微观分析

仪器信息网微观分析专题为您整合微观分析相关的最新文章,在微观分析专题,您不仅可以免费浏览微观分析的资讯, 同时您还可以浏览微观分析的相关资料、解决方案,参与社区微观分析话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

微观分析相关的耗材

  • 转动管架 – 微管用
    转动管架 &ndash 微管用【转动管架产品规格】&bull 高密度PP胶(聚丙烯) 制造,完全可压热。&bull 转动架包括两个分开的组件,安全地互相连接,但可以靠中轴转动。&bull 组件备有以下两个组合: ► 一部份有48个可存放1.5 ml微管的孔,另一部份有48个可存放0.5 ml微管的孔。 ► 一部份有48个可存放1.5 ml微管的孔,另一部份有96个可存放0.2 ml微管的孔。&bull 微管可有以下存放组合: ► 96支1.5 ml微管 ► 48支1.5 ml微管及48支0.5 ml微管 ► 48支1.5 ml微管及96支0.2 ml微管 ► 48支0.5 ml微管及96支0.2 ml微管&bull 每行都有字母数字的坐标参考,可快速识别微管。&bull 0.2 ml微管孔是根据标准96孔形式,此形式亦用于PCR移送盘。&bull 每个转动架都备有透明PP材质盖,防范尘埃及其他负面的环境影响。&bull 独立包装。转动管架目录号码:080.06.001转动管架存放组合:96支1.5 ml微管转动管架存放组合:48支1.5 ml微管及48支0.5 ml微管转动管架存放组合:48支1.5 ml微管及96支0.2 ml微管转动管架存放组合:48支0.5 ml微管及96支0.2 ml微管如需订购以上型号的转动管架,请致电莱华尔科技(深圳)有限公司!更多进口耗材配件,请参考进口容量瓶http://www.instrument.com.cn/netshow/SH102618/Q1862772.htm镍释放测试仪http://product.ch.gongchang.com/d36631681.html
  • Nalgene 5974 漂浮式微管架,聚丙烯
    Nalgene 5974 漂浮式微管架,聚丙烯?用于在高温或低温下,解冻、冷却和培育样本。该微管架在装满已填充的微管后,仍可漂浮。微管在边缘下部得到微管架的支撑。在工作台上,微管架的支腿可以防止试管底部接触到工作台的表面。它具有卓越的耐温性,可以适应-70℃到100℃的温度范围。其上的每个孔旁都标有模制字母和数字,以便于您识别样本。订货信息:Nalgene 5974 漂浮式微管架,聚丙烯方形目录编号 5974-0404颜色白色试管容量,ml1.0、1.2、1.5 和 2.0L×W×H,mm103×103×65阵列4×4每盒数量4每箱数量16圆形目录编号 5974-4015-1015颜色白色白色试管容量,ml1.0、1.2、1 与和 2.01.0、1.2、1.5 和 2.0阵列820适合夹持 Nalgene 烧杯,ml4001000直径,mm6696直径,in.2-5/83-3/4每盒数量44每箱数量1616注意:不能对聚丙烯试管架进行高温高压灭菌
  • 微管架
    RM-02-02 微管架(不包括试管,试管另购),适合直径为9-20的试管,用于旋转混合器。产品号产品描述RM-01-01RM-1阶梯式变量控制,定时器旋转混合器RM-01-02旋转混合器、数字速度及定时控制RM-02-01微管架,适合直径为10-11.5的试管RM-02-02微管架,适合直径为9-20的试管RM-02-0350ml离心管支架, 25 - 35 mm直径RM-03-18试管支架直径12mm、孔深80mmRM-03-28试管支架直径16mm、孔深80mmRM-03-38试管支架直径26mm、孔深80mm

微观分析相关的仪器

  • 1、背景介绍随着我国钢铁行业的高速发展,对各个检验及研发环节要求越来越高。无论是生产装备还是检验研发设备,降本增效是发展根本。产品结构已经完成了“普转特、特转优、优转精”的战略转型,提供优质的铁水、钢水是对于生产的保障,而合理的原料供应是得以保障持续发展的必要条件。选矿是整个生产过程中最重要的环节,选矿工艺的合理制定也直接决定了后续的产品质量。Fe在矿石中的主要存在形式有磁铁矿、赤铁矿、褐铁矿、菱铁矿,对不同种类矿石的区分以及硬度、密度、湿度、解离度等方面的评估是制定后续的选矿工艺的理论基础。所以更好、更深入地了解铁矿资源而不仅仅局限于铁含量的检测非常重要,其不仅能够准确地评估铁矿价值、推断铁矿品质对下游工艺的影响,还能够优化生产工艺以节约成本提高产能。2、工作原理3、产品功能(1)识别并定量分析铁矿石矿相,从而评估铁矿价值,优化矿石处理工艺流程及预测铁矿品质对下游工艺的影响;(2)识别并定量分析烧结和球团矿矿相,研究烧结球团矿微观结构与性能的关系,优化配矿和烧结焙烧工艺,从而改善烧结矿品质降低配矿成本;(3)分析焦炭微观结构,预测焦炭性能及其对炼铁、冶金工艺的影响。4、产品优势(1)相对于传统的电镜矿物分析系统,该产品的性价比更高、效率更高。与人工计点法相比,其评价的面积更大,精度更高,速度会有几十倍的提升。同时该系统配备的完善的数据库以及极高的自动化程度降低了对操作人员技术水平的要求,能够节约一部分人工成本。对于整个钢铁行业而言能够快速的推动选矿、配矿等工艺的发展,提高整个行业的发展水平。(2)该系统基于丰富的高质有效矿物信息能够实现更高层次的特征表征;(3)直观的反映出相同结构、相似性质的矿石颗粒的结构差异,对下游工艺流程的预测具有重要指导意义。下图为四种具有不同类型组织结构特征的赤铁矿颗粒(从致密到多孔不等)。这些不同的组织结构使得它们在硬度、耐磨性和吸湿性等方面表现出差异,同时在粉碎、选矿造粒和烧结过程中也表现出不同特点。(4)基于反射光显微镜的工作原理能够有效地鉴别不同种类的铁氧化物和氢氧化物,比电镜矿物分析和拉曼光谱等分析速度更快、分辨率更高、更经济实用。(5)H = 赤铁矿(假象赤铁矿),HH = 水赤铁矿,vG = 玻璃针铁矿,oG = 赭色针铁矿,K = 高岭石,P = 孔隙,E = 环氧树脂
    留言咨询
  • 聚烯烃膜材料与鱼眼的微观结构差异化分析聚烯烃膜材料加工过程中鱼眼的出现是困扰材料生产加工企业的困难之一,如何判断鱼眼产生的原因,并采用相应的措施很好地解决成为关键,而采用我公司的表征分析,通过对膜材料和鱼眼料的分子量及其分布、结晶性能及其分布等微观结构的分析,能够为相关技术人员找到鱼眼产生的原因提供一定的方向和依据。
    留言咨询
  • 抗冲聚丙烯抗冲性能差异微观结构分析影响抗冲聚丙烯抗冲性能的因素有很多,其中微观结构的影响因素包括:聚丙烯材料的分子量、二甲苯可溶物含量和共聚物的乙烯含量、橡胶相分子量和共聚单体含量,以及结晶物的分子量和共聚单体含量等,因此如果能够在短时间内同时的得到所有这些数据,对抗冲聚丙烯材料的开发,工艺条件的调整以及加工应用至关重要,我公司的全自动二甲苯可溶物含量、特性粘度和乙烯含量分析仪,可以在2个多小时的时间内,同时给出聚丙烯材料的二甲苯可溶物含量、乙烯含量和特性粘度,可溶物的乙烯含量和特性粘度,结晶物的乙烯含量和特性粘度的数据,从而为全面判断抗冲聚丙烯抗冲性能差异原因提供可靠的数据,尤其在抗冲聚丙烯生产牌号切换过程中及时调整工艺参数减少过渡料非常有帮助。
    留言咨询

微观分析相关的方案

微观分析相关的论坛

  • 【分享】金属和合金的微观分析

    【分享】金属和合金的微观分析

    金属和合金的微观分析 microanalysis of metals and alloys   金属与合金的各种相的形貌(形状、大小和分布等)、晶体结构、化学组成等微观的研究,统称微观分析。金属与合金的性能与其显微组织密切相关。随着微束分析仪器的不断发展,对金属与合金的分析也逐渐深入,由过去的毫米、微米尺度正在进入到纳米(1nm=10-9m=10┱)尺度。在某些特殊情况下,甚至可以直接观察单个原子,并确定其原子序数。根据微束源不同,微观分析仪器可分光子、电子和离子束三大类(图1)。此外中子衍射也有所应用。[img]http://ng1.17img.cn/bbsfiles/images/2006/11/200611292123_34034_1634962_3.jpg[/img]光束微观分析 人们最早是使用光学显微镜观察钢的相变及各种相的形貌,在此基础上形成了金相学这门学科(见光学金相显微术)。后来又用 X射线衍射研究晶体结构(见X射线衍射),曾以此证明 β-Fe与铁素体相同,不是一种新相。到了30年代,这种晶体结构研究阐明了电子化合物的晶体结构类型与电子浓度间的关系,发现了固溶体在预沉淀阶段中溶质原子偏聚成的GP区,确定了金属晶体在范性形变中的滑移面与滑移方向,并在此基础上发展出位错概念和其几何模型(见晶体缺陷)等等。这种X射线金相研究的建立为金属学奠定了基础。   过去,合金中的第二相颗粒的化学成分,主要是用化学或电化学方法,先将它们从基体中分离出来,再用常规化学分析方法测定,如过渡族金属在铝合金中与铝形成的化合物和在合金钢中与碳形成的合金碳化物等(见合金相)。应用激光技术,在光学显微镜中安装激光源,使激光通过透镜中心孔射到金相试样上选好的第二相颗粒上,测定所含各元素的发射光谱,可以测定微区成分,但是激光束的直径在10μm以上,因此这种激光探针只适用于分析如钢中夹杂物、矿物及炉渣中较粗大的颗粒。   电子束微观分析 电子显微镜的问世把放大倍率由光学显微镜的一千多倍提高到扫描电子显微镜(SEM)的几万倍或透射电子显微镜(TEM)的几十万倍(见电子显微学)。不仅如此,电子显微镜还发展成为一个全面的微束分析仪器,既能观察几个埃(┱)的微观细节,还能进行几十埃范围的晶体结构分析(选区或微束电子衍射)和成分分析(X射线谱或电子能量损失谱)。   X射线波谱和电子探针 聚焦的电子束照射到试样上,使其中的原子失掉核外电子而处于激发的电离态(图2a),这是不稳定的,外层电子会迅速填补内层电子空位而使能量降低(图2b)。4释放出来的能量(在图中是EK-EL2)可以产生该元素的具有特征波长或能量的标识X射线谱。根据这些X射线的波长不同,经分析晶体展谱(X射线波谱,wave dispersive spectroscopy,简写为 WDS)或根据X射线光子能量不同由半导体探测器等展谱(X射线能谱,energy dispersive spectroscopy,简写为EDS)。X射线波谱仪的构造原理与X射线荧光谱仪基本相同,只不过是用电子而不是用X射线作为激发源。X射线波谱仪的特点是分辨率高,因此分析的精度高而检测极限低,此外,根据布喇格定理2dsinθ=λ,采用晶面间距d 大的分光晶体,可以分析标识X射线波长为λ的硼、碳、氮、氧等轻元素。它的缺点是分光晶体接受X射线的立体角小,X射线的利用率低;此外,试样要求象金相试样那样表面平正光洁,不能分析凸凹不平的试样。电子探针(electron microprobe,简写为EMP)就是由几个电磁透镜组成的照明系统与 X射线波谱仪结合在一起的微束分析仪器,电子束焦斑直径一般是0.1~1μm。将金相试样置于电子探针仪中,用静止的电子束可以得到定点的分析结果,也可以用扫描电子束得到一些元素在一条直线上的一维分布或一个面上的二维分布。电子探针在分析合金中第二相的成分、偏析、晶界与表层成分方面用途很广。[img]http://ng1.17img.cn/bbsfiles/images/2006/11/200611292123_34035_1634962_3.jpg[/img]X射线能谱仪 主要由半导体探测器及多道分析器或微处理机组成(图3),用以将在电子束作用下产生的待测元素的标识 X射线按能量展谱(图4)。X射线光子由硅渗锂 Si(Li)探测器接收后给出电脉冲信号。由于X射线光子能量不同,产生脉冲的高度也不同,经放大整形后送入多道脉冲高度分析器,在这里,按脉冲高度也就是按能量大小分别入不同的记数道,然后在X-Y记录仪或显像管上把脉冲数-脉冲高度(即能量)的曲线显示出来。图4就是一个含钒、镁的硅酸铁矿物的 X射线能谱图,纵坐标是脉冲数,横坐标的道数表示脉冲高度或X射线光子的能量。X射线能谱仪的分辨率及分析的精度不如根据波长经晶体分析的波谱仪,但是它没有运动部件,适于装配到电子显微镜中,而且探测器可以直接插到试样附近,接受X射线的效率很高,适于很弱的X射线的检测。此外,它可以在一、二分钟内将所有元素的 X射线谱同时记录或显示出来。X射线能谱仪配到扫描电子显微镜上,可以分析表面凸凹不平的断口上的第二相的成分;配到透射电子显微镜上可以分析薄膜试样里几十埃范围内的化学成分,如相界、晶界或微小的第二相粒子。因此X射线能谱仪目前已在电子显微学中得到广泛应用。[img]http://ng1.17img.cn/bbsfiles/images/2006/11/200611292124_34036_1634962_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2006/11/200611292124_34037_1634962_3.jpg[/img]X 射线能谱分析的一个较大弱点是目前尚不能分析原子序数为11(Na)以下的轻元素,因为这些元素的标识X射线波长较长,容易为半导体探测器上的铍窗所吸收。目前正在试制无铍窗及薄铍窗的探测器,目的是检测碳、氮、氧等轻元素。   电子能量损失谱(electron energy loss spectro- scopy,简写为EELS) 能量为E的入射电子与试样中原子的非弹性碰撞使后者电离而处于较高能量的激发态(图2a中是K激发态、能量为EK),入射电子损失的能量为EK+ΔE,ΔE为二次电子的逸出功。由此可见,对于不同元素,电子能量损失有不同的特征值。使透射电子显微镜中的成像电子经过一个静电或电磁能量分析器,按电子能量不同分散开来。除了有一个很强的无能量损失的弹性电子能量峰外,还会出现一些与试样中各元素相对应的较弱的具有特征能量损失的峰。尽管这些峰不很明锐(较好的水平是2~3eV),定量分析还存在一定困难,但是由于它有下列两个显著优点而在透射电子显微术中逐渐得到广泛应用:一是可以分析B、C、N、O等轻元素;二是将电子束聚焦到几十埃就可以测出微小区域的组成。显然,入射电子由于产生标识X射线而损失一定能量(图2a、b),可见电子能量损失谱和X射线能谱有着密切关系。

  • 【求助】微观分析仪器调研

    公司有采购微观分析仪器SEM+EDS+WDS+EBSD的需求,有意向的可通过email:huangwenzh@tom.com联系。同时欢迎各位前辈和同行对所使用的上述仪器发表你们的见解以供我们参考,在此先衷心感谢你们的支持。

  • 这种的图片如何做微观组织分析

    这种的图片如何做微观组织分析

    http://ng1.17img.cn/bbsfiles/images/2012/01/201201090944_344733_2439064_3.jpg刚接触扫描电镜这方面,以前也不是学这方面的,微观组织分析这方面知识一片空白,想请懂这方面的人士帮忙分析下这幅图片,不甚感激!(这幅图片是金刚石层表面的拍摄,白色物质是金属钴,黑色物质是金刚石)

微观分析相关的资料

微观分析相关的资讯

  • 微观世界|第4期 食物中的力学知识 不同品质大米的微观力学分析
    一、前期回顾 上期我们发现纸币防伪条之所以呈现不同色彩和形貌是因为特殊的微观结构所导致(详细情形见第三期文章),材料的微观结构对宏观的光学性能巨大的改变。由于大部分读者在上期投票中选择【B选项:1元/斤的大米和10元/斤的大米在显微镜下有何区别。】 那么今天笔者带领大家来一起探索优质大米(吃起来劲道的新米)和劣质大米(口感较差的陈米)在显微结构上有什么不一样。二、序 言金属的强度、韧性、脆性与它的微观组织结构有很大的联系:韧性强的金属材料会发生韧性断裂,在断口的断面会观察到有典型“韧窝”特征的韧性断裂区;脆性大的金属会发生脆性断裂,在断口的断面会观察到有典型“台阶”特征的解理断裂区。这些不同的断口形貌是由微小的热处理工艺或材料成分的微小差别所引起的,不同的微观组织形貌代表了不同的金属材料生产工艺。那么我们猜想:是否可以通过显微形貌分析来判断生长周期不一样、或者营养成分/化学物质不一样的农作物呢?三、大米断面显微形貌分析,大米淀粉形貌及淀粉复粒形貌本期选择同种大米的两个不同时期(新米10元/斤、存放半年的陈米6元/斤)的样本进行微观形貌的拍摄,来研究放置时间长的大米除了靠气味和口感上的差异来区分外,是否可以通过材料显微分析的手段来进行辨别。 1. 大米断口分析 大米断口显微形貌图 如上图A所示,我们把大米粒掰断后可以看到大米粒断口是有形貌特征的。放大到100倍下如图B我们可以看到有类似金属沿晶断口及窝韧形貌特征的存在。图C是窝韧特征的细节放大图,可以发现是由10μm左右的一粒粒大米淀粉微粒组成的、断口高低起伏且小一点的淀粉微粒棱角分明。图D是大米内部淀粉复粒组成的,大米复粒表面比较光滑,复粒淀粉之间的交界面都很平滑,且复粒内不光有淀粉微粒,微粒之间还会有蛋白质存在(表面黑色条纹部位)。 从上图我们可以看出大米颗粒是由一粒粒淀粉微粒所组成的复粒淀粉粒所组成,当断裂部位是沿复粒淀粉截面扩展时,断口呈现平滑的沿晶裂纹特征;当断裂部位穿过复粒淀粉而扩展时,断口呈现穿晶断裂。 不同大米由于生长周期及成分都有差别,导致了淀粉微粒、淀粉复粒的形貌及它们之间的结合力各不相同,因此不同大米的断口形貌也完全不一样。 2. 复粒淀粉沿晶/穿晶断口形貌分析 复粒淀粉穿晶断裂(左)和沿晶断裂(右)形貌差异对比 上图左是复粒淀粉断裂时的断口形貌,可以发现中间的淀粉微粒周围暗色的部分是大米内部的蛋白质,一个个淀粉微粒是由蛋白质连接起来的,其中画红圈的部分是大米内部的脂质颗粒,该颗粒在新大米断口处几乎没有,而在陈旧大米内部有很多,推测该脂质的析出导致了连接淀粉微粒的蛋白质发生了变化,导致大米复粒内部黏合力发生改变。上图右是大米淀粉复粒表明断口图,可以看出断口处非常平滑,正常情况下淀粉复粒间的结合能是远低于淀粉粒间内部结合能的,所以断裂一般都发生在淀粉复粒平滑处。 3. 新米与陈米断口微观形貌结构对比陈米(左)与新米(右)断口显微形貌差别 在显微镜下我们可以看到陈米断口(上图左)相较于新米断口(上图右)呈现更多的“窝韧”形貌特征,断裂面穿过了大米复粒淀粉。而新米大部分断口为“沿晶”解理,断裂面沿淀粉复粒扩展。拍摄结果表明正常新米内部的结合是复粒淀粉内部大于复粒淀粉边界的。随着大米放置时间的增长,米粒内部的化学物质发生了变化,导致复粒淀粉内部的微粒间键合减弱结合力变差,断裂裂纹面主要由从复粒淀粉边界扩展变为从复粒淀粉穿过后断裂。 四、后 记 “天空没有翅膀的痕迹,但是鸟儿却飞过”。不同于鸟儿在天空飞过没留下痕迹,任何材料的生产和合成所经过的工艺都会在材料内部留下显微痕迹,通过显微技术来辨别材料的显微形貌/结构的特征,可以轻易的判断出材料的生产工艺及历程。例如现阶段人们已经开始利用显微镜来鉴别区分不同植物、动物的品种,从而为原材料把控、溯源、生产过程质控提供了重要指导依据。 下期主题(动物)三选一: A、蝴蝶翅膀在阳光下产生绚丽颜色的原因。B、年轻人及老年人头发表面及断面的形貌差异。C、过期变质食物中的细菌。
  • CCATM'2014之材料微观解析与失效分析会场
    仪器信息网讯 2014年10月20日,由中国工程院、中国合格评定国家认可委员会、中国标准化协会、中国金属学会、国际钢铁工业分析委员会、中国钢研科技集团有限公司主办的&ldquo CCATM&rsquo 2014国际冶金及材料分析测试学术报告会&rdquo 之&ldquo 材料微观解析与失效分析&rdquo 会议在北京国际会议中心举行。  失效分析是指产品失效后,通过对产品及其结构、使用和技术文件的系统研究,从而鉴别失效模式、确定失效机理和失效演变的过程。失效分析对于提高产品质量和防止事故重演特别重要。失效分析工作是一个极其复杂的过程,它需要多学科相互交叉。主要分析内容包括断口分析、化学分析、金相显微分析、力学性能检查和无损探测等方面。  其中微观解析主要指断口分析中的微观分析和金相显微分析。在断口微观分析中,使用扫描电镜或透射电镜可观察微观断口的形貌,从而判断断裂失效机制。另外配合能谱分析仪还可以对断口的微区成分进行分析,以判断是否存在夹杂物、成分偏析等缺陷。  金相显微分析是指利用金相显微镜来观察和研究金属材料显微组织结构及分布的试验方法。是检查金属材料质量的好坏、热处理工艺质量评定的最直观、最准确的方法。  在本次会议中,武钢研究院孙宜强介绍了SPHC热轧板表面疤块缺陷分析 钢铁研究总院谢金鹏介绍了转向弯臂断裂失效原因分析 宝山钢铁股份有限公司王军艺介绍了火花塞膨胀槽脆性开裂失效分析 首钢通化钢铁集团韩德青介绍了隔热管断裂原因分析 钢铁研究总院郑凯介绍了某石化设备用 P201泵出口管道裂纹原因分析 马钢技术中心王德宝介绍了35CrMo高强度连接螺栓杯锥状断口失效分析 武汉钢铁集团公司研究院王志奋介绍了冷轧双相钢性能不合格原因分析 国家钢铁材料测试中心李云玲PSB1080 螺纹钢氢脆断裂分析 西安航空动力控制科技有限公司郭秀乔介绍了活门和衬套卡滞原因分析 江苏省宏晟重工集团有限公司乙海峰介绍了1Cr17Ni2钢热油泵泵轴断裂分析。会议现场
  • 20类微观表征技术云端碰撞!中科大牛津仪器微观分析论坛成功举办
    仪器信息网讯 4月20日,由牛津仪器科技(上海)有限公司和中国科学技术大学共同主办的“中科大牛津仪器微观分析论坛”线上成功举办,中科大多位微观分析专家及牛津仪器的应用工程师们依次分享了近扫描电镜、透射电镜、EDS、EBSD、原子力显微镜等近20类主流微观表征技术及在材料、半导体、生命科学等热点领域的应用进展。作为同期重要内容,论坛也进行了明日之星奖学金颁奖仪式,仪器信息网网络讲堂栏目实时转播了本次论坛。牛津仪器中国区总裁 何峻 致辞开幕致辞中,牛津仪器中国区总裁何峻首先对中国科技大学的各位领导、老师、同学,以及在线各位同仁的参加及对牛津仪器的支持表示感谢。接着,分享了牛津仪器的发展历程,从六十余年前的马丁伍德爵士在英国创建,到发展成为一家销售服务网络遍布全球的跨国公司;从二十多年前正式进入中国市场,再到业务的飞速发展等。同时,牛津仪器也在不断履行对中国客户的承诺,不断加大在中国的投入,在过去一年里,通过加强应用、服务团队,成立专业的维修服务团队等措施大幅提升了对中国用户的支持能力。最后向获得本次“明日之星奖学金”的各位同学表示祝贺,希望籍此为各位同学的学业成功略尽绵薄之力,预祝各位同学在未来的学习和工作中可以取得佳绩。据中科大公共实验中心办公室主任周宏敏介绍,牛津仪器和中科大已有近八年的紧密合作,在合作过程中,帮助中科大在科研取得了丰硕的成果。从牛津仪器2014年在中科大设立“牛津仪器明日之星奖学金”至今,已有四十多位同学获得奖学金,获奖者涵盖了理化中心、工程与材料中心和微纳中心,去年也覆盖到了生命中心。本年度“明日之星奖学金”,经过评委的严格评审,最终颁发给8位同学,活动现场,中科大公共实验中心主任侯中怀教授为获奖者进行了颁奖。中科大校公共实验中心主任侯中怀教授为获奖学生颁发牛津仪器明日之星奖学金证书颁奖仪式后,围绕材料/半导体微观分析技术、生命科学微观分析技术两大主题,10位中科大微观分析专家、牛津仪器应用专家分别分享了精彩报告,近20类主流微观表征技术与材料、半导体、生命科学等热点领域应用在云端展开思维碰撞。以下为报告内容摘要,详细精彩内容,点击查看报告回放视频(回放视频即将上传)。材料/半导体微观分析技术系列报告中国科学技术大学理化科学实验中心工程师孙梅概要分享了原位液体透射电镜技术。技术概要方面主要列举了不同液体池构造基及其优缺点,组装方法。电子束的影响方面,主要介绍了化学成分变化及温度变化的影响。基于原位液体电镜刻蚀研究方面,主要介绍了采用非原位手段来证明原位结果有效性的相关案例。牛津仪器应用科学家马岚介绍了牛津仪器材料制备与材料表征技术。材料微纳加工制备方面,针对大尺寸样品,牛津仪器相关技术包括晶圆级别刻蚀、气体沉积等设备;针对小尺寸样品,则包括OmniProbe系列纳米操纵手等技术。材料表征方面,则主要分享了成分分析的EDS技术、结构表征的Raman、EBSD、物理性能的AFM等。中国科学技术大学微纳研究与制造中心工程师王秀霞分享了等离子体刻蚀技术及在微纳米加工中的应用。通过化学或物理方法在目标功能材料的表面进行选择性去除,最终形成所需的特定结构,是微纳加工技术中微纳米图形结构转移的主要方法。报告依次分享了等离子体刻蚀的基本原理、NRFC等离子体刻蚀设备与工艺,最后详细展示了等离子体刻蚀相关加工案例。中国科学技术大学 工程与材料科学实验中心高级工程师田杰详细分享了扫描电镜的结构、原理及应用。电子波长远小于可见光波长,用电子束作为照明源,可极大提高显微镜的分辨率,这成为电镜的理论基础。报告从光学显微镜分辨率极限讲起,通过对比光镜与电镜的比较,讲解了电镜的原理及结构。接着依次介绍了扫描电镜的形貌分析、扫描电镜的能谱应用、扫描电镜的EBSD应用等。生命科学微观分析技术系列报告中国科学技术大学生命科学实验中心晶体学平台主管朱中良分享了基于X-射线单晶衍射仪的薄膜样品自动测试平台的研制进展。薄膜样品自动测试平台的研制目的主要是基于现有X-射线单晶衍射仪实现生物结构组织晶体种类和晶体取向的分析。报告主要分享了该研制平台的空间匹配、精度、适应性控制程序等技术难点与对应解决方案、研制成果,以及研制测试平台的实际应用案例。牛津仪器应用科学家潘茗茗介绍了牛津仪器弱光检测及三维成像解决方案。牛津仪器旗下Andor拥有全球弱光探测、解析及成像系统制造技术,报告首先介绍了Andor弱光成像与光谱技术、Dragonfly高速显微成像系统、BC43台式共聚焦等产品技术的发展历程及在生命科学领域的应用进展。接着介绍了WITec生物拉曼快速成像系统在生物医学领域的优势与应用情况。中国科学技术大学生命科学实验中心显微成像平台主管刘振邦介绍了激光共聚焦显微镜成像技术及应用。激光共聚焦显微镜在生物及医学等领域的应用越来越广泛,已经成为生物医学实验研究的必备工具。报告依次分享了激光共聚焦显微镜的原理、结构,接着分别介绍了单光子激光共聚焦显微镜、双光子共聚焦显微镜的各自优势及应用进展。中国科学技术大学技术工程师唐培萍介绍了前沿透射电子显微成像技术在生命科学中的应用。经典生物电子显微成像技术方面,报告主要分享了负染色体制样技术、常温超薄切片技术的技术进展及对应技术流程。现代前沿电子显微成像技术方面,主要分享了时下应用火热的高分辨冷冻电镜技术和冷冻电镜断层成像与关联显微成像技术,并分享了两种技术优势、成像实验流程,以及系列典型应用案例。中国科学技术大学生命科学实验中心分子互作分析平台主管欧惠超分享了基于SPR技术的传感芯片的研制及其应用。SPR技术几乎可以检测多有的生物分子,而芯片则是SPR分子互相分析的关键载体。报告从rBSA羧基芯片制备与测试、高亲和力NTA芯片研究、高载量CN5芯片研究等方面详细介绍了团队基于SPR技术的传感芯片的研制及应用进展。中国科学技术大学生命科学实验中心质谱平台主管吴高分享了纳升液相色谱质谱联用仪常见故障分析及排除。纳升液相色谱质谱联用仪适用微量甚至痕量样品的分析。而仪器的日程维护保养对仪器的灵敏度、稳定性和使用寿命至关重要。报告分别针对色谱和质谱常见故障分别进行了解读,并逐一给出解决方案。相关经验包括样品前处理、使用的试剂纯度可以减少仪器发生堵塞几率;时刻观察仪器状态,对故障进行预排,可以极大降低故障率等。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制