微观视界

仪器信息网微观视界专题为您整合微观视界相关的最新文章,在微观视界专题,您不仅可以免费浏览微观视界的资讯, 同时您还可以浏览微观视界的相关资料、解决方案,参与社区微观视界话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

微观视界相关的耗材

  • 转动管架 – 微管用
    转动管架 &ndash 微管用【转动管架产品规格】&bull 高密度PP胶(聚丙烯) 制造,完全可压热。&bull 转动架包括两个分开的组件,安全地互相连接,但可以靠中轴转动。&bull 组件备有以下两个组合: ► 一部份有48个可存放1.5 ml微管的孔,另一部份有48个可存放0.5 ml微管的孔。 ► 一部份有48个可存放1.5 ml微管的孔,另一部份有96个可存放0.2 ml微管的孔。&bull 微管可有以下存放组合: ► 96支1.5 ml微管 ► 48支1.5 ml微管及48支0.5 ml微管 ► 48支1.5 ml微管及96支0.2 ml微管 ► 48支0.5 ml微管及96支0.2 ml微管&bull 每行都有字母数字的坐标参考,可快速识别微管。&bull 0.2 ml微管孔是根据标准96孔形式,此形式亦用于PCR移送盘。&bull 每个转动架都备有透明PP材质盖,防范尘埃及其他负面的环境影响。&bull 独立包装。转动管架目录号码:080.06.001转动管架存放组合:96支1.5 ml微管转动管架存放组合:48支1.5 ml微管及48支0.5 ml微管转动管架存放组合:48支1.5 ml微管及96支0.2 ml微管转动管架存放组合:48支0.5 ml微管及96支0.2 ml微管如需订购以上型号的转动管架,请致电莱华尔科技(深圳)有限公司!更多进口耗材配件,请参考进口容量瓶http://www.instrument.com.cn/netshow/SH102618/Q1862772.htm镍释放测试仪http://product.ch.gongchang.com/d36631681.html
  • 微管架
    RM-02-02 微管架(不包括试管,试管另购),适合直径为9-20的试管,用于旋转混合器。产品号产品描述RM-01-01RM-1阶梯式变量控制,定时器旋转混合器RM-01-02旋转混合器、数字速度及定时控制RM-02-01微管架,适合直径为10-11.5的试管RM-02-02微管架,适合直径为9-20的试管RM-02-0350ml离心管支架, 25 - 35 mm直径RM-03-18试管支架直径12mm、孔深80mmRM-03-28试管支架直径16mm、孔深80mmRM-03-38试管支架直径26mm、孔深80mm
  • 微管 – 研杵
    微管 &ndash 研杵【产品规格】&bull 以高级PP胶(聚丙烯) 制造,可压热121° C达20分钟。&bull 非常适用于研磨及同质化在微型离心管中的细菌细胞、核酸、蛋白质或组织的沉淀物,以及使它们悬浮。&bull 锥形杵头是圆形的,适用于1.5 ml微型离心管。&bull 以每包10支包装。目录号码:078.08.120

微观视界相关的仪器

  • 北京东方德菲仪器有限公司成立于2004年,是胶体与界面化学领域的知名公司。东方德菲公司秉承“Leading by Professional”的理念,专注于引进世界先进的技术,创新、开发界面科学领域的专业仪器和设备,为中国的科学研究提供最有力的支持。VMF100微观可视化驱油工作站是北京东方德菲仪器有限公司与中石油勘探开发研究院提高采收率国家重点实验室共同研发生产的系统集成型可视化驱油系统。VMF100微观可视化驱油工作站,通过可视化的微流控技术,记录和分析驱替液在微纳尺度通道芯片中的驱油过程。VMF100是定量描述不同化学驱油体系微观驱油机理的实验工作站,高效识别剩余油,并表征高含水期微观剩余油的渗流特征,VMF100工作站具有高集成化、高操控精度、芯片多样化、 分析可视化等特点,是微观驱油机理研究必不可少的设备之一。VMF100由原油注入系统、驱替液压力注入系统、压力监测系统、芯片密封系统、微纳孔道芯片,微观视频系统、操作分析软件组成。该工作站可以完美记录和控制饱和油及驱替的动态过程,评价剩余油再启动能力,并分析剩余油的渗流特征。功能: 1、精密控制和记录饱和油的动态过程原油注入系统采用精密注射泵恒流控制模式,将原油注入微孔道芯片内形成饱和油。原油注入系统流速控制精度可以达到1.28皮升/分钟,直线推力可承受16公斤微观视频系统可以记录整个饱和油的动态过程。如下图2、精密控制和记录驱油的动态过程驱替液注入系统采用压力恒流模式,将驱替液注入饱和油芯片形成动态驱替,微观视频系统可以详细记录整个驱替的动态过程。压力恒流注入系统最 大压力可达200bar, 恒流范围7.5纳升/分钟至5毫升/分钟,流速精度可达7.5纳升/分钟,恒流注入系统可程序控制注入流速和注入压力。压力监测系统可以实时监测注入过程的压力变化,压力传感器采用高精度微流控专用全氟油传感器,压力监测范围0-115PSI,精度0.0007PSI微观视频系统可以详细记录整个驱替的动态过程,如下图:3、剩余油分类识别统计剩余油识别分类统计软件可以定量处理石英芯片的驱替实验视频以及数值模拟水驱油实验视频,分析整个实验过程中各种类型(膜状流、滴状流、柱状流、多孔状和簇状流)剩余油的数量、面积分布随含水饱和度的变化情况等,结果数据可做进一步处理。分析1 、通过对饱和油图像的分析,生成岩石骨架及孔喉分离分析2、通过对剩余油图像的分析,导入岩石骨架精确提取剩余油,剩余油自动分类分析3、分析剩余油的分类及不同类型剩余油的数量、面积分布分析4、孔道参数的统计及分析&bull 孔道配位数分布&bull 孔道孔喉比分布&bull 孔道等效半径分布&bull 孔道最窄半径分布分析5、孔道微观接触角测量及密度分布性能指标:VMF100性能指标原油注入系统: 驱动方式 设置方式 注射范围 直接推力 流速范围 稳定精度 最小推进速度微步进处理器驱动彩色LED触屏设置0.5ul-50ml16Kg1.28pl/min-88.28ml/min0.05%0.18um/min 驱替液注入系统: 驱动方式 压力流量设置方式 压力流量显示方式 通道数量 最 大压力 流速范围 流速精度压力驱动方式软件程序控制及本机独立控制彩色LED显示屏双通道或三通道200Bar7.5nl/min-5ml/min7.5nl/min压力监测系统: 压力传感器 压力数据显示及输出 压力测量范围 压力测量精度全氟油压力传感器实时显示/输出压力数据0---115PSI0.0007PSI芯片密封系统: 密封方式 最 大耐压 密封尺寸强磁性密封500PSI1/16 peek 管密封微纳孔道芯片: 芯片材质 刻蚀方式 模型类别 模型尺寸 孔道尺寸 芯片尺寸石英玻璃湿法刻蚀仿真均质模型、非均质裂缝模型、平行通道模型、环道模型1.5cm×1.5cm ,可根据客户要求定制20um×7um ,可根据客户要求定制6cm ×6cm显微视频系统: 主机 采集系统 放大范围 工作距离 物镜 光源 实验平台体式显微镜2000万像素彩色CMOS相机3.75×-67.5×71mm0.5平场复消色差物镜LED 光源强磁实验台系统集成: 内置部件 外部部件流量剂专用支架流量池专用通孔压力监测系统安装板内置多孔电源 仪器箱体配有24寸触控电脑软件功能: 基础功能-剩余油分析 拓展功能1-孔道参数 拓展功能2-微观接触角视频记录饱和油的动态过程视频记录驱油的动态过程实时记录驱油压力的动态变化分析不同类型剩余油的数量分布分析不同类型剩余油的面积分布 孔道配位数分布孔道孔喉比分布孔道等效半径分布孔道最窄半径分布 自动识别微观孔道接触角孔道微观接触角概率密度曲线
    留言咨询
  • 高温微观组织观察系统 ——在加热或者冷却过程中观察钢铁表面的微观组织变化高温微观组织观察系统由三部分:显微镜,红外金面反射炉以及温度控制系统组成,可以在温度控制的前提下,将样品加热到1600℃,从而观察金属材料的晶体转变,沉淀析出,凝固等微观组织变化。 特点: ■ 红外金面反射炉可以实现加热到1600℃;■ 快速的温度控制;■ 可用多种气氛以及真空 应用:● 观察金属材料的晶体转变,沉淀析出,凝固;● 观察不同材料结合面组织变化,晶体生长;● 观察高分子材料结晶,熔化,再凝固热循环过程 设备参数: 温度范围 室温~1600℃ 气氛 空气,惰性气体,真空 样品大小 φ5mm×5mmT 系统尺寸(控制箱) 约 650mmW×500mmD×450mmH 观察系统 数码变焦显微镜 物镜 1×+自动变焦(0.7× -11.2×) 目镜16× 视场1.4mm-23mm 系统结构: 高温微观组织观察系统由显微镜+红外金面反射炉+温度控制系统构成 测量实例: 高温微观组织观察案例:室温→加热→冷却
    留言咨询
  • 微观组合测试仪MCT 400-860-5168转1766
    微观组合测试仪MCT微观组合测试仪集成了安东帕微观压痕测试仪和微观划痕测试仪的所有功能。只需一种测量仪即可进行仪器化压痕测量,以及测试涂层附着力和表面抗刮擦性。加载载荷:分辨率:0.1 mN最大力:30 N摩擦力:分辨率:0.1 mN最大摩擦力:30 N深度:分辨率:0.3 nm最深:1000 μm速度:从 0.1 mm/min 至 600 mm/min
    留言咨询

微观视界相关的试剂

微观视界相关的方案

  • 微观世界的奇妙之旅
    从2002年的SARS病毒,2009年的甲流,到2012年的超级病菌,人类的健康不断受到威胁。透射电镜为我们提供了进入微观世界的窗口,向我们展示出奇妙的微观世界景象。电子显微镜已经走出实验室,尤其在临床诊断、疾病控制、检验检疫等方面发挥着重要作用。
  • 认识雾霾之盾 ——口罩的微观视界
    冬季以来,环境问题—“雾霾”成为人们关注的焦点。网上关于“雾霾”以及“防雾霾”口罩的报道层出不穷。接下来小编带领大家以显微视角对“雾霾”问题进行一下分析和研究,希望能通过显微分析技术来拓展大家对生活中微观世界的认识。
  • 探索微观世界的方式
    俗话说“耳听为虚,眼见为实”。然而,人眼的分辨率是存在极限的,一般情况下指在正常光线条件下肉眼可以分辨的最近物点的距离。通常认为在 250 mm 的距离上,分辨率为 0.2 mm。为了能够更好地探索微观世界奥秘,人们开始借助工具来实现这一目的。

微观视界相关的论坛

  • 外人如何获得LA-ICP-MS测锆石的微观世界?

    LA-ICP-MS测锆石定年,只有操作才能懂的里面的微观世界,但操作者不懂地质,地质人员又不懂操作,如何把这个微观世界的东西传递给地质人员呢如何把这微观的东西反应到论文中,特别是需要图片的时候,如何操作?

  • 探秘微观世界:SEM/EDS在材料科学中的应用

    [b]SEM/EDS简介[/b]首先,让我们简要了解一下SEM/EDS技术。SEM(扫描电子显微镜)通过聚焦高能电子束,可以获得高分辨率的表面形貌图像。而EDS(能谱分析)则是SEM的强大补充,能够提供样本的元素组成信息。这两者的结合,为我们打开了微观世界的大门。[b]微观视角下的材料[/b][list=1][*][color=var(--tw-prose-bold)]纳米结构的解析:[/color]SEM的高分辨率使得我们可以深入研究材料的纳米结构。从纳米颗粒到纳米管,SEM图像为我们展示了材料表面的微小细节,为纳米材料设计和改进提供了关键信息。[*][color=var(--tw-prose-bold)]腐蚀与磨损分析:[/color]对于各类材料的腐蚀与磨损问题,SEM/EDS的应用可追踪表面的微观变化。通过观察微粒的分布和元素组成,我们能够深入了解材料在使用过程中的耐久性和稳定性。[*][color=var(--tw-prose-bold)]新材料研究:[/color]在新材料的研发中,SEM/EDS技术可以帮助科学家们了解材料的成分和结构,为设计出更具性能的新材料提供支持。这对于电子、光电和生物医学领域的创新至关重要。[/list][b]SEM/EDS在生命科学中的崭新视角[/b]除了在材料科学领域的应用,SEM/EDS在生命科学研究中也发挥着越来越重要的作用。[list=1][*][color=var(--tw-prose-bold)]细胞和组织的微观观察:[/color]SEM的高分辨率使得生物学家能够深入观察细胞和组织的微观结构,为生命科学研究提供更为详尽的信息。[*][color=var(--tw-prose-bold)]病理学研究:[/color]在病理学领域,SEM/EDS技术帮助研究人员更全面地了解病变组织的微观特征,为疾病的诊断和治疗提供重要线索。[/list][b]结语[/b]SEM/EDS技术正逐渐成为材料科学和生命科学研究中不可或缺的工具。通过这一技术,我们能够深入微观世界,发现未知,解锁材料和生物之谜。如果你对微观世界充满好奇,SEM/EDS或许将是你深度探索的窗口。欢迎大家在评论区分享你对这一领域的疑问或想法,让我们一同探索微观世界的奥秘。

微观视界相关的资料

微观视界相关的资讯

  • 天津大学首届“走进材料微观世界”微观摄影大赛作品集锦
    在我们肉眼看不到的纳米世界可能隐藏着意想不到的精彩一群天大学子用严谨的科学态度和鲜活的艺术创造力透过显微镜发现世界之美通过少许着色呈现自然之美在纳米的天地这些微小的结构有如美轮美奂的画作不禁让人感叹科学的奇妙腊 梅作者:胡瑾图片是用学院的Hitachi S-4800场发射扫描电子显微镜拍摄的。采用水热法制备了泡沫镍上负载的Ni-Zn-S用于电催化水分解。棕色的泡沫镍像是梅花的树干,上面生长的一颗颗几微米的合金,像一朵朵鲜红的梅花。在寒冷的冬天,树叶还未见长出来几片,一朵朵鲜红的梅花却不畏寒冬,争先绽放,为败落稀零单调的寒冬,增添了闪亮的色彩。晴空樱花作者:胡瑾图片是用学院的Hitachi S-4800场发射扫描电子显微镜拍摄的。该样品是采用水热法制备的泡沫镍上负载的Ni-Zn-S,用于电催化水分解。春暖花开,站在樱花树下,抬头仰望天空,樱花像一只粉色的蝴蝶在蔚蓝的天空下飞翔。泡沫镍像一棵树干,反应釜里的溶液像大地的养分,一直保持的溶液温度像太阳的光照,经历了十几个小时的保温,泡沫镍上不断的长出绽放的花朵。秋菊作者:胡瑾图片是用学院的Hitachi S-4800场发射扫描电子显微镜拍摄的。采用水热法制备了泡沫镍上负载的Zn-Co-S用于电催化水分解。世间万物,息息相关。如果不看下面的标尺,以为这就是一朵完美绽放的菊花。不禁感叹,在微观的世界,也存在着这么精致的花朵。它们在自己的小天地下静静地绽放。七彩作者:王禹轩拍摄仪器:冷场发射扫描电镜 s4800样品材料:本样品是通过1300度高温快速灼烧1分钟的纯钼,作为制备氧化物弥散强化合金(ODS)的第二相弥散体。ODS由于其优异的抗蠕变性能、良好的高温组织稳定性和良好的抗辐照性能,其常被应用于高温涡轮发动机叶片以及换热器管道等应用中。艺术处理:通过本方法处理纯钼展现出规整的微观结构,以此为基础通过后期处理试图描绘一幅彩虹色宝石原石的照片。通过不同颜色配色及灰色底色的映衬展现出整体的色彩丰富度。三维多孔碳材料作者:杨浩然样品材料为三维多孔碳材料,使用蔡司热场扫描电镜Sigma 300拍摄。样品以氯化钠为结构模板,葡萄糖为碳源,经过冻干和热处理后获得碳包覆氯化钠颗粒结构,水洗去除氯化钠模板后,获得完美的三维多孔结构。新颖性在于以氯化钠为模板,后续可以水洗去除,可以应用于能源转换与存储领域如锂电池钠电池及电催化方向。胭脂海棠闹春浓作者:眭思密应用背景:钠离子电池电极材料仪器信息:TEM JEM-2100f样品制备:样品为溶剂热法制备的MoS2/CNTs复合薄膜。纳米花状的MoS2附着于CNTs外壁,单壁CNTs管束交织形成网络,层层网络重叠形成薄膜。拍照难点:溶剂热反应中,MoS2随机分散于CNT外壁,该照片准确捕捉了二者之间的空间相对关系,并且单壁CNTs管束、MoS2片层边缘都清晰可见。图片描述:“海棠不惜胭脂色,独立蒙蒙细雨中”,图片好似一朵盛开在两个枝杈间的海棠花,像胭脂带妆的少女,是青春、活力、娇美的象征。作为报春的使者,她让大地回春、春意渐浓,从图片中可以看出其蓬勃的生命力。碳纳米管森林作者:张睿&李乐应用背景:单壁碳纳米管垂直阵列具有巨大的比表面积、优异的导电性、良好的化学稳定性以及有序的结构,被认为是电极材料的理想候选材料。仪器名称及型号:蔡司热场扫描电镜(sigma 300)样品制备过程的难度、新颖性:本实验开发了新型纳米颗粒催化剂,可以在二维、三维基底上负载催化剂,并能够利用CVD法在基底上合成碳纳米管阵列材料,具有普适性,便于进行材料的宏量制备。层峦叠翠作者:李乐仪器:原子力显微镜AFM5500作品介绍:氧化铝碳纳米管阵列。锂金属负极的体积变化是实现金属锂电池实际应用需克服的障碍。氧化铝-碳纳米管阵列可以有效降低局部电流密度、缓解锂在充放电过程的体积膨胀。利用原子层沉积法,实现氧化铝在阵列内的均匀沉积。难度点:材料顶部仍应满足均匀的高度差,证实沉积后样品结构的稳定性。艺术处理:样品三维图显示出均匀的高度差,展现出重峦叠翠的景象。五彩斑斓的石头作者:李乐仪器:透射电镜JEM-2100F作品介绍:氧化铝包覆四氧化三铁纳米颗粒,三维基体上生长高有序度碳纳米管阵列可以作为优良电极材料应用于锂、钠、钾离子电池。然而传统电子束蒸发镀膜法沉积用于生长碳纳米管阵列的催化剂,难以实现其在三维基体上的均匀负载。本实验制备的均匀分散的氧化铝包覆四氧化三铁催化剂能够实现在三维基体上的均匀负载,并在基体上生长高有序度碳纳米管阵列。难度点:氧化铝包覆四氧化三铁纳米颗粒应满足粒径均匀、高面密度,以实现高有序度碳纳米管阵列的生长。白珊瑚的深海家园作者:白翔仁作品说明:材料为原位合成氧化镁纳米颗粒团簇的SEM图片,使用S4800扫描电镜拍摄。纳米氧化镁颗粒单个粒径约为5-10 nm,成团簇状分布,单个团簇粒径为300 nm左右,附着在基底上。纳米颗粒导电性差,且粒径细小,通过调整拍摄参数,得到衬度良好、分辨率高的团聚形貌图。图片说明:经过上色处理的作品名为《白珊瑚的深海家园》,将图片灰度调整为绿度,将纳米氧化镁图案侧构建为海底礁石上分布的白珊瑚球的意象。幽暗的海底,一块礁石上,一个个白色的珊瑚球附着在上面,融入静谧的海底世界中。五彩池作者:白翔仁作品说明:材料为纳米颗粒增强铝基复合材料晶粒的STEM图片,使用F200透射电镜拍摄。材料呈现纳米晶组织,晶粒约为200 nm左右。样品通过打磨、Gatan离子减薄仪减薄,得到块体透射样品,通过拍摄参数,得出取向衬度良好、分辨率高的微观组织图片。图片描述:经过处理的作品名为《五彩池》,通过色谱上色及水波微处理,将不同程度的晶粒构建为水底卵石的意象。阳光照射下,水波微微荡漾,掩映着水底的卵石时隐时现,像传说中的五彩池一般。为进一步激发学生们的科研兴趣和创新意识,提升实验技能水平,由天津大学材料学院主办,材料科学与工程国家级实验教学示范中心承办的天津大学首届“走进材料微观世界”—微观摄影大赛于近日成功举办。此次大赛受到了天津大学资产处、天津大学分析测试中心和化工学院大型仪器测试平台的大力支持和积极参与。经历一个月的征稿,共收到来自材料学院、化工学院、理学院、建工学院等全校118名学生的161幅作品。天津大学资产与实验室管理处副处长张为对本次大赛给予了高度肯定,他认为大赛顺应了国家加强高等学校实践教学、实践育人的要求,加强了不同专业、不同领域学科的交流和进步,展现了参赛学生们的科学素养和创新精神。材料学院院长胡文彬向本次大赛中的工作人员和评委老师以及各支持单位表示衷心的感谢,寄语同学们能永葆初心,在科研路上砥砺前行,真正认识到科学和材料的魅力所在!微观纳米世界藏匿着许多美丽与惊喜,等待着与有心人的相遇
  • 揭秘“大连光源”:人类探测微观世界的利器
    1月15日,辽宁省大连市,中国科学院研制的“大连光源”发出了世界上最强的极紫外自由电子激光脉冲。视觉中国供图  冬日的辽东半岛,海风凛冽刺骨。位于大连这座滨海城市西侧的长兴岛,因四面环海,人口稀少,更显得肃杀、冷清。但就在这里,一项新的世界纪录刚刚诞生。  1月15日,我国最新一代光源“极紫外自由电子激光装置”,即“大连光源”,发出了世界最强的极紫外自由电子激光脉冲,单个皮秒激光脉冲产生140万亿个光子,成为世界上最亮且波长完全可调的极紫外自由电子激光光源。  中国科学院副院长王恩哥评价这一成果时说,这是该院乃至我国又一项具有极高显示度的重大科技成果。“大连光源”中90%的仪器设备由我国自主研发,标志着我国在这一领域占据了世界领先地位。  更值得一提的是,该装置由中科院大连化学物理研究所和中科院上海应用物理研究所联合研制,开创了我国科学研究专家与大科学装置研制专家成功合作的先例。近日,中国青年报中青在线记者走进“大连光源”,采访有关专家进行揭秘。  看不见的“光”:人类探测微观世界的利器  在大连长兴岛,“大连光源”躺在一个长达100多米的隧道里。在这里,最常见的就是各种灯光闪烁的实验仪器,以及各类如同爬山虎般顺着架子连接着仪器的线缆,当然,还有各种看不见的“光”。  现实中,人们接触最多的“光”,怕是手机屏幕、电脑电视屏幕发出的光,还有白炽灯、霓虹灯的光,白天的太阳光,夜里的月光,以及大自然中水母、萤火虫发出的光,等等。那么,光的本质究竟是什么?  电磁波。  ——近代物理已经证明了这一点,并且发现光这种“电磁波”,还是人类认识和感知物质世界,探测原子和分子等微观世界的最重要工具。  比如,对于声音和图像,人类可以通过麦克风和摄像头转换成“电”信号,然后进行处理和传输。同样地,对于物质世界中的原子和分子,如果要“看到”它们,也只需要将其转换成易于识别和处理的“电”信号。  一个最直接的方法,就是将原子或分子中的电子“打”出来,让原子、分子变成带有正电荷的离子,带正电的离子击打在探测器上,就会形成“电”信号。如此,科学家就可以灵敏地探测即“看到”微观世界。  这其中的关键点,即将原子或分子中的电子“打”出来。不过,并非所有的“光”都能实现这一点。“极紫外光”是其中一种。  根据中科院大连化物所研究员戴东旭的说法,光(电磁波)本身带有能量,其波长越短,能量就越高。也因此,它分为可见光和不可见光,后者包括紫外光、红外光、X光,即人们通常所说的紫外线、红外线、X射线。  可见光的能量算是小的。其波长大致处于400~700纳米之间,可以刺激人的视觉细胞产生信号。  波长小于可见光的紫外光,因为能量高,会对人体产生危害,比如320~400纳米和270~320纳米之间的紫外光。  不过,当波长短到100纳米附近时,光所具备的能量,足以电离一个原子或分子而又不会把分子打碎,这个波段的光,被科学家称为“极紫外光”。  “大连光源”就是要造出这种“光”。一旦造出,就是人类探测微观世界的一把利器。  最新一代光源是“拍电影”,上一代是“拍照片”  “大连光源”总负责人、中科院大连化物所副所长杨学明院士讲了一个故事:19世纪末有人问,马在奔跑时,究竟有没有四蹄同时离地的瞬间?一时间众说纷纭,因为仅靠人眼观察,实在无法判断。直到有人设计出一套连续拍照的装置,将马连续奔跑的过程“分解”为一帧帧照片,才得出了结论。  杨学明说,要研究物质是如何变化、运动的,最好的方式就是将过程“记录”下来,能够让人们清楚地“看到”。如今,随着人类对自然界的认识不断深入,科学家已经知道,与人类生活息息相关的很多物理和化学过程,在本质上都是原子和分子过程。  而要控制或利用这些物理和化学过程,在杨学明看来,就需要在实验室里,研究这些过程所涉及的原子和分子的反应机制,因此,就需要精确并且高灵敏度地“探测”所涉及的原子和分子。  事实上,为了“看到”微观世界,人类制造出了各种各样的工具,这类工具统称为“光源”,其中一类在科学上广泛使用的光源,利用了粒子加速器获得高能粒子,高能粒子在磁铁阵列中震荡产生的高亮度的光被称为同步辐射光。  物理学家斯蒂芬霍金曾经说过,粒子加速器,是人类拥有的最接近时间机器的设备。而人类所能达到的最高温度记录,也是在粒子加速器中创造的。  从上世纪40年代,美国在加州大学伯克利分校发展了第一代高能电子束同步加速器之后,高亮度的同步辐射光源,已经成为当代科学研究最为重要的实验工具之一。世界各国先后建立了几十台第三代光源,我国也有北京正负电子对撞机、合肥光源、广东散裂中子源、兰州重离子装置、上海光源等。其中合肥光源和上海光源属于第三代光源。  如今建成的“大连光源”,则是第四代,也是最新一代的光源,即自由电子激光装置。中科院上海应用物理研究所所长赵振堂研究员说,这是当今世界上唯一运行在极紫外波段的自由电子激光装置,也是世界上最亮的极紫外光源。  那么,第三代同步辐射光源和第四代自由电子激光装置究竟有何区别?  赵振堂打了一个比方,上一代是“拍照片”的,而最新一代光源是“拍电影”的,进一步说,即第三代光源只能“看到”微观世界物质的结构,而第四代光源则能记录下微观世界物质的动态过程。  杨学明以雾霾为例,从现有的研究来看,霾是一个从分子结构聚集起来的团簇,包括水、污染物等,那么在研究雾霾时,不仅要知道它是什么结构,即由什么组成,还要搞清楚这些组成部分,是如何聚集在一起的,这就需要科学家不仅要看到静态的结构,还要看到动态的过程。  比如,在空气潮湿的时候,空气中霾的成分通常会有一个明显的增长,为什么会这样,这就需要对其发展过程进行研究。也因此,杨学明将“大连光源”这个第四代光源,称为观察原子、分子反应过程的摄像机,在原子、分子层次上探索物质世界的奥秘。  科学研究专家与大科学装置研制专家首次携手  第四代光源还有一个特点:足够亮。  赵振堂给出一组对比:比起一般家用的白炽灯,太阳的亮度是其1万倍 比起太阳,第三代光源则要亮100亿倍 那么,比起第三代光源,第四代光源还要再亮100亿倍。这里的亮度,是一个科学的概念,也称为峰值亮度,定义是单位时间内、单位立体角内、单位面积上、单位波长范围内所发射的光子数量。  在这般光源的照射下,几乎所有的原子和分子都“无处遁形”。戴东旭说,如今建成的“大连光源”,就是当今世界上在极紫外波段最强的自由电子激光,因此是研究与原子分子过程相关的物理和化学科学问题的强有力的利器。  事实上,在越来越强调协同创新,而非“单打独斗”的大科学时代,像“大连光源”这样的大科学工程,越来越为科学界所重视。  如今,“大连光源”的建成出光,在王恩哥看来,也将大大促进我国在能源、化学、物理、生物、材料、大气雾霾、光刻等多个重要领域研究水平的提升,为我国的科技事业注入新的活力。  杨学明也告诉记者,新的仪器发展,是学术研究发展最为重要的基础,没有新的科学仪器,在物理化学领域可以说是寸步难行。他还记得,当初之所以提出建设“大连光源”,正是因为科研工作多年受困于反应中间体的探测难题。  当时,他找到赵振堂,双方一拍即合:这是我国打造新一代光源的绝佳契机。更为重要的是,双方都意识到,这一项目将是科学研究专家与大科学装置研制专家的首次携手,而这,对于未来加快推动大科学装置在科学研究中的应用,具有重要的现实意义。  很快,“大连光源”得到国家自然科学基金委国家重大仪器专项的资助,于2012年年初正式启动,2014年10月正式在大连长兴岛开工建设。仅两年时间,就完成了基建工程以及主体光源装置研制。  去年9月24日22时50分,超过300兆伏的电子束流,依次通过自由电子激光放大器的各个元件。终于,总长18米的波荡器阵列,发出了第一束极紫外光。  如今,经过调试后的“大连光源”,早已能发出更为强大的光束。但科学家并不会止步于此,中科院大连化物所研究员张未卿透露,国内未来很有可能进军X射线波段的第四代光源。
  • 微观世界|第1期 认识雾霾之盾
    认识雾霾之盾——口罩的微观视界序言冬季以来,环境问题—“雾霾”成为人们关注的焦点。网上关于“雾霾”以及“防雾霾”口罩的报道层出不穷。OPTON作为实验室系统解决方案供应商,以自己的显微视角对“雾霾”问题进行了分析和研究,同时,OPTON希望能通过显微分析技术来拓展大家对生活中微观世界的认识。 本期主题是走进“雾霾之盾—口罩”的微观视界。通过电子显微镜对“平时生活中市场上用的最多最有效的几款防PM2.5口罩进行观察分析,带大家一起去领略电镜下的防雾霾口罩。 一、口罩宏观拆解左:EPC 活性炭口罩 KN95;右上:霍尼韦尔H950V;右下:绿盾M95 以上三种口罩皆为颗粒物过滤效率高于95%的口罩,EPC与其它两款口罩不同的地方在于口罩内部加了活性炭层。左:霍尼韦尔H950V;中:绿盾M95;右:EPC 活性炭口罩 KN95; 将口罩截面剪开可以发现,除了霍尼韦尔、绿盾【无纺布-静电滤棉-无纺布】这种经典的口罩结构外,EPC还额外多出了【活性炭层】及【加厚静电滤棉】层。一、口罩微观视界1. 无纺布三种品牌最外层无纺布扫描电镜形貌(左边为低倍、右边为高倍) 防PM2.5口罩的无纺布均采用热轧加固的方式进行成型的,因此从左边三幅图可以发现凡是无纺布上都会有类似压扁的致密“扁坑”。其中由于无纺布制造工艺不同:在形貌上霍尼韦尔的无纺布最致密、“扁坑”最深,绿盾的无纺布最疏松、“扁坑”最大而平;EPC介于两者之间。2. 静电滤棉 静电滤棉也为无纺布中的一种,在无纺布生产后经过静电处理会带有静电。这种静电力会对从其内通过的气体中的微粒物进行吸附,是防PM2.5口罩中,吸附PM2.5颗粒物的主要战斗力。从图中右侧高倍图片可以看出:EPC的静电滤棉最致密,但是形貌不均一,有带状显微及球状纤维颗粒存在;绿盾的静电滤棉纤维形貌最均一,且滤棉也比较致密;霍尼韦尔介于两者之间。3. 活性炭层+加厚静电滤棉EPC活性炭口罩比其它两款多出的两层(右上:活性碳层;右下:加厚静电滤棉层) 三种品牌的口罩在各层性能相差不大的情况下,EPC多出的两层过滤层会有更多的功能:活性炭层不但可以吸附颗粒物,同时对空气中的气体也会起到一定的收集作用,从图中右上部分可以看出在活性碳层上,纤维上有大量的活性炭存在。加厚的静电滤棉层与之前的静电滤棉层形貌有很大的差别,对漏过的少量颗粒物进行再一次吸附,起到进一步的颗粒物过滤功能。 一、后记通过显微分析可以观察到我们平时肉眼不可见的形貌细节,对实际生产与生活中的工艺控制及性能形貌学分析有很重要的意义,是反向工程中重要的技术手段之一。除了EPC这款N95口罩外,市面上也有很多其它品牌的带有活性炭层的PM2.5口罩,基本都是五层结构,最明显的区别就是含有活性炭层的口罩外观都为浅灰色,价格会比同过滤级别的口罩稍高一些。目前口罩品牌及型号很多,笔者仅选择网上用户采购最多的几款来进行实验,向大家介绍显微分析的魅力之处,具体如何评判各种款式口罩的优劣目前还没有比较行之有效的方法,希望后期能与大家进行进一步交流。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制