离子存储薄膜

仪器信息网离子存储薄膜专题为您整合离子存储薄膜相关的最新文章,在离子存储薄膜专题,您不仅可以免费浏览离子存储薄膜的资讯, 同时您还可以浏览离子存储薄膜的相关资料、解决方案,参与社区离子存储薄膜话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

离子存储薄膜相关的耗材

  • 薄膜溶解测量仪配件
    薄膜溶解测量仪用于实时监测薄膜在液体过程中的薄膜厚度和光学常量(n, k)的变化,是全球领先的薄膜溶解测量仪和薄膜溶解测试仪。为了这种特色的测量,孚光精仪公司特意为薄膜溶解测量仪研发了Teflon样品池用于测量薄膜样品,使用一种岔头探针水平安装在Teflon 样品池的外部,距离玻璃窗口非常接近,使用白光反射光谱技术(WLRS),实时测量薄膜厚度和折射率,并通过专业软件记录下这些数据。另外,根据需要,我们还能够在测量区域下安装搅拌装置stirrer,提供力学激励振动。孚光精仪还特意为薄膜溶解测量仪提供垂直的样品夹具,以固定小尺寸的硅样品或3' ' ,4' ' 直径的Si 晶圆。根据溶解过程的不同,如溶解速度的不同,它能够以实时或离线的方式测量,反射率数据都能够存储下来以便后续处理使用。还能够测量几十个纳米厚度的光致抗蚀剂和聚合物薄膜堆的溶解过程,而且还可以测量薄膜的膨胀等特殊现象。对于薄膜厚度的测量,薄膜溶解测厚仪需要光滑,具有反射性的衬底,对于光学常数测量,平整的反射衬底即可满足测量需要。如果衬底是透明的,衬底的背面不能具有反射性。能够给出两个参数:例如两个薄膜的厚度或一个薄膜的厚度和光学常量,已经成功应用于测量反射衬底(Si晶圆)上各种光滑,透明或轻度吸收薄膜的溶解过程,可研究的薄膜包括SiO2薄膜,SiNx薄膜,光致抗蚀剂薄膜,聚合物薄膜层等。薄膜溶解测量仪参数 可测膜厚: 5nm-150微米;波长范围:200-1100nm 精度:0.5% 分辨率:0.02nm 测量点光斑大小:0.5mm可测样品大小:10-100mm计算机要求:Windows XP, vista, Win7均可,USB接口;尺寸:360x400x180mm重量:15kg 电力要求:110/230VAC薄膜溶解测量仪应用:聚合物薄膜光致抗蚀剂薄膜测量化学和生物薄膜测量,传感测量光电子薄膜结构测量 在线测量光学镀膜测量能够以实时或离线的方式测量,反射率数据都能够存储下来以便后续处理使用。
  • National 样品存储螺口瓶盖和隔垫
    产品特点:样品存储螺口样品瓶,瓶盖和隔垫*容量范围 2-40mL*高品质 33 膨胀硼硅酸盐透明(1 型 A 类)或 51A 棕色(1 型 B 类)玻璃*不会向溶液中释放离子*保证样品存储期间维持 pH 值不变*PTFE-内衬实心顶存储盖*PTFE 薄膜/PE泡沫内里,可耐受多种化学试剂*不能经受高温高压灭菌订货信息:National 样品存储螺口瓶盖和隔垫描述 瓶盖 颜色盖材质隔垫 肖氏 硬度厚度 (mm)部件号每包 数量8-425 螺口盖 白色聚氨酯PTFE/PE 泡沫内衬751.3B7815-810013-425 螺口盖 白色聚氨酯PTFE/PE 泡沫内衬751.3B7815-1310015-425 螺口盖 白色聚丙烯PTFE/PE 泡沫内衬751.3B7815-1510018-400 螺口盖 白色聚丙烯PTFE/PE 泡沫内衬751.3B7815-1810020-400 螺口盖 白色聚丙烯PTFE/PE 泡沫内衬751.3B7815-2010024-400 螺口盖 白色聚丙烯PTFE/PE 泡沫内衬751.3B7815-241008-425 螺口盖用隔垫 ––0.005" 白色 PTFE/0.09" 透明硅胶501.5B7995-810013-425 螺口盖用隔垫––0.005" 白色 PTFE/0.09" 透明硅胶501.5B7995-1310015-425 螺口盖用隔垫––0.01" 白色 PTFE/0.09" 透明硅胶502.6B7995-1510018-400 螺口盖用隔垫––0.01" 白色 PTFE/0.09" 透明硅胶502.6B7995-1810020-400 螺口盖用隔垫––0.01" 白色 PTFE/0.09" 透明硅胶502.6B7995-2010024-400 螺口盖用隔垫––0.01" 白色 PTFE/0.09" 透明硅胶502.6B7995-2410024-400 螺口盖用隔垫––0.013" 白色 PTFE/0.120" 透明硅胶503.3B7995-26100顶部开口 8-425 螺口盖黑色聚丙烯– ––B7807-8100顶部开口 13-425 螺口盖黑色聚丙烯– ––B7807-13100顶部开口 15-425 螺口盖黑色聚丙烯– ––B7807-15100顶部开口 18-400 螺口盖黑色聚丙烯– ––B7807-18100顶部开口 20-400 螺口盖黑色聚丙烯– ––B7807-20100顶部开口 24-400 螺口盖白色聚丙烯– ––B7807-24100
  • 迷你薄膜制样套装
    迷你薄膜制样套装一款5分钟就能实现红外透射分析专用的聚合物薄膜制样机特点:液压机与加热压盘以及温控器一体化的设计体积小巧,方便存储,携带薄膜重现性好,使用快捷无需化学品,成本低,6种不同的垫圈这种设计允许加热板先进行预加热,温度升高至样品所需的熔点,并保持这个温度。样品在被引入到预加热板之前,薄膜制样机就可以独立的为几克的样品准备好相应的载荷和合适的定型圈。当薄膜制样机达到预设温度并稳定后,通常使用0.5T负载转动丝杆来热压薄膜。一旦从热压机上移走,低温块体薄膜制备制样机可以在冷却板上快速冷却到室温,压制成型的薄膜可以移除。薄膜样品可被镶嵌在一个3×2英寸的自粘帖卡片(Specacard)上以用于红外透射光谱分析使用。与传统方法相比,这个过程可缩短薄膜制备的周期,实际上,制作一个薄膜样品的周期可小于5分钟。如何制备薄膜样品放置好隔热板,选择好定型圈和较小的铝膜,放到下方组件上。1)将样品放到铝膜的中央位置,然后在上面覆盖上较大的铝膜和上方组件2)将准备好的以上组件整体放置到预加热板平面间,再施加1T位的载荷。3)一旦样品完成压缩从压片机取出,分开组件,小心的将铝膜从样品上剥离。4)制成的薄膜放入Specacard,然后一同放置到光谱仪器中进行分析。技术参数:快速,可重复的制备薄膜样品样品熔点范围从室温到260℃标准薄膜厚度15,25,50, 100,250和500μm直径15mm压力范围0-2吨制样包包括液压机和集成的加热板周期5分钟加热压盘直径25mm加热压盘最大功率:35W温度控制器:双数字显示,精度1℃加热压盘可调距离0-20mm独立冷却盘重量5.7kg订购信息迷你薄膜制样套装GS03970迷你薄膜制样套装备件及耗材GS03971迷你薄膜制样组件(包括压板组件,隔热板, 下压板组件,定型圈组件)GS03972定型圈(15, 25, 50, 100, 250和500μmGS03973铝膜(200对)GS03974迷你薄膜制样机冷却板GS03975迷你薄膜制样机压板(包括上压板,隔热板,下压板)GS03800 Specacards (100包)直径10mm的圆形通光孔GS15628不锈钢镊子

离子存储薄膜相关的仪器

  • 等离子薄膜溅射仪 400-860-5168转2205
    产品名称:等离子薄膜溅射仪 GSL-1100X-SPC-12产品简介:GSL-1100X-SPC-12型等离子薄膜溅射仪是为扫描电镜和电子探针等进行试样制备的设备,可进行真空蒸碳、真空镀膜和离子溅射,它也可以在高纯氩气的保护之下进行多种离子处理。用本设备处理的试样既可用于样品的外貌观察又可以进行成分分析,尤其是成分的定量分析更为适宜。本仪器装有分子泵,分子泵系统特别适用于对真空要求高、真空环境好的用户选用。 我公司供应的产品符合国家有关环保法律法规的规定(含采购商ISO14000环境体系要求),不会造成环境污染; 该产品符合采购商OHSMS18000职业安全健康管理体系标准的要求,不会对接触产品的人员健康造成损害!主要特点:抽速快,操作简便,真空度高,安全可靠技术参数:●试样处理室 (1)钟罩:内径250mm× 高度340mm (2)玻璃处理室: 玻璃罩 A:内径88mm× 高度140mm 玻璃罩 B:内径88mm× 高度57mm (3)试样台:直径40mm(最大) (4)试样旋转:电动 (5)挡板:电动 (6)蒸发加热器:可同时安装两个加热器 ●真空系统 (1)抽气系统:由分子泵、机械泵组成的高真空机组 (2)真空检测:热偶计、冷规 (3)常用真空度:1.3× 10-2 ~6× 10-3Pa (4)操作:手动 ●处理电源 (1)高压电源:DC3千伏10mA连续可变,用表指示。 (2)低压电源:AC10V100A连续可变,电流用表指示。 (3)电源要求:AC220V 50HZ 10A ●气体要求 氩气纯度99.9%(对样品有特殊要求时可使用) ●冷却要求 本系统采用F100/110F―普通轴承风冷涡轮分子泵,其冷却方式为风扇强制风冷和通水冷却两种,当工作环境低于32℃时,可采用风冷冷却,当工作环境温度高于32℃时,则必须采用水冷。重量:约150公斤 体积:L800mm× W560mm× H1340mm可选配件:氧化铝坩埚,石英坩埚,真空泵等具体信息请点击查看:
    留言咨询
  • 【ITO薄膜测厚仪 电池薄膜厚度测定仪 接触式薄膜厚度测试仪】ITO薄膜是一种n型半导体材料,具有高的导电率、高的可见光透过率、高的机械硬度和良好的化学稳定性。它是液晶显示器(LCD)、等离子显示器(PDP)、电致发光显示器(EL/OLED)、触摸屏(TouchPanel)、太阳能电池以及其他电子仪表的透明电极最常用的薄膜材料。ITO薄膜是一种很薄的金属薄膜,在透明导电薄膜方面得到普遍的应用,具有广阔的前景。但薄膜的厚度是否均匀直接关系到企业的生产成本控制,所以对ITO薄膜厚度的高精度测量,是企业必须重视的检测项目之一。Labthink兰光研发生产的CHY-C2A测厚仪,采用机械接触式测量方式,严格符合标准要求,有效保证了测试的规范性和准确性。专业适用于量程范围内的塑料薄膜、薄片、隔膜、纸张、箔片、硅片等各种材料的厚度精确测量。设备分辨率高达0.1微米,配置的自动进样系统,使用户可自行设置进样步距、测量点数和进样速度,大大提高了薄膜厚度测试效率。 ITO薄膜测厚仪技术特征:负荷量程:0~2 mm(常规)     0~6 mm;12 mm (可选)分辨率:0.1 μm测量速度:10 次/min (可调)测量压力:17.5±1 KPa(薄膜);50±1 KPa(纸张)接触面积:50 mm2(薄膜);200 mm2(纸张)     注:薄膜、纸张任选一种;非标可定制电源:220VAC 50Hz / 120VAC 60Hz外形尺寸:461mm(L)×334mm(W)×357mm(H)净重:32kg 以上【ITO薄膜测厚仪 电池薄膜厚度测定仪 接触式薄膜厚度测试仪】信息由济南兰光机电技术有限公司发布,如欲了解更详细信息,欢迎致电0531-85068566垂询!
    留言咨询
  • 产品简介:GSL-1100X-SPC-12等离子薄膜溅射仪专门为在基底上镀金属膜(如金、铂、铟、银等)而设计,最大放置样品尺寸直径为40mm,膜厚可达300?,特别适用于为SEM样品镀金而作为导电极。 GSL-1100X-SPC-12等离子薄膜溅射仪操作视频 产品型号 GSL-1100X-SPC-12等离子薄膜溅射仪安装条件本设备要求在海拔1000m以下,温度25℃±15℃,湿度55%Rh±10%Rh下使用。1、水:不需要2、电:AC220V 50Hz,必须有良好接地3、气:设备腔室内需充注氩气(纯度99.99%以上)清洗,需自备氩气气瓶4、工作台:尺寸600mm×600mm×700mm,承重50kg以上5、通风装置:需要主要特点 1、可以调节电流大小,可设置溅射时间。 2、已经过CE认证。技术参数 1、输入电源:208V-240V 50Hz/60Hz 2、样品台:?60mm,高度可调节 3、石英腔体:?100mm×130mm 4、进气口:内部装有阀门,可以向腔体内通入各种气体 5、靶材:纯度为4N的金靶,?57mm×0.12mm 产品规格 尺寸:480mm×320mm×150mm;重量:20kg可选配件 1、Au(?57mm×0.12mm,4N) 2、Pt(?57mm×0.12mm,4N) 3、Ag(?57mm×0.5mm,4N)
    留言咨询

离子存储薄膜相关的试剂

离子存储薄膜相关的方案

  • 天津兰力科:V2O5离子存储薄膜的制备及其Ni掺杂改性研究
    离子存储层(对电极层)是全固态电致变色器件的关键膜层,其作用是存储和提供电致变色所需的离子,维持电荷平衡,因此要求它具有较大的离子存储能力,较好的离子存储稳定性及循环寿命,并且同电致变色材料同步致色时光学性能变化较小,其性能的好坏直接影响到整个器件的循环耐用性和光学对比度。在以a-WO3薄膜为电致变色层的灵巧窗中,弱阴极致色的V2O5薄膜是最具有实用价值的候选锂离子存储材料之一,它具有半导体特性和层状结构,有利于离子传输,在聚合物电解质中化学性能稳定,具有较大的电荷储存密度,光学性质不明显依赖于注入的离子和电子浓度。但是目前要使其真正进入实际应用还需进一步提高薄膜的离子存储能力,优化制备工艺参数和对薄膜进行合理掺杂是两种有效提高薄膜性能的方法。实验采用射频磁控反应溅射技术在ITO玻璃基片上沉积固态V2O5和V2O5:Ni薄膜,文中介绍了薄膜的离子存储及溅射掺杂机理,并通过X射线衍射、X射线光电子能谱、紫外-可见光分度计和标准三电极法分别研究薄膜的结构、组成、光学及电化学性能,主要讨论氧分量、溅射功率、溅射温度等工艺参数以及Ni掺杂参数对薄膜的结构和性能的影响。研究表明:室温下用射频磁控反应溅射技术制备的V2O5和V2O5:Ni薄膜为非晶态,少量Ni掺杂不会改变薄膜的非晶态结构,在Li离子注入/退出过程中表现出良好的离子存储特性;较低的氧分量和溅射温度有助于提高薄膜的半导体特性及离子存储特性,在一定范围内提高溅射功率,可有效提高薄膜的离子存储能力及伏安循环特性;而V2O5薄膜掺杂Ni之后,非晶态的趋势稍强于纯V2O5薄膜,结构的微弱变化导致了V2O5:Ni薄膜具有更好的离子存储特性;掺杂工艺对薄膜的电化学性能影响较为复杂,主要与相对掺杂量和掺杂方式有关,当相对掺杂量处于有效掺杂范围和最佳值附近时,掺杂越均匀,薄膜的综合性能越好,同时掺杂次数也存在一个最佳值。
  • 微-纳米薄膜材料的热导率测量-薄膜热导率测试系统(TCT)-上海昊扩华东大区总代理
    本仪器采用 3ω测试方法, 利用微/纳米薄膜材料导热引起加热器电信号的变化来检测其热导率。主要应用范围为微/纳米薄膜材料的热导率测量,可广泛应用于辅助各种功能薄膜材料的研究与开发,其涵盖范围包括高等院校及科研院所、集成电路散热材料、航空航天材料、热电材料与器件、信息存储与光电器件。
  • 天津兰力科:ZRNx快离子导体薄膜的制备及其Cr掺杂性能的研究
    全固态电致变色器件的实用化研究一直是该领域的研究热点。电致变色器件全固态化的关键是采用合适的快离子导体(有时亦称固体电解质)作为器件的离子传导层。目前,用于电致变色器件的快离子导体仍以固态聚合物电解质为主,然而,聚合物电解质存在易老化、机械强度差、工业化生产难度较大等缺点。无机快离子导体是最有希望用于全固态电致变色器件的离子导体材料。本实验室前期研究结果表明,在合适的工艺参数下制备的 ZrNx薄膜具有高的透过率、良好的热稳定性、耐磨性和化学稳定性,适合于作为电致变色器件的离子导体层。 到目前为止,制备离子导体薄膜最常用的方法有溶胶-凝胶法、真空蒸发法、化学气相沉积法和溅射沉积法等,其中磁控溅射以沉积速率高、基片温升低、膜层均匀性及附着力好、工艺参数易控制等优点而日益成为制备离子导体薄膜的理想工艺方法。 因此本文以纯锆靶及纯铬靶为靶材,采用反应磁控溅射工艺在 WO3/ITO/Glass基片上沉积 ZrNx薄膜和 ZrNx:Cr 薄膜,通过紫外-可见分光光度计、循环伏安法、交流阻抗法、X 射线衍射仪、热场发射扫描电镜以及扫描隧道显微镜等测试分析方法,研究了制备工艺参数以及 Cr 掺杂对 ZrNx薄膜离子导电性能和结构的影响 。研究结果表明:采用射频反应磁控溅射工艺制备的 ZrNx薄膜和 ZrNx:Cr 薄膜均为非晶态结构,溅射功率和氮气分量等工艺参数对薄膜的离子导电性能有较大影响,选择合适的氮分量和溅射功率有助于提高 ZrNx薄膜的离子导电性能,在本实验的条件下,原位沉积 ZrNx薄膜的可见光透过率大于 75%,ZrNx/WO3/ITO/Glass器件的光学调节范围最大可达 57%以上,在离子传导过程中表现出良好的离子导电性能。 掺杂后的 ZrNx:Cr 薄膜,晶态趋势大于未掺杂的 ZrNx薄膜,结构的变化导致ZrNx:Cr 薄 膜 的 离 子 传 导 性 能 有 所 下 降 , 电 化 学 窗 口 变 小 , 从 而 使ZrNx/WO3/ITO/Glass 器件的光学调节范围缩小。

离子存储薄膜相关的论坛

离子存储薄膜相关的资料

离子存储薄膜相关的资讯

  • 磁性随机存储器(MRAM)和斯格明子研究的最新利器!可精确调控磁性薄膜或晶圆磁性的离子辐照磁性精细调控系统Helium-S®
    今年1月,三星电子在学术期刊 Nature 上发表了全球基于 MRAM(磁性随机存储器)的存内计算研究。存内计算由于毋需数据在存储器和处理器间移动,大大降低了 AI 计算的功耗,被视作边缘 AI 计算的一项前沿研究。三星电子的研究团队通过构建新的 MRAM 阵列结构,用基于 28 nm CMOS 工艺的 MRAM 阵列芯片运行了手写数字识别和人脸检测等 AI 算法,准确率分别为 98% 和 93%。研究人员表示,MRAM 芯片应用于 in-memory computing(内存内计算)电脑,十分适合进行神经网络运算等,因为这种计算架构与大脑神经元网络较为相似。 MRAM 器件在操作速度、耐用性和量产等方面具有优势,但其较低的电阻使 MRAM 存储器在传统的存内计算架构中无法达到低功耗要求。在本篇论文中,三星电子的研究人员构建了一种基于 MRAM 的新存内计算架构,了这一空白,这是MRAM研究的又一新突破。 近期,国内的众多课题组也在MRAM研究上取得了许多重量的工作。例如北航的赵巍胜课题组在2020年发表在APL上的——具有垂直各向异性的氦离子辐照W-CoFeB-MgO Hall bars中的自旋轨道矩(SOT)驱动的多层转换一文中,运用了特的氦离子辐照技术对W(4 nm)/CoFeB (0.6 nm)/MgO (2 nm)/Ta (3 nm)多层膜进行了结构的调控,通过对调控前后以及过程中磁学和电学性质变化的研究,表明这种使用离子辐照调控多层电阻的方法在实现神经形态和记忆电阻器件领域显示出巨大的潜力。图中Kerr 图像显示了 SOT 诱导的磁化转换过程中Hall bars电流的增加,白色虚线表示纵向电流线和横向电压线。红色方框对应于氦离子辐照区域。(ii) 和 (iv) 中的黄色箭头代表畴壁运动的方向。 离子辐照除了在MRAM研究领域小试牛刀外,在斯格明子的研究中也令人眼前一亮。 法国自旋电子中心(SPINTEC) 和法国Spin-Ion公司合作发表在NanoLetters上的一篇文章,题目为:氦离子辐照让磁性斯格明子“走上正轨”。文中指出,氦离子辐照可被用于在“赛道上”“创造”和“引导”斯格明子,文章证明了氦离子辐照带来的垂直磁各向异性和DMI的变小,可导致稳定的孤立斯格明子的形成。图中红色轨道尺寸为6000×150 nm2,间距为300 nm,用氦离子辐照的区域。图中显示了氦离子辐照的红色轨道区域不同磁场下的MFM图像。 以上两篇文章采用的离子辐照设备来自法国Spin-Ion公司。法国Spin-Ion公司于2017年成立,源自法国研究中心/巴黎-萨克雷大学的知名课题组。Spin-Ion公司采用Ravelosona博士的创新技术,在磁性材料的离子束工艺方面有20年的经验,拥有4项和40多篇发表文章。Spin-Ion公司推出的产品——可用于多种磁性研究的离子辐照磁性精细调控系统Helium-S,可通过紧凑和快速的氦离子束设备控制原子间的位移。该设备使用特有的离子束技术在原子尺度上加工材料,可通过离子束工艺来调控薄膜和异质结构。目前全球已有20多家科研和工业的用户以及合作伙伴使用该技术。2020年Spin-Ion公司在中国也已安装了套系统,Helium-S有的技术能力正吸引来自相关科研圈和工业领域越来越多的关注。 产品主要应用领域:磁性随机存储器(MRAM):自旋转移矩磁性随机存储(STT-MRAM), 自旋轨道矩磁性随机存储(SOT-MRAM), 磁畴壁磁性随机存储(DW-MRAM)等自旋电子学:斯格明子,磁性隧道结,磁传感器等磁学相关:磁性氧化物,多铁性材料等其他:薄膜改性,芯片加工,仿神经器件,逻辑器件等 产品特点:● 可通过紧凑和快速的氦离子束设备控制原子间的位移,通过氦离子辐照可调控磁性薄膜或晶圆的磁学性质。● 可提供能量范围为1-30 keV的He+离子束● 采用创新的电子回旋共振(ECR)离子源● 可对25毫米的试样进行快速的均匀辐照(如几分钟)● 超紧凑的设计,节省实验空间● 也与现有的超高真空设备互联 测试数据:调控界面各向异性性质和DMI 低电流诱发的SOT转换获取 控制斯格明子和磁畴壁的动态变化 用户单位 已经购买该设备的国内外用户单位:University of California San Diego (USA)University of California Davis (USA)New York University (USA)Georgetown University (USA)Northwestern University (USA)University of Lorraine (France)SPINTEC Grenoble (France)University of Cambridge (UK)University of Manchester (UK)Beihang University (China)Nanyang Technological University and A*STAR (Singapore)University of Gothenburg (Sweden)Western Digital (USA)IBM (USA)Singulus Technologies (Germany) 文章列表:[1]. Tailoring magnetism by light-ion irradiation, J Fassbender, D Ravelosona, Y Samson, Journal of Physics D: Applied Physics 37 (2004)[2]. Ordering intermetallic alloys by ion irradiation: A way to tailor magnetic media, H Bernas & D Ravelosona, Physical review letters 91, 077203 (2003)[3]. Influence of ion irradiation on switching field and switching field distribution in arrays of Co/Pd-based bit pattern media, T Hauet & D Ravelosona, Applied Physics Letters 98, 172506 (2011)[4]. Ferromagnetic resonance study of Co/Pd/Co/Ni multilayers with perpendicular anisotropy irradiated with helium ions, J-M.Beaujour & A.D. Kent & D.Ravelosona &E.Fullerton, Journal of Applied Physics 109, 033917 (2011)[5]. Irradiation-induced tailoring of the magnetism of CoFeB/MgO ultrathin films, T Devolder & D Ravelosona, Journal of Applied Physics 113, 203912 (2013)[6]. Controlling magnetic domain wall motion in the creep regime in He-irradiated CoFeB/MgO films with perpendicular anisotropy, L.Herrera Diez & D.Ravelosona, Applied Physics Letter 107, 032401 (2015)[7]. Measuring the Magnetic Moment Density in Patterned Ultrathin Ferromagnets with Submicrometer Resolution, T.Hingant & D.Ravelosona & V.Jacques, Physical Review Applied 4, 014003 (2015)[8]. Suppression of all-optical switching in He+ irradiated Co/Pt multilayers: influence of the domain-wall energy, M El Hadri & S Mangin & D Ravelosona, J. Phys. D: Appl. Phys. 51, 215004 (2018)[9]. Tuning the magnetodynamic properties of all-perpendicular spin valves using He+ irradiation, Sheng Jiang & D.Ravelosona & J.Akerman, AIP Advances 8, 065309 (2018)[10]. Enhancement of the Dzyaloshinskii-Moriya Interaction and domain wall velocity through interface intermixing in Ta/CoFeB/MgO, L Herrera Diez & D Ravelosona, Physical Review B 99, 054431 (2019)[11]. Enhancing domain wall velocity through interface intermixing in W-CoFeB-MgO films with perpendicular anisotropy, X Zhao & W.Zhao & D Ravelosona, Applied Physics Letter 115, 122404 (2019)[12]. Controlling magnetism by interface engineering, L Herrera Diez & D Ravelosona, Book Magnetic Nano- and Microwires 2nd Edition, Elsevier (2020)[13]. Reduced spin torque nano-oscillator linewidth using He+ irradiation, S Jiang & D Ravelosona & J Akerman, Appl. Phys. Lett. 116, 072403 (2020)[14]. Spin–orbit torque driven multi-level switching in He+ irradiated W–CoFeB–MgO Hall bars with perpendicular anisotropy, X.Zhao & M.Klaui & W.Zhao & D.Ravelosona, Appl. Phys. Lett 116, 242401 (2020)[15]. Magnetic field frustration of the metal-insulator transition in V2O3, J.Trastoy & D.Ravelosona & Y.Schuller, Physical Review B 101, 245109 (2020)[16]. Tailoring interfacial effect in multilayers with Dzyaloshinskii–Moriya interaction by helium ion irradiation, A.Sud & D.Ravelosona &M.Cubukcu, Scientific report 11, 23626 (2021)[17]. Ion irradiation and implantation modifications of magneto-ionically induced exchange bias in Gd/NiCoO, Christopher J. Jensen & Dafiné Ravelosona, Kai Liu, Journal of Magnetism and Magnetic Materials 540, 168479 (2021)[18]. Helium Ions Put Magnetic Skyrmions on the Track, R.Juge & D.Ravelosona & O.Boulle, Nano Lett. 2021 Apr 14 21(7):2989-2996 参考文献:[1]. Nature 601, 211-216(2022)[2]. Appl. Phys. Lett 116, 242401 (2020)[3]. Nano Lett. 2021 Apr 14 21(7):2989-2996
  • 中微公司薄膜设备新品层出!
    近日,中微半导体设备(上海)股份有限公司(以下简称“中微公司”,股票代码:688012)推出自主研发的12英寸高深宽比金属钨沉积设备Preforma Uniflex HW以及12英寸原子层金属钨沉积设备Preforma Uniflex AW。这是继Preforma Uniflex CW之后,中微公司为各类器件芯片中超高深宽比及复杂结构金属钨填充提供的高性价比、高性能的解决方案。中微公司深耕高端微观加工设备领域多年,持续加码创新研发,此次多款新产品的推出是公司在半导体薄膜沉积设备领域的新突破,也为公司业务多元化发展提供了强劲的增长动能。 中微公司自主研发的具备超高深宽比填充能力的12英寸Preforma Uniflex HW设备,继承了前代Preforma Uniflex CW设备的优点,可灵活配置多达五个双反应台的反应腔,每个反应腔皆能同时加工两片晶圆,在保证较低生产成本的同时,实现较高的生产效率。Preforma Uniflex HW采用拥有完全自主知识产权的生长梯度抑制工艺, 可实现表面从钝化主导到刻蚀主导的精准工艺调控。硬件上,中微公司开发的可实现钝化时间从毫秒级到千秒级的控制系统,可满足多种复杂结构的填充。此外,搭配经过优化设计的流场热场系统,使该设备具备优异的薄膜均一性和工艺调节灵活性。中微公司12英寸高深宽比金属钨设备Preforma Uniflex HW 此次中微公司还推出了自主研发的具备三维填充能力的12英寸原子层金属钨沉积设备——Preforma Uniflex AW。该设备继承了钨系列产品的特点,可配置五个双反应台反应腔,有效提高设备生产效率。此外,系统中每个反应腔均可用于形核和主体膜层生长,可根据客户实际工艺需求优化配置,进一步提高生产中的设备利用率。Preforma Uniflex AW采用拥有完全自主知识产权的高速气体切换控制系统, 可精准控制工艺过程,实现精准的原子级别生长,因此,所生长的膜层具备优异的台阶覆盖率和低杂质浓度的优点。Preforma Uniflex AW 还引入独特的气体输送系统,进一步提升性能,使该设备具备更先进技术节点的延展能力。该设备也继承了中微公司自主开发的流场热场优化设计,从而提升薄膜均一性和工艺调节灵活性。 中微公司12英寸原子层金属钨沉积设备Preforma Uniflex AW中微公司董事、集团副总裁、CVD产品部及公共工程部总经理陶珩表示:“我们很高兴可以为全球领先的逻辑和存储芯片制造商提供行业领先的薄膜设备,这两款设备优异的台阶覆盖率和低电阻特性,使其可以满足多种复杂和三维结构的金属钨填充需求。随着半导体技术的不断进步,原子层沉积技术因其卓越的三维覆盖能力和精确的薄膜厚度控制而日益受到重视,预计未来将会有更广泛的应用需求。中微公司推出的这两款新设备,进一步扩充了中微公司薄膜设备产品线,不仅展示了我们在原子层沉积领域的先进技术水平,也证明了我们拥有强大的产品开发和应用开发能力,标志着我们在半导体领域中扩展了全新的工艺应用,这将为我们公司的持续增长和长期发展提供广阔的空间。”
  • 宁波材料所氧化物薄膜晶体管人工光电突触研究取得进展
    人工视觉智能技术在安全、医疗和服务等领域颇有应用潜力。然而,随着网络化和信息化的发展,基于冯诺依曼构架的现有视觉系统因功耗问题难以实时处理海量激增的视觉数据。仿生人类视觉的光电突触器件可集图像信息采集、存储和处理于一体,有效解决现有视觉系统存在的时效性、功耗等问题。非晶氧化物半导体薄膜晶体管(TFT)作为传统电子器件在显示、电子电路等领域已实现产业化应用。因此,基于氧化物TFT的创新器件在产业工艺兼容性、与后端电路的在板集成等方面优势明显,在仿生人类视觉神经突触器件的研发方面,亟待解决如可见光响应弱、频率高效选择性、不同波段信号串扰等一些关键科学和技术问题。   中国科学院宁波材料技术与工程研究所功能薄膜与智构器件团队阐明了非晶氧化物半导体器件中与氧空位息息相关的突触权重调控的微观机理,为提高可见光响应奠定了理论基础,设计了背沟道修饰pn异质结的光电突触TFT,有效耦合了三端器件的栅压调控和两端器件的内建电场调控功能,兼具高光电响应、易集成、低功耗等优势。   近期,该团队携手福州大学教授张海忠团队,设计了基于InP量子点/InSnZnO的光电TFT的仿生视觉传感器,将氧化物半导体优异的电传输特性和InP量子点良好的宽光谱响应特性有机结合,使器件具有优异的栅极可控性和可见光响应特性,通过简单控制栅极偏置实现初始状态的调控,仿生模拟了人眼暗视和明视环境下适应功能的切换。该工作构建的TFT阵列在感知红绿蓝三原色字母时均表现出逼真的环境自适应特征。此外,基于该光电传感阵列的三层衍射神经网络用于手写数字识别模拟,准确率可达93%。该研究为开发环境适应性人工视觉系统开辟了新途径,并对神经形态光电子器件的研发具有启发性意义。   相关研究成果发表在《先进功能材料》(Advanced Functional Materials,DOI: 10.1002/adfm.202305959)上。研究工作得到国家自然科学基金和宁波市重大科技攻关项目等的支持。人眼明暗适应过程与氧化物光电薄膜晶体管光电流变化过程的类比演
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制