报告了利用Cryo-ET技术研究线虫肠道内纤毛和微绒毛的最新研究成果。报告中,欧教授详细报告了如何从使用常温FIB-SEM研究线虫的大尺度三维重构的过程到使用Cryo-ET技术过程。在使用Cryo-ET技术过程,经历了很多艰辛,由于定位问题,很难获得高质量理想样品。最后在研究线虫肠道上皮内有大量的微绒毛过程中,非常意外的发现在小肠微绒毛膜的外面有成百上千的杆状结构。由于该茸毛存在于微米级细胞器Microvilli上,其直径5nm,长度35nm长,因此命名为Nanovilli,报告中将Microvilli和Nanovilli组成的结构形象的称之为狼牙棒(Rod with wolf teeth)结构。通过大量的数据分析并结合文献中微绒毛再生过程的研究结论,提出了微绒毛复制模型。欧教授幽默风趣的报告,赢得了阵阵掌声。/pp style="text-indent: 2em "strong中国科学院生物物理研究所章新政研究员/strong报告了新的高通量原位结构解析技术,该技术的定位效率与蛋白质大小和样品厚度密切相关,在低于120 nm的非切片数据里,可定位400 kD以上的蛋白并实现高分辨率解析。蛋白质的丰度和蛋白质分子量降低都会影响定位效率,但前者远小于后者的影响。经估算,在丰度极地的情况下,若切片厚度在100 nm左右,可解析约1 MD的蛋白高分辨率结构。由于相对较低的定位效率,算法无法确定原位环境中的蛋白复合物,因此如果目标蛋白的分布未知,可先收集Tomographic数据,通过Sub-Tomogram averaging技术研究蛋白在原位环境中的分布,然后使用该方法进一步提升分辨率。/pp style="text-indent: 2em "strong赛默飞电镜生命科学亚太高级业务拓展总监Eric Fung Chen/strong在会议上介绍了赛默飞多年以来持续在产品技术研发上做的大量投入,以及冷冻电镜在生命科学领域的技术新进展。赛默飞每年在持续在产品研发投入超过10亿美金,这使得赛默飞的技术创新一直走在科技的前沿:新推出的Selectris能量过滤器将冷冻电镜提升到了新的水平,分辨率可达1.2埃,实现了以真正的原子级分辨率观察蛋白;Aquilos 2 cryo FIB在样品制备方面进行了自动化改进和提供了细胞组织水平的冷冻薄片提取技术,从而大大简化了研究人员的制样步骤,提高了成功率;亲民新品Tundra(100kv CryoEM)也使得更多的客户有能力用冷冻电镜研究蛋白结构,最新数据是分辨率达到3.0埃(Apoferritin)等,所有的这些创新都是希望帮助科学家们解决更多的科学难题,实现科研往前推动重要的一步。/pp style="text-indent: 2em "strong北京生命科学研究所/清华大学生物医学交叉研究院董梦秋研究员/strong报告了利用化学交联及质谱分析辅助蛋白质结构分析,其团队开发了一种新可以在具有挑战条件下工作的交联剂DOPA2,该交联剂具有氨基特异性,可以在10 s内快速反应完成交联,远远快于目前常用交联剂的反应时间20 ~ 30min,而且不水解。该交联剂不仅可以使化学交联质谱分析用于分析未折叠或部分折叠的蛋白质,还可以捕捉蛋白质展开过程中的结构变化,最后她也希望在蛋白构象变化研究的路上,未来能研究出反应更快的交联剂,甚至是微秒级的交联剂,以更好研究跟踪更快的蛋白构想变化。/pp style="text-indent: 2em "strong北京大学生命学院郭强研究员/strong报告了利用冷冻电子断层扫描技术分析神经退行性疾病的细胞毒性分子机制。报告中列举了通过冷冻光电联用技术,电子断层扫描技术实现对多种神经退行性疾病模型中的蛋白聚集物的原位观察,展示了蛋白聚集物多样性的特征,并指出泛素化降解途径功能阻滞可能是ALS发病过程中的重要特征。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 500px height: 375px " src="https://img1.17img.cn/17img/images/202012/uepic/f5144e7b-680e-48c0-8a89-823a6a1f418b.jpg" title="3.png" alt="3.png" width="500" height="375" border="0" vspace="0"//pp style="text-align: center "span style="color: rgb(0, 176, 240) text-align: center text-indent: 0em "上午报告人/span/pp style="text-indent: 2em "下午学术报告中,strong北京大学生命学院王世强教授/strong首先带来了精彩的报告。王老师虽然自己以前不是做结构相关的,但是王老师实验室使用电镜方面,有非常长的历史。一旦电镜有些新的技术,他都会让学生在第一时间尝试。在之前北大硬件相对比较差的时候,他就找各种的合作,试图用相对比较有限的条件应用最新的技术。王教授报告了使用常规Tomography技术获得的心肌细胞内钙信号转导大分子复合物signosome的三维结构并详细介绍了钙火花工作机制。/pp style="text-indent: 2em "strong清华大学李雪明副教授/strong报告了细胞原位冷冻电镜结构解析的技术挑战与研究进展,报告中指出,Cryo-ET的优势是可以研究真正的生理态状态、大尺度范围内的物质相互作用、涵盖了关键的生物学过程、分辨率可以从原子尺度到微纳尺度。同时从样品制备技术、数据采集、数据预处理、三维重构、图像识别(深度学习)系统介绍了冷冻电子断层扫描三维重构技术。特别是样品制备方面是Cryo-ET面临的瓶颈问题,决定了实验的成败。李教授详细汇报了课题组切割样品的过程,切割必须保持样品高质量的结构、定位问题、表面辐照损伤、切割的厚度、形变等等都会影响样品质量。未来高效智能的Cryo-ET技术依然是其努力方向。/pp style="text-indent: 2em "strong中科院计算技术研究所张法/strong研究汇报了电子断层三维重构中的计算方法,详细列举了研究组开发的数据对中(Markerauto)、弥补数据缺失重构(FIRT/ICON和Curvilinear projection Model)、三维体降噪和三维数据分类等软件的原理、优势及应用。生物物理所黄韶辉研究员报告了基于最大熵值法的荧光寿命相关光谱技术(FCS)用于分析生物分子亚毫秒级别的动态结构变化,其应用最大熵值法(MEM)可实现对均相溶液样品中三个荧光组份(三个FRET构象)的荧光寿命分布分析;而且应用荧光寿命相关光谱(FLCS)技术实现对以上三个FRET构象相互转换在亚毫秒时间尺度的动力学研究。同时他还希望能对溶液样品中更多( 3)FRET构象及其相互转换的动力学研究、数个毫秒级别的构象转换动力学研究以及解决更有意义的生物学问题。其自主研制的FCS CorTectorTM SX100国内外用户有美国国立卫生研究院、加州大学旧金山分校、清华大学、中科院生物物理研究所,他也期待和大家有更多的合作。/pp style="text-indent: 2em "仪器行业新锐strong荷兰Delmic公司的CEO Sander den Hoedt和冷冻电镜产品部主管Katherine Lau/strong在中国区总代理超微动力公司总经理葛鹏的协助下详细介绍了一款有巨大潜在应用价值的新产品Meteor。这是一款集成于cryo-FIB/SEM上的荧光显微镜实时观察系统,该系统可以减少样品转移环节,显著提高制样成功率和良品率,将宝贵的冷冻电镜机时用于真正有价值的样品。在报告中还提及了Delmic公司的另一项新产品——全自动高速电镜系统FastEM。这也是一款革命性的新产品,使电镜观察实现完全自动化,可将电镜的观察效率提高数十倍。这些产品的潜在应用价值得到主旨报告人Baumeister教授的充分肯定。/pp style="text-indent: 2em "strong马普生化所Baumeister教授/strong首先介绍了原位结构生物学的重要意义,接下来回顾了过去几十年冷冻电子断层扫描技术相关上下游仪器设备的发展历程。紧接着,介绍了研究组近期利用电子断层扫描技术解决的生物学问题,涵盖了神经生物学、光合成、相分离、细胞自噬、蛋白稳态等多个方面。最后,展望未来,Baumeister教授讲述了原位结构生物学未来需要解决的方法学难题及发展方向。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202012/uepic/a5f3d902-6910-42e2-b146-33b8f7418ffa.jpg" title="4.png" alt="4.png"//pp style="text-align: center "span style="color: rgb(0, 176, 240) text-align: center text-indent: 0em "下午报告人/span/pp style="text-indent: 2em "本次研讨会为国内学者提供了冷冻电子断层扫描三维重构技术的高水平交流平台,有效推动了蛋白质结构与功能研究的进步和发展。一天的交流,与会代表积极参与讨论,大家感受到了Cryo-ET技术的魅力与发展。郭强研究员最后期待在更大的会场和更多的学者可以进行更多的学术交流。本次研讨会得到了北京大学冷冻电镜平台的大力支持。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 265px " src="https://img1.17img.cn/17img/images/202012/uepic/93f7b2bb-cc72-4afc-b575-9eb5afb165e8.jpg" title="5.png" alt="5.png" width="600" height="265" border="0" vspace="0"//pp style="text-align: center "span style="color: rgb(0, 176, 240) text-align: center text-indent: 0em "会议掠影/span/p
  • 蛋白质冷冻电子断层扫描三维重构技术应用研讨会通知(第一轮)
    p style="text-align: justify text-indent: 2em "冷冻电子断层扫描技术是目前唯一可以在细胞生理状态下,对生物大分子和亚细胞结构在分子分辨率(1~10 nm)水平进行原位结构分析和功能研究的技术手段。这一研究尺度正是目前传统细胞生物学和分子生物学都无法涵盖的,因此这一技术是桥连两者的关键技术。/pp style="text-align: justify text-indent: 2em "近年来,伴随着聚焦离子束(FIB)、光镜电镜联用(CLEM)和相位板等技术手段的发展,冷冻电子断层扫描技术已经可以实现对不同亚细胞结构、细胞生物学现象进行原位观察。与此同时,相机成像质量的进步、计算能力的提升和算法的优化使得该方法可实现的分辨率大幅度提升,甚至可以做到亚纳米分辨率乃至原子分辨率的原位结构解析。/pp style="text-align: justify text-indent: 2em "基于这些发展,冷冻电子断层扫描技术对生命科学研究有两方面助力:一方面,对细胞生物学现象观测的空间分辨率提升一到两个数量级,这将有可能重塑我们对细胞生物学的认识;另一方面,相对传统结构生物学,在牺牲一定分辨率的代价下,可以对生物大分子在其生理状态下进行原位结构分析,获得其构象、功能及细胞微环境的关联,这将是生物学未来的重要发展方向。/pp style="text-align: justify text-indent: 2em "本次研讨会由国家蛋白质科学研究(北京)北大分中心、北京大学生命科学学院和Thermo Fisher Scientific公司共同主办,将围绕蛋白质三维冷冻电子断层扫描重构技术,从样品制备、数据收集、算法数据处理、应用等方面进行广泛研讨。/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 112, 192) "strong会议主题:/strong/span蛋白质冷冻电子断层扫描-桥连细胞生物学和分子生物学时代/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 112, 192) "strong会议日期:/strong/span2020年12月16日9:00 - 17: 00/pp style="text-align: justify text-indent: 2em "strongspan style="color: rgb(0, 112, 192) "会议地点:/span/strong北京大学中关新园群英厅/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 112, 192) "strong会议规模:/strong/span150人/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 112, 192) "strong主办单位:/strong/span国家蛋白质科学研究(北京)北大分中心、北京大学生命科学学院、Thermo Fisher Scientific公司/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 112, 192) "strong会议主席:/strong/span郭强、高宁、伊成器/pp style="text-align: justify text-indent: 2em "strong本次会议免费参加。请您将参会回执发送至aiwenfan@pku.edu.cn,邮件注明“xx参加蛋白质冷冻电子断层扫描三维重构技术应用研讨会”,以便安排用餐。/strong/pp style="text-align: justify text-indent: 2em "附件:img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" style="vertical-align: middle margin-right: 2px "/a href="https://img1.17img.cn/17img/files/202012/attachment/ff5916c6-1cd7-436a-95aa-87ba62efda59.doc" title="参会回执.doc" style="font-size: 12px color: rgb(0, 102, 204) "参会回执.doc/a/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 112, 192) "strong会议联系人:/strong/span/pp style="text-align: justify text-indent: 2em "郭振玺:北京大学生命学院,13466664284,guozhenxi9999@pku.edu.cn/pp style="text-align: justify text-indent: 2em "范爱文:北京大学生命学院,13051380795,aiwenfan@pku.edu.cn/pp style="text-align: justify text-indent: 2em "郝雪梅:北京大学生命学院,15811335516,haoxm@pku.edu.cn/pp style="text-align: right "北京大学/pp style="text-align: right "2020年11月30日/ppbr//p
  • 北大郭强课题组使用冷冻电子断层扫描技术对弓形虫速殖子增殖过程进行成像
    刚地弓形虫(Toxoplasma gondii)是一种能在细胞内寄生生活的寄生虫,它能够感染包括人在内的几乎所有温血动物,引发弓形虫病。处于速殖子阶段的弓形虫在宿主细胞内进行无性繁殖,即:母体细胞的细胞核附近产生两个子代弓形虫,后者会逐渐发育为成熟的速殖子,而母体细胞的结构随之消失。弓形虫速殖子具有表皮下微管(SPMTs)和类锥体(conoid)等骨架结构,在维持细胞形态、运动和侵染宿主过程中发挥重要作用。先前的相关研究主要聚焦于弓形虫成熟速殖子及其骨架结构,描述了细胞骨架在成熟速殖子中的分布情况,并通过冷冻电镜分别解析了表皮下微管和类锥体纤维的精细结构,揭示了表皮下微管是由13根原丝组成的“句号”形状;而类锥体纤维是由9根原丝组成的“逗号”形状 (Sun et al., 2022)。而对弓形虫速殖子增殖过程的结构研究目前仍以荧光显微技术为主要手段,缺少更高分辨率的结构。该增殖过程区别于常见的细胞“一分为二”的有丝分裂方式,存在大量未知的细节值得去探索。2023年2月25日,北京大学生命科学学院郭强课题组在Advanced Science发表了题为“Cryo-Electron Tomography of Toxoplasma gondii Indicates That the Conoid Fiber May Be Derived from Microtubules”的研究论文。该工作首次将冷冻电子断层成像技术应用于探究弓形虫速殖子的增殖过程,在纳米尺度下详细描述了子代弓形虫的三维原位结构,并在结构方面提供了类锥体可能起源自微管的证据。该研究利用了冷冻电子断层成像(cryo-ET)并结合了聚焦离子束(FIB)技术,获得了成熟速殖子及其细胞核附近新生的子代弓形虫的原位结构。作者分别展示了纳米尺度下的成熟和子代速殖子顶部复合物的三维结构(图1 B和H),重点描述了细胞骨架相关结构的细节,发现子代速殖子在早期就已经具备完整的细胞骨架结构,印证了荧光显微技术的研究结果。通过对比,作者发现成熟与新生速殖子的细胞骨架在空间分布上存在差异,猜测这可能与子代速殖子发育过程中所处的环境与成熟速殖子不同有关。让人意外的是,研究者发现子代速殖子的类锥体纤维中同时存在“句号”形状和“逗号”形状这两种结构。这两种形状能够同时出现在同一根类锥体纤维上(图1 C),并且存在一段约10 nm长、由“句号”形状向“逗号”形状过渡的区域。进一步计算表明“句号”形状的类锥体纤维由13根原丝组成(图1 C),与微管一致;基于两者在结构上的相似性,且两者都主要由tubulin蛋白组成,推测类锥体纤维可能起始于微管,其在成熟过程中失去4根原丝,并逐渐转变为最终的“逗号”形状(图1 I)。该研究有助于我们更深入地理解类锥体的组装,以及弓形虫增殖时子细胞从产生到逐渐成熟的过程,为进一步探寻弓形虫及其他顶复门寄生虫控制药物提供支持。图1 (A-C)来自弓形虫子代速殖子,(G-I)来自成熟速殖子。(A-B和G-H)为类锥体附近区域的结构。(C和I)为类锥体纤维不同位置的横截面。北京大学生命科学学院、生命科学联合中心郭强研究员为该研究的通讯作者。课题组20级PTN项目博士研究生李智勋为该研究的第一作者,课题组技术员杜文静,以及中山大学伦照荣教授,赖德华副教授和杨炅同学为该工作做出了重要贡献。该工作中冷冻电镜样品制备和数据采集在北京大学冷冻电镜平台完成。数据处理获得了北京大学未名超算平台的硬件和技术支持。北京大学国家蛋白质科学中心的工作人员提供了技术支持。该研究得到了北京大学生命科学中心(CLS)、生命科学学院(SLS)、SLS-启东创新基金以及昌平实验室的经费支持。参考文献:Sun, S.Y., Segev-Zarko, L.-a., Chen, M., Pintilie, G.D., Schmid, M.F., Ludtke, S.J., Boothroyd, J.C., and Chiu, W. (2022). Cryo-ET of Toxoplasma parasites gives subnanometer insight into tubulin-based structures. Proceedings of the National Academy of Sciences 119, e2111661119.研究组介绍郭强:北京大学生命科学学院、北大-清华生命科学联合中心,研究员、博士生导师。实验室研究领域:我们是原位结构生物学实验室。关注“细胞建筑学”:各个亚细胞结构是如何搭建成一个具有完整生物学功能的细胞,以及“生物大分子社会学”:细胞内的细胞器、生物大分子之间的相互关系。原位结构生物学是基于冷冻光电联用(CLEM)、冷冻电子断层扫描(cryo-ET)等技术的新兴结构生物学分支,是一种可以在细胞生理状态下,对生物大分子和亚细胞结构在分子分辨率(1 ~ 10 nm)水平进行原位的结构分析和功能研究的技术手段。我们主要研究方向包括:1. 在纳米、亚纳米尺度对基础细胞生物学问题的研究。2. 对包括神经退行性疾病在内的老龄化疾病致病机制的研究。3. 适用于组织样品的高分辨原位结构生物学方法优化。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制