微观形貌

仪器信息网微观形貌专题为您整合微观形貌相关的最新文章,在微观形貌专题,您不仅可以免费浏览微观形貌的资讯, 同时您还可以浏览微观形貌的相关资料、解决方案,参与社区微观形貌话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

微观形貌相关的耗材

  • 三维表面形貌仪配件
    三维表面形貌仪配件是德国进口的高精度多功能表面轮廓测量仪器,也是一款光学表面形貌仪,非常适合对表面几何形状和表面纹理分析。三维表面形貌仪配件根据国际标准计算2D和3D参数,使用最新的ISO 25178 标准表面纹理分析,依靠最新的 ISO 16610 滤除技术进行计算,从而保证了国际公信力,以标准方案或定制性方案对二维形貌或三维形貌表面形貌和表面纹理,微米和纳米形状,圆盘,圆度,球度,台阶高度,距离,面积,角度和体积进行多范围测量,创造性地采用接触式和非接触式测量合并技术,一套表面形貌仪可同时具有接触式和非接触式测量的选择。三维形貌仪配件参数:定位台行程范围:X: 200 mm Y: 200 mm Z: 200 mm (电动)接触式测量范围: 范围0.1mm, 分辨率2nm, 速度 3mm/s 范围2.5mm 分辨率40nm, 速度3mm/s非接触式测量范围: 范围:300um, 分辨率2nm, 速度30mm/s 范围:480um, 分辨率2nm, 速度30mm/s 范围:1mm, 分辨率5nm, 速度30mm/s 范围:3.9mm , 分辨率15nm, 速度30mm/s表面形貌仪配件应用:测量轮廓,台阶高度,表面形貌,距离,面积,体积分析形态,粗糙度,波纹度,平整度,颗粒度摩擦学研究,光谱分析磨料磨具,航天,汽车,化妆品,能源,医疗,微机电系统,冶金,造纸和塑料等领域。
  • 表面形貌仪配件
    表面形貌仪配件又称为光学形貌仪或三维形貌仪,它除了用于测量物件的表面形貌或表面轮廓外,具有测量晶圆翘曲度的功能,非常适合晶圆,太阳能电池和玻璃面板的翘曲度测量,应变测量以及表面形貌测量。三维形貌仪主要配件应用用于太阳能电池测量用于半导体晶圆测量用于镀膜玻璃的平整度(Flatness)测量用于机械部件的计量用于塑料,金属和其他复合型材料工件的测量表面形貌仪配件特色*除了表面形貌的测量,还可以测量张量和应力(简单);*可测量晶圆的尺寸为0.5' ' 到12' ' , 最高可达45x45cm的尺寸,对于小于0.5' ' 的晶圆或样品,可配备微距镜头。*测量晶圆或其他样品的表面形貌,粗糙度和翘曲度;*克服常见干涉仪在粗糙表面(油漆)表现不足的问题;*非接触式测量
  • 转动管架 – 微管用
    转动管架 &ndash 微管用【转动管架产品规格】&bull 高密度PP胶(聚丙烯) 制造,完全可压热。&bull 转动架包括两个分开的组件,安全地互相连接,但可以靠中轴转动。&bull 组件备有以下两个组合: ► 一部份有48个可存放1.5 ml微管的孔,另一部份有48个可存放0.5 ml微管的孔。 ► 一部份有48个可存放1.5 ml微管的孔,另一部份有96个可存放0.2 ml微管的孔。&bull 微管可有以下存放组合: ► 96支1.5 ml微管 ► 48支1.5 ml微管及48支0.5 ml微管 ► 48支1.5 ml微管及96支0.2 ml微管 ► 48支0.5 ml微管及96支0.2 ml微管&bull 每行都有字母数字的坐标参考,可快速识别微管。&bull 0.2 ml微管孔是根据标准96孔形式,此形式亦用于PCR移送盘。&bull 每个转动架都备有透明PP材质盖,防范尘埃及其他负面的环境影响。&bull 独立包装。转动管架目录号码:080.06.001转动管架存放组合:96支1.5 ml微管转动管架存放组合:48支1.5 ml微管及48支0.5 ml微管转动管架存放组合:48支1.5 ml微管及96支0.2 ml微管转动管架存放组合:48支0.5 ml微管及96支0.2 ml微管如需订购以上型号的转动管架,请致电莱华尔科技(深圳)有限公司!更多进口耗材配件,请参考进口容量瓶http://www.instrument.com.cn/netshow/SH102618/Q1862772.htm镍释放测试仪http://product.ch.gongchang.com/d36631681.html

微观形貌相关的仪器

  • 中图仪器VT6000共聚焦工件表面微观形貌检测显微镜一般用于略粗糙度的工件表面的微观形貌检测,可分析粗糙度、凹坑瑕疵、沟槽等参数。它在材料生产检测领域中,测各类包括从光滑到粗糙、低反射率到高反射率的物体表面,从纳米到微米级别工件的粗糙度、平整度、微观几何轮廓、曲率等参数。产品功能1)3D测量功能:设备具备表征微观3D形貌的轮廓尺寸及粗糙度测量功能;2)影像测量功能:设备具备二维平面轮廓尺寸的影像测量功能,可进行长度、角度、半径等尺寸测量;3)自动拼接功能:设备具备自动拼接功能,能够实现大区域的拼接缝合测量;4)数据处理功能:设备具备调整位置、纠正、滤波、提取四大模块的数据处理功能;5)分析工具功能:设备具备粗糙度分析、几何轮廓分析、结构分析、频率分析、功能分析等五大分析功能;6)批量分析功能:设备具备一键分析和多文件分析等辅助分析功能,可实现批量数据文件的快速分析功能;7)便捷操作功能:设备配备操纵杆,支持操纵杆进行所有位置轴的操作及速度调节、光源亮度调节、急停等;8)光源安全功能:光源设置无人值守下的自动熄灯功能,当检测到鼠标轨迹长时间未变动后会自主降低熄灭光源,防止光源高亮过热损坏,并有效延长光源使用寿命;9)镜头安全功能:设备配备压力传感器,并在镜头处进行了弹簧结构设计,确保当镜头碰撞后弹性回缩,进入急停状态,大幅减小碰撞冲击力,有效保护镜头和扫描轴,消除人为操作的安全风险。VT6000共聚焦工件表面微观形貌检测显微镜具有很强的纵向深度的分辨能力。在相同物镜放大的条件下,共焦显微镜所展示的图像形态细节更清晰更微细,横向分辨率更高,能够提供色彩斑斓的真彩图像便于观察。广泛应用于半导体制造及封装工艺检测、3C电子玻璃屏及其精密配件、光学加工、微纳材料制造、汽车零部件、MEMS器件等超精密加工行业及航空航天、科研院所等领域中。应用场景1、镭射槽测量晶圆上激光镭射槽的深度:半导体后道制造中,在将晶圆分割成一片片的小芯片前,需要对晶圆进行横纵方向的切割,为确保减少切割引发的崩边损失,会先采用激光切割机在晶圆表面烧蚀出U型或W型的引导槽,在工艺上需要对引导槽的槽型深宽尺寸进行检测。2、光伏在太阳能电池制作工程中,栅线的高宽比决定了电池板的遮光损耗及导电能力,直接影响着太阳能电池的性能。共聚焦显微镜可以对栅线进行快速检测。此外,太阳能电池制作过程中,制绒作为关键核心工艺,金字塔结构的质量影像减反射焰光效果,是光电转换效率的重要决定因素。共聚焦显微镜具有纳米级别的纵向分辨能力,能够对电池板绒面这种表面反射率低且形貌复杂的样品进行三维形貌重建。3、其他自设计之初,VT6000共聚焦工件表面微观形貌检测显微镜便定下了“简单好用"四字方针的目标。1)结构简单:仪器整体由一台轻量化的设备主机和电脑构成,控制单元集成在设备主机之内,亦可采用笔记本电脑驱动,实现了“拎着走"的便携式设计;2)真彩图像:配备了真彩相机并提供还原的3D真彩图像,对细节的展现纤毫毕现;3)操作便捷:采用全电动化设计,并可无缝衔接位移轴与扫描轴的切换,图像视窗和分析视窗同界面的设计风格,实现了所见即所得的快速检测效果;4)采用自研的电动鼻轮塔台,并对软件防撞设置与硬件传感器防撞设置功能进行了优化,确保共聚焦显微镜在使用高倍物镜仅不到1mm的工作距离时也能应对。部分技术指标型号VT6100行程范围X100mmY100mmZ100mm外形尺寸520*380*600mm仪器重量50kg测量原理共聚焦光学系统显微物镜10× 20× 50× 100×视场范围120×120 μm~1.2×1.2 mm高度测量重复性(1σ)12nm显示分辨率0.5nm宽度测量重复性(1σ)40nm显示分辨率1nmXY位移平台负载10kg控制方式电动Z0轴扫描范围10mm物镜塔台5孔电动光源白光LED恳请注意:因市场发展和产品开发的需要,本产品资料中有关内容可能会根据实际情况随时更新或修改,恕不另行通知,不便之处敬请谅解。
    留言咨询
  • 中图仪器VT6000系列3D微观形貌检测共聚焦显微镜基于光学共轭共焦原理,结合精密纵向扫描,3D 建模算法等,对各种精密器件及材料表面进行微纳米级测量。对大坡度的产品有更好的成像效果,在满足精度的情况下使用场景更具有兼容性。VT6000系列3D微观形貌检测共聚焦显微镜能够清晰地展示微小物体的图像形态细节,显示出精细的细节图像。它具有直观测量的特点,能够有效提高工作效率,更加快捷准确地完成日常任务。借助共聚焦显微镜,能有效提高工作效率,实现更准确的操作。产品功能(1)设备具备表征微观形貌的轮廓尺寸及粗糙度测量功能;(2)设备具备自动拼接功能,能够快速实现大区域的拼接缝合测量;(3)设备具备一体化操作的测量与分析软件,预先设置好配置参数再进行测量,软件自动统计测量数据并提供数据报表导出功能,即可快速实现批量测量功能;(4)设备具备调整位置、纠正、滤波、提取四大模块的数据处理功能;(5)设备具备粗糙度分析、几何轮廓分析、结构分析、频率分析、功能分析等五大分析功能;(6)设备具备一键分析和多文件分析等辅助分析功能,可实现批量数据文件的快速分析功能;VT6000系列3D微观形貌检测共聚焦显微镜自设计之初,便定下了“简单好用"四字方针的目标。1)结构简单:仪器整体由一台轻量化的设备主机和电脑构成,控制单元集成在设备主机之内,亦可采用笔记本电脑驱动,实现了“拎着走"的便携式设计;2)真彩图像:配备了真彩相机并提供还原的3D真彩图像,对细节的展现纤毫毕现;3)操作便捷:采用全电动化设计,并可无缝衔接位移轴与扫描轴的切换,图像视窗和分析视窗同界面的设计风格,实现了所见即所得的快速检测效果;4)采用自研的电动鼻轮塔台,并对软件防撞设置与硬件传感器防撞设置功能进行了优化,确保共聚焦显微镜在使用高倍物镜仅不到1mm的工作距离时也能应对。应用领域对各种产品、部件和材料表面的面形轮廓、表面缺陷、磨损情况、腐蚀情况、平面度、粗糙度、波纹度、孔隙间隙、台阶高度、弯曲变形情况、加工情况等表面形貌特征进行测量和分析。应用范例:应用场景1、镭射槽测量晶圆上激光镭射槽的深度:半导体后道制造中,在将晶圆分割成一片片的小芯片前,需要对晶圆进行横纵方向的切割,为确保减少切割引发的崩边损失,会先采用激光切割机在晶圆表面烧蚀出U型或W型的引导槽,在工艺上需要对引导槽的槽型深宽尺寸进行检测。2、光伏在太阳能电池制作工程中,栅线的高宽比决定了电池板的遮光损耗及导电能力,直接影响着太阳能电池的性能。共聚焦显微镜可以对栅线进行快速检测。此外,太阳能电池制作过程中,制绒作为关键核心工艺,金字塔结构的质量影像减反射焰光效果,是光电转换效率的重要决定因素。共聚焦显微镜具有纳米级别的纵向分辨能力,能够对电池板绒面这种表面反射率低且形貌复杂的样品进行三维形貌重建。3、其他部分技术指标型号VT6100行程范围X100mmY100mmZ100mm外形尺寸520*380*600mm仪器重量50kg测量原理共聚焦光学系统显微物镜10× 20× 50× 100×视场范围120×120 μm~1.2×1.2 mm高度测量重复性(1σ)12nm显示分辨率0.5nm宽度测量重复性(1σ)40nm显示分辨率1nmXY位移平台负载10kg控制方式电动Z0轴扫描范围10mm物镜塔台5孔电动光源白光LED恳请注意:因市场发展和产品开发的需要,本产品资料中有关内容可能会根据实际情况随时更新或修改,恕不另行通知,不便之处敬请谅解。
    留言咨询
  • 瑞士丹青TR-SCAN微观形貌光学粗糙度测量仪,广泛应用于高精密微观表面检查。与传统非接触测量技术相比,测量速度快,对振动不敏感,实现三维形貌纳米级测量。模块化的设计理念,可配置色谱共焦传感器,白光干涉传感器。传感器直接更换,方便快捷,满足不同的应用领域。即可用于计量单位和材料科学研发实验室,也广泛应用在工业制造领域:汽车、航天、航空、表面涂层、医疗产品、微型电机系统、半导体等行业。
    留言咨询

微观形貌相关的方案

微观形貌相关的论坛

  • 【原创大赛】OPTON的微观世界之 性能形貌学的实际应用

    [align=center]——锂离子电池负极材料的改性[b] [/b][/align][b]序 言[/b]通常商用的锂离子电池都选用碳来做负极材料。但是碳材料作为锂离子电池负极材料,脱锂嵌锂电位比较低,容易引起金属锂的析出,且碳材料热稳定性较差,很容易发生安全事故,大大降低了锂离子电池的安全性能。氧化钛由于其良好的循环稳定性及较安全的充放电电压(1.5V),丰富的储量以及无毒、对环境无污染等特性,是一种最有潜力替代碳材料的负极电池活性材料。[align=center] [/align][align=center][img]http://img1.17img.cn/17img/images/201703/uepic/e04c2a76-f958-44f3-b141-bd35bc5a5643.jpg[/img][/align][align=center]金红石型氧化钛脱锂嵌锂模型图[/align] 如上图,在很多金红石氧化钛脱锂嵌锂机理的研究中都提到了锂离子在金红石晶体内的扩散只有沿着方向(上图蓝色区域)才能进行。而锂离子在(110)晶面上(上图红色区域)只是以界面吸附的情况进行储锂的,这种在(110)晶面上的储锂只在表面浅层的钛氧八面体上发生,而晶体体相内部是不具备嵌锂脱锂活性的,这也意味着微米级的金红石型氧化钛在作为锂离子电池负极材料时具有很低的电池比容量,如何通过暴露更多的(001)面来提高金红石的比容量是研发氧化钛基负极电极材料首先要解决的问题。1. 金红石型纳米材料的生长机理[align=center] [img]http://img1.17img.cn/17img/images/201703/uepic/b9b35cac-9ad3-4c02-ae92-ebe9f7a1b6bf.jpg[/img][/align][align=center][/align][align=center]金红石纳米颗粒生长机理图[/align]如上图所示,由于金红石型晶体{110}晶面的表面能远远低于{001}晶面的表面能,因此金红石纳米晶体在沿不同晶向上的生长速度大不相同,且生长过程中为了保持晶体结构的稳定,会选择性的暴露更多的表面能更低的{110}系晶面。根据这个原理只要我们在【Step1】步骤中加入合适的晶面生长抑制剂,降低晶体沿{001}晶面方向的生长速度,则可以暴露出更多的金红石{001}晶面,同时也增加了纳米晶体的孔隙率,为锂离子电池的脱离嵌锂提供更多的活性位点。2. 不同生长速度的纳米晶体的微观结构表征[align=center][img]http://img1.17img.cn/17img/images/201703/uepic/efad5c72-96a7-45e3-b626-c491f46cf232.jpg[/img][/align][align=center]不同晶向上晶体生长速度快但不均匀(a)、速度慢(b)、快且均匀(c)的形貌及比表面积图[/align][align=center] [/align]由上图【C】可以看到,当选择合适的工艺及条件时,可以合成出暴露{001}晶面族更多的纳米颗粒,且相对于另外两种颗粒来说,它有更高的比表面积。3. 锂电性能测试评价[align=center][img=,600,435]http://img1.17img.cn/17img/images/201703/uepic/12b410e5-b889-4030-a6fd-710be53650ac.jpg[/img][/align][align=center]不同晶向上晶体生长速度快但不均匀(a)、速度慢(b)、快且均匀(c)的电池性能测试[/align][align=center] [/align]如上图所示,同样一种材料通过形貌调控后,锂电池的比容量由90-100mAh/g升高到了220mAh/g,比容量提升了一倍还多。由此可见通过不同的材料合成工艺可以合成出性能千差万别的材料出来。[b]后记[/b]随着纳米技术越来越贴近人们的日常生活,显微形貌分析不再仅仅局限于对微观材料形貌的观察与模仿,在对材料的改性及生产过程管控中也起到了越来越重要的作用。为新材料、新产品的研发提供了强有力的技术支持。

  • 【原创大赛】【微观看世界】+ 石墨的形貌观察

    【原创大赛】【微观看世界】+ 石墨的形貌观察

    【微观看世界】+ 石墨的形貌观察 电池专用石墨主要用于低汞无汞碱性电池正极材料,提高电池的电流,电压,延长放电时间.特别是电池专用石墨用量少,与国内同类产品相比,可降低用量32.5%,增加了锰粉的用量,有效地延长了电池的放电时间.特别是无汞碱性电池专用膨胀石墨粉在50-80目状态下,经过膨胀粉碎分级处理,可使电池正极中的导电物质含量下降,活性物质含量增加,减小电池欧姆内阻,增加电池容量.下面就来关注下他的微观形貌吧。测试仪器:SEM+EDS仪器型号:JEOL JSM-6460LV测试标准:JY/T 010-1996测试条件:见图片标识测试结果:见图片http://ng1.17img.cn/bbsfiles/images/2014/09/201409061448_513034_2042772_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/09/201409061448_513035_2042772_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/09/201409061448_513036_2042772_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/09/201409061448_513037_2042772_3.jpg

微观形貌相关的资料

微观形貌相关的资讯

  • OPTON的微观世界|第7期 性能形貌学的实际应用
    ——锂离子电池负极材料的改性 序 言通常商用的锂离子电池都选用碳来做负极材料。但是碳材料作为锂离子电池负极材料,脱锂嵌锂电位比较低,容易引起金属锂的析出,且碳材料热稳定性较差,很容易发生安全事故,大大降低了锂离子电池的安全性能。氧化钛由于其良好的循环稳定性及较安全的充放电电压(1.5V),丰富的储量以及无毒、对环境无污染等特性,是一种最有潜力替代碳材料的负极电池活性材料。 金红石型氧化钛脱锂嵌锂模型图 如上图,在很多金红石氧化钛脱锂嵌锂机理的研究中都提到了锂离子在金红石晶体内的扩散只有沿着[001]方向(上图蓝色区域)才能进行。而锂离子在(110)晶面上(上图红色区域)只是以界面吸附的情况进行储锂的,这种在(110)晶面上的储锂只在表面浅层的钛氧八面体上发生,而晶体体相内部是不具备嵌锂脱锂活性的,这也意味着微米级的金红石型氧化钛在作为锂离子电池负极材料时具有很低的电池比容量,如何通过暴露更多的(001)面来提高金红石的比容量是研发氧化钛基负极电极材料首先要解决的问题。 1. 金红石型纳米材料的生长机理 金红石纳米颗粒生长机理图如上图所示,由于金红石型晶体{110}晶面的表面能远远低于{001}晶面的表面能,因此金红石纳米晶体在沿不同晶向上的生长速度大不相同,且生长过程中为了保持晶体结构的稳定,会选择性的暴露更多的表面能更低的{110}系晶面。根据这个原理只要我们在【Step1】步骤中加入合适的晶面生长抑制剂,降低晶体沿{001}晶面方向的生长速度,则可以暴露出更多的金红石{001}晶面,同时也增加了纳米晶体的孔隙率,为锂离子电池的脱离嵌锂提供更多的活性位点。2. 不同生长速度的纳米晶体的微观结构表征不同晶向上晶体生长速度快但不均匀(a)、速度慢(b)、快且均匀(c)的形貌及比表面积图 由上图【C】可以看到,当选择合适的工艺及条件时,可以合成出暴露{001}晶面族更多的纳米颗粒,且相对于另外两种颗粒来说,它有更高的比表面积。 3. 锂电性能测试评价 不同晶向上晶体生长速度快但不均匀(a)、速度慢(b)、快且均匀(c)的电池性能测试 如上图所示,同样一种材料通过形貌调控后,锂电池的比容量由90-100mAh/g升高到了220mAh/g,比容量提升了一倍还多。由此可见通过不同的材料合成工艺可以合成出性能千差万别的材料出来。 后记 随着纳米技术越来越贴近人们的日常生活,显微形貌分析不再仅仅局限于对微观材料形貌的观察与模仿,在对材料的改性及生产过程管控中也起到了越来越重要的作用。为新材料、新产品的研发提供了强有力的技术支持。
  • OPTON微观世界 | 连铸坯典型内部缺陷断口形貌特征简介
    1连铸坯质量及内部典型缺陷类型 连铸坯质量决定着最终钢铁产品的质量。从广义来说所谓连铸坯质量是得到合格产品所允许的连铸坯缺陷的严重程度,连铸坯存在的缺陷在允许范围以内,叫合格产品。 连铸坯的质量缺陷主要为内部质量缺陷和表面质量缺陷,因其成因不同,控制,抑制缺陷的产生及提高质量的措施和方法也不尽相同。 连铸坯内部缺陷主要有中心疏松、中心缩孔、夹杂物、气孔、裂纹、氢脆等,连铸坯质量是从以下几个方面进行评价的:(1)连铸坯的纯净度:指钢中夹杂物的含量,形态和分布。 (2)连铸坯的表面质量:主要是指连铸坯表面是否存在裂纹、夹渣及皮下气泡等缺陷。连铸坯这些表面缺陷主要是钢液在结晶器内坯壳形成生长过程中产生的,与浇注温度、拉坯速度、保护渣性能、浸入式水口的设计,结晶式的内腔形状、水缝均匀情况,结晶器振动以及结晶器液面的稳定因素有关。(3)连铸坯的内部质量:是指连铸坯是否具有正确的凝固结构,以及裂纹、偏析、疏松、夹杂、气孔等缺陷程度。二冷区冷却水的合理分配、支撑系统的严格对中是保证铸坯质量的关键。 只有提供高质量的连铸坯,才能轧制高品质的产品。因此在钢生产流程中,生产无缺陷或不影响终端产品性能的可容忍缺陷铸坯,生产无缺陷或不影响结构件安全可靠性能的可容忍缺陷的钢材是冶金工作者的重要任务。随着科学技术的不断发展以及传统物理学、材料学的不断完善,连铸钢缺陷检测已经进入了纳米检测时代。扫描电镜以其高分辨率、高放大倍数及大景深的特点为连铸钢缺陷分析与对策研究提供了无限可能,使得材料分析变得更加具有科学性和实用性。扫描电镜广泛用于材料的形貌组织观察、材料断口分析和失效分析、材料实时微区成分分析、元素定量、定性成分分析、快速的多元素面扫描和线扫描分布测量、晶体/晶粒的相鉴定、晶粒与夹杂物尺寸和形状分析、晶体、晶粒取向测量等领域。电子显微镜已经成为钢铁行业在产品研发、质量检验、缺陷分析、产品失效分析等方面强有力的工具和检测手段。2连铸坯典型内部缺陷宏观和微观特征及形成机理简介2.1 缩孔缺陷特征 在横向酸浸低倍试片上存在于铸坯中心区域、形状不规则、孔壁粗糙并带有枝晶状的孔洞,孔洞暗黑。一般出现于铸坯最后凝固部位,在铸坯纵向轴线方向呈现的是间断分布的孔洞。形成机理 连铸圆坯在凝固冷却过程中由于温度梯度大、冷却速度快和结晶生长的不规则性,局部优先生长的树枝晶产生“搭桥”现象,把正在凝固中的铸坯分隔成若干个小区域,造成钢水补充不足,钢液完全凝固时引起体积收缩,在铸坯最后凝固的中心区域形成缩孔。另外,拉坯速度过快,浇注温度高,钢水过热度大等都将影响铸坯中心缩孔的大小。因连铸时钢水不断补充到液相,故连铸圆坯中纵向无连续的集中缩孔,只是间断出现缩孔。微观特征 缩孔内壁呈现自由凝固光滑枝晶特征,见图1。图1 连铸坯心部断口中不致密的疏松和缩孔2.2 疏松缺陷特征 在横向酸浸低倍试片的中心区域呈现出的分散小黑点、不规则多边形或圆形小孔隙组成的不致密组织。较严重时,有连接成海绵状的趋势。形成机理 连铸过程中浇注温度过高,中包钢水过热度较大,铸坯在二冷区冷却凝固过程中由于温度梯度作用,柱状晶强烈向中心方向生长。中心疏松的产生可看成是铸坯中心的柱状晶向中心生长,碰到一起造成了“搭桥”阻止了桥上面的钢液向桥下面钢液凝固收缩的补充,当桥下面钢液全部凝固后就留下了许多小孔隙;或钢液以枝状晶凝固时,枝晶间富集杂质的低熔点钢液在最后凝固过程中产生收缩,与此同时,脱溶气体逸出而产生孔隙;或是钢中的非金属夹杂物在热酸浸时被腐蚀掉而留下孔隙。钢中含有较多的气体和夹杂时,会加重疏松程度。疏松对钢材性质的影响程度取决于疏松点的大小、数量和密集程度。微观特征 不致密的自由凝固枝晶特征,常有夹杂物伴生,见图2、图3。图2 连铸坯心部断口中疏松与枝晶状硫化物图3 连铸坯心部断口中不致密的疏松缺陷图4 连铸坯中部断口中柱状晶及小气孔缺陷2.3柱状晶发达缺陷特征 在横向酸浸低倍试片上,铸坯的上半弧枝晶发达至中心,下半弧枝晶相对细小。形成原因 连铸结晶器内钢液的凝固热传导对铸坯表面质量有非常大的影响。研究发现随着结晶器冷却强度(热流)的增加,坯壳的不均匀程度提高。如果冷却水冷却不均匀,上弧冷却强,就可能造成上弧柱状晶发达穿透至中心;下弧冷却弱,柱状晶就相对比较细小。微观特征 发达的枝晶状柱状晶其上常有小气孔或夹杂物存在,见图4。2.4 非金属夹杂物缺陷特征 在横向酸浸低倍试片上的连铸坯内弧侧、皮下1/4—1/5半径部位分布有不同形状的孔隙或空洞(夹杂被酸浸掉)。在硫印图片上能观察到随机分布的黑点。形成机理 按夹杂物来源,非金属夹杂物分为内生夹杂和外来夹杂。内生夹杂是指冶炼时脱氧产物和浇注过程中钢水的二次氧化所生成的产物未能排出而残留在钢中的夹杂物。外来夹杂是指冶炼和浇注过程中由外部混入钢中的耐火材料、保护渣、未融化的合金料等外来产物。这些内生或外来夹杂在连铸上浮过程中被内弧侧捕捉而不能上浮到结晶器液面是造成内弧夹杂物聚集的原因。微观特征 连铸坯中夹杂物多呈球状、块状、颗粒状,分布在疏松、气孔、晶界等部位,见图5、图6 图5 连铸坯心部断口晶界上的颗粒状碳氮化物图6 连铸坯心部断口中光滑气孔及枝晶状硫化物2.5 氢致裂纹缺陷特征 在横向酸浸低倍试片上氢致裂纹的分布形态是距铸坯周边一定距离的细短裂纹,有的裂纹呈锯齿状。在纵向试样上,氢致裂纹与纤维方向大致平行或成一定角度,裂缝的锯齿状特征更明显。在纵向断口上呈现的是椭圆形的银灰色斑点,一般称之为铸态白点。形成机理 氢致裂纹是由于熔于钢液中的氢原子在连铸坯凝固冷却过程中脱熔并析集到夹杂、疏松等空隙中化合成分子氢产生巨大的压力并与钢相变时产生的热应力、组织应力叠加,在局部缺陷区域产生巨大的气体压力,当超过钢的强度极限时,导致钢坯内部产生裂纹。微观特征 断口呈氢脆解理或准解理特征,见图7、图8。图7 连铸坯断口上的氢脆解理特征(H 5.4PPm)图8 连铸坯断口上的氢脆解理及颗粒状氧化物2.6连铸坯正常特征宏观特征 在横向酸浸低倍试片上无粗大的柱状晶、无裂纹、无气泡、无中心缩孔、无夹杂物聚集、无明显的成分偏析,质量良好。微观特征 连铸坯正常断口形貌为粗大的解理扇或解理河流形貌特征,见图9。图9 连铸坯断口中正常解理形貌特征
  • OPTON微观世界 | 第42期 制样方法对截面样品形貌的影响
    背景介绍硅橡胶是由硅氧键连接构成的高分子聚合物,硅氧键具有很强的键能,热稳定性,化学稳定性好,具有较强的耐老化性能;压缩率大,表面张力小,憎水防潮性好,比热容和导热系数小,不溶于水。填料的含量对聚合物复合材料的性能有很大的影响,还会影响混炼时的加工性能。加入过多的填料,会使混炼变得困难,还会直接影响到聚合物复合材料的力学性能,填料的含量控制在一定范围内,随着填料含量的增加,聚合物复合材料的性能是逐渐增加的,超过这个阈值,聚合物复合材料的性能则不会增加。填料在聚合物中分散越好,越容易形成网络,对聚合物复合材料的性能越佳。而填料的尺寸对其分散性有非常重要的影响:粒径越小,粒子之间越容易团聚,在聚合物中的分散更加困难,会使聚合物的力学性能急速下降;粒径过大,容易在聚合物中形成应力集中点,使其力学性能下降,因此,也不宜添加过多。所以如何控制填料的粒径和含量,需要通过SEM的实验结果来确定。本文采用了两种制样方法,使用蔡司Sigma300在低电压下不喷金直接观测硅橡胶截面形貌,对比观测氧化铝填料在硅橡胶中的分布情况。制样方法如下所示:(1)刀片切割:采用锋利的刀片切割出较薄的截面;(2)液氮淬断:剪取小块样品放入液氮中冷冻,由于橡胶韧性较好,则需冷冻较长时间。如图1所示图1不同制样方法:刀片切割(A);液氮脆断(B)不同制样方法对结果的影响:图2不同制样方法硅橡胶的截面形貌像A1,A2:刀片切割;B1,B2:液氮淬断实验结果表明:刀片切割后的样品,图中的聚合物基体有一定粘连,对判断 Al2O3填料在聚合物中的分散有一定的影响;但在液氮中淬断的样品,聚合物基体无粘连,很容易判断Al2O3填料在聚合物基体中的分散情况,如图2所示。如果聚合物薄膜较薄,直接用剪刀剪断或者刀片切割,样品的截面则会被表层覆盖,更难判断填料在基体中的分散。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制