红外吸收成像

仪器信息网红外吸收成像专题为您整合红外吸收成像相关的最新文章,在红外吸收成像专题,您不仅可以免费浏览红外吸收成像的资讯, 同时您还可以浏览红外吸收成像的相关资料、解决方案,参与社区红外吸收成像话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

红外吸收成像相关的耗材

  • 红外热成像系统配件
    红外热成像系统配件是经济型的红外热成像系统,以超低的价格提供多样的热成像功能。它能够提供电路板,电子元器件,芯片等样品的精确而详细的温度信息和温度分布。红外热成像系统配件可以用于实验室研发,检测,产品设计,电路失效分析等领域,是红外热成像系统的最佳选择。远远超过传统的温度探测器如热敏电阻,热电偶,RTD之类的测温能力。红外热成像系统配件应用热点Hot spot和短路探测电路板失效分析产品研发和检测评估医学研究材料分析红外热成像系统配件特色实时热图像分析软件精准的热点/hot spot 探测功能-20到500°C测温范围0.08°C的热灵敏度30幅/秒的热图像拍摄能力探测器分辨率高达320x240像素具有广角镜头增大拍摄面积
  • 红外热成像仪配件MTI384
    红外热成像仪配件MTI384是全球领先的红外热像仪,具有65mk的超高热灵敏度,红外热成像仪MTI384可以识别物体的最小温差并用超清晰的热图像显示温差。红外热成像仪配件MTI384特色可以立刻确定过热/过冷的部分,使用我们专业的热分析软件可以获取有关故障的更多细节。 红外热成像仪配件MTI384特点高度清晰的热图像和高精度的温度测量,精度±2%,热灵敏度为65mk。宽大的温度测量范围,标准范围是从-20°C至350°C,可以选择高达1200℃。激光指示器帮助用户在操作时轻松定位目标。内置麦克风将录制40秒语音注释,用户可以使用麦克风对每一个热图像进行快速语音注释,语音注释将和热图像一起存储。摄像机有可更换IR 镜头,设计更灵活,MTI160和 MTI384可以采用广角镜头或长焦镜头。使用可更换镜头设计,MTI系列可呈现更大的图像部分和用广角镜头进行快速概述,以及使用长焦镜头测量物体对象的更多细节。高温测量选项。将一个高温过滤器透镜安装到原始摄像机镜头上,MTI 160和MTI 384摄像机的温度测量范围可以扩展到1200℃。自动热/冷/平均点识别装置会显示自动热/冷/平均点识别的临界温度条件。确保不间断地错误识别。提供单手操作的直观简单操作菜单,快速简单地对明确的维护应用进行操作。MTI160和MTI384摄像机自带多功能电脑分析软件 IRSee Free IRSee。用户可以使用IRSee软件分析热图像和可见光图像,以及将所有信息导出到微软办公软件中,方便进行编辑报告。 红外热成像仪配件MTI384应用建立诊断电气/机械检验研究与开发自动化应用预防和预测性维护
  • testo 875-1i 全新升级,经济型红外热成像仪
    testo 875-1i 全新升级,经济型红外热成像仪产品参数:红外探测器尺寸160×120像素SUPER 红外超像素功能,优化像素至320×240高热灵敏度 标配广角镜32° x 23°冷/热点自动追踪功能手动调焦温度量程至 -20 to +350°C仪器配置:专业版的分析软件SD储存卡USB连接线主机可充电锂电池三脚架连接件防尘,坚固型仪器箱订货号:0563 8751testo 875-1i 全新升级,经济型红外热成像仪

红外吸收成像相关的仪器

  • 背景介绍—瞬态吸收光谱和瞬态吸收成像的应用基于泵浦探测(Pump-Probe)原理的瞬态吸收光谱,在频率维度和时间维度上提供了丰富的光谱和动力学信息,过去的几十年应用于物理、化学、材料、能源、生物等广泛领域。当今,许多领域科学研究的范式和需求都在不断更新。尤其是随着钙钛矿光伏、二维材料、量子器件、高温超导等前沿领域的发展,科学家迫亟需在空间维度上揭示载流子等微观离子的迁移和演化规律,研究微纳米材料的物理态在空间分布上的异质性。瞬态吸收成像,可在空间和时间维度上研究微观粒子和能量的运动和演化,是研究微观粒子和能量的时空演化、阐释微观机制的重要工具。瞬态吸收成像,一般有两种实现方式,点扫描成像和宽场成像。相对点扫描成像,宽场成像模式具有速度快、通量高,成像质量更加细腻的特点。Omni-TAM900为北京卓立汉光仪器有限公司全新推出的一款宽场飞秒瞬态吸收成像系统。该系统集成像和动力学于一体,联合飞秒泵浦-探测技术和显微技术,通过自主知识产权的干涉放大技术增强图像信噪比,可获得高质量的成像效果并大幅度缩短测试时间。仪器基本功能和性能:仪器具有点泵浦-宽场探测,和宽场泵浦-宽场探测两种工作模式。分点泵浦模式可用于测量载流子迁移和热导率等;宽场泵浦模式可用于测量载流子分布和物理态的空间异质性等。仪器特点和创新高灵敏、高通量,可测量到单个纳米颗粒、单层石墨烯乃至单层分子晶体的瞬态吸收信号。仪器原理和实现方式Omni-TAM900宽场飞秒瞬态吸收成像系统原理如下图所示,经过飞秒激光器和光学参量放大器(OPA)之后出来的飞秒激光,通过显微镜的光学系统进入,并作为泵浦光源激发样品,而另一束经过空间调制的探测光在一定的时间延迟之后也经过显微系统到达样品,样品在激发态对探测光产生的吸收情况会被显微镜上的sCMOS 相机记录下来。通过调节光学延迟线(Optical Delay Line),得到样品在不同延迟时间下的sCMOS图像。Omni-TAM900 可以有两种成像模式(如下图所示): 聚焦泵浦光模式(点泵浦,宽场探测)和宽场泵浦光模式(宽场泵浦、宽场探测),前者主要用于研究载流子的迁移,后者用于检测载流子的空间分布状况。软件软件可进行同步采集,自动控制和处理,载流子的寿命、载流子的迁移速率、载流子的分布、动力学等信息均可以通过软件得到。应用方向及实测数据 Omni-TAM900宽场飞秒瞬态吸收成像系统是测量载流子时空演化的强大工具,可广泛应用于物理、材料及器件的前沿研究,比如:太阳能电池、低维材料、量子器件、超导材料、新型半导体、纳米催化、生物传感等,对纳米尺度和飞秒时空尺度中的超快的物理、化学及生物过程进行监测。 金属镀膜中的载流子迁移和热扩散10 nm厚金属薄膜上的超快热载流子和热扩散,采用仪器的点激发,宽场探测模式。半导体中的载流子迁移和热扩散同时监测Si基半导体中的载流子迁移和热扩散(可测量半导体材料的热导率),采用仪器的点激发,宽场探测模式。光伏材料中的载流子迁移和演化钙钛矿CsPbBr3载流子成像,迁移动力学及边缘态动力学研究。采用仪器的宽场激发,宽场探测模式催化材料中的热载流子分布和“热点”局部热电子密度高、寿命长,可能具有更高的催化活性。采用仪器的宽场激发,宽场探测模式。新型二维材料中的边缘物理态研究二维WS2中激子分布情况,激子寿命研究。可以看到,多层的边缘具有更高激子密度和更长激子寿命技术参数 光源飞秒激光 +OPA,激光波长范围取决于应用场景检测器sCMOS成像空间分辨率500 nm载流子迁移定位精度30nm时间分辨率500 fs (100 fs 激光脉冲条件下)时间延迟线0-4 ns/0-8 ns显微镜模块倒置显微镜,上方为开放空间,后期可兼容低温模块、探针台、电学调控、磁场等特殊实验场景。测量模式点泵浦 + 宽场探测(载流子迁移)宽场泵浦 + 宽场探测(载流子分布)仪器工作模式反射 / 散射已发表文献:J. Am. Chem. Soc. 2022, 144, 13928专利:202110510123.X(以上展示的所有实测数据均为本型号仪器测得,并已公开发表,更多细节请查阅以上文献)。更多参考文献:(为了方便用户参考研究前沿,如下列出一些国际上利用瞬态吸收成像方法的研究案例。这些数据并非用该型号仪器获得,但是卓立Omni-TAM900仪器可实现这些应用场景中的绝大多数功能。如有特殊需求,欢迎与卓立汉光联系。)Science 2017, 356, 59 (钙钛矿超长热载流子)Nat. Mater. 2020, 19, 617 (转角二维量子异质结)Science 2021, 371, 371 (超导材料电荷密度波)Science 2022, 377, 437 (立方砷化硼超高载流子)Nat. Mater. 2020 , 9, 56 (材料中的携能载流子)
    留言咨询
  • 首创、独有的纳米红外功能和性能Bruker公司推出的Dimension IconIR是一款集合了纳米级红外光谱(nanoIR)技术和扫描探针显微镜(SPM)技术的系统。它整合了数十年的技术创新和研究成果,可以在单一平台上提供无与伦比的纳米级红外光谱、物理和化学性能表征。该系统具有超高的单分子层灵敏度和化学成像分辨率,在保留DimensionIcon最佳的AFM测量能力的同时,还提供了极大的样品尺寸灵活性。Dimension IconIR利用Bruker独有的PeakForce Tapping纳米级物性表征技术和专利的纳米红外光谱技术,使得它能够在纳米尺度下对样品进行纳米化学、纳米电学和纳米力学的关联性表征。只有Dimension IconIR具备:与FTIR完全吻合的红外光谱,优于10 nm的空间分辨率和单分子层灵敏度的高性能纳米红外光谱化学成像可与Peakforce Tapping纳米力学和纳米电学属性表征相关联高性能的AFM成像功能和极大的样品尺寸灵活性广泛适用的应用配件和AFM功能模式专利技术保证真实的红外吸收光谱AFM-IR通过采集样品的热膨胀信号(PTIR)还原样品的红外吸收光谱。由于检测区域的热膨胀只与样品在该波长下的吸收强度有关,而常规的傅里叶红外光谱(FTIR)检测的也是样品在该波长下的吸收强度,因此AFM-IR获得的红外吸收光谱与传统的红外吸收光谱高度吻合。红外吸收成像除采集指定区域的红外吸收光谱外,Dimension IconIR同时提供了固定红外脉冲波长,检测样品表面某一区域在该波长下吸收强度的功能。在该工作模式下,Dimension IconIR会将红外脉冲激光固定在研究者所选的波长,用AFM探针扫描需要检测的表面,记录探针针尖在每个位置检测到的红外吸收强度,并同时给出AFM形貌和该波长下的红外吸收成像。专利保护的接触共振技术专利保护的共振增强技术将测量灵敏度提高到单分子层级别,达到最高的光谱检测灵敏度。因为基于原子力系统的红外技术是以探针来检测样品表面在红外激光作用下的机械振动,随着厚度的减小,这种位移量变得极其微小,超出了原子力显微镜的噪音极限。我们利用专利保护的可调频激光优化脉冲信号频率,使之与探针和样品的接触共振频率吻合,那么这种单谐振子共振模式就能把微弱信号放大两个数量级。。智能光路优化调整,保证实验效率红外激光和AFM联用系统的最大挑战在于光路的优化,为了得到最佳的信号,在实验过程中光斑中心应该始终跟随探针针尖位置并保持良好的聚焦。但是在调频过程中,激光光束的发射角度会随着波长的变化而改变,进而改变光斑位置,聚焦状态也会变化。布鲁克采用全自动软件控制automatic beam steering和自动聚焦系统来修正光斑位置的偏移和聚焦,大大改善了传统联用系统需要手动调节的不便和低效率。同时全自动动态激光能量调整保证信号的稳定性,避免红外信号受激光不均匀功率的影响。
    留言咨询
  • 中红外指纹区成像仪 什么是指纹区域目前可用的电磁源、光谱色散器件和探测器使在电磁波谱可见到近红外部分的低成本便携式光谱仪设备的开发成为可能。尽管已经报道了一些应用,但在电磁波谱区域内的有机成分识别是非常具有挑战性的,因为它对应于分子伸缩振动能级的泛音带。因此,该地区有机化合物的光谱特征往往不清楚,很难准确区分复杂混合物的各个成分。准确识别样品成分的理想方法是通过光谱中所谓的“指纹”区域的光谱,即基本分子能量带所在的区域。指纹区域位于大约7m 和20m(500cm -1 至1450cm -1)之间,称为中远红外(MIR),可用于区别不同化合物结构上的微小差异。犹如人的指纹,故称为指纹区。指纹区的红外吸收光谱很复杂,能反映分子结构的细微变化。这个区域的振动类型复杂而且重叠,特征性差,但对分子结构的变化高度敏感,只要分子结构上有微小的变化,都会引起这部分光谱的明显改变。 图通过显示在指纹区域典型有机化合物的吸收特征,而图中左侧所示的近红外谐波区域则没有这种特征。红外光谱指纹区的特点: l 多峰性l 峰特征性l 峰移动性l 精细性红外指纹成像光谱仪INO 在MEMS 开发方面的背景使其在开发在红外指纹光谱区域的微型成像光谱仪器方面处于优势地位。这主要归功于INO 作为微测辐射热计传感器发展的世界领先者的地位。与傅里叶变换红外光谱仪(FTIR)中使用的制冷红外成像阵列相比,微测辐射热计传感器非制冷,体积小, 价格便宜,是小型化,低成本红外光谱成像系统的理想选择。此外,INO 开发了一种在微测辐射热计阵列像素上沉积金黑宽带吸收体的工艺。与标准测辐射热计吸光度相比,金黑吸收器将测辐射热计的吸光度提高了两倍,因此灵敏度提高了2 倍。金 - 黑吸收体还允许前所未有的大波长吸收范围:从电磁波谱的可见光到太赫兹区域。由于几种微机电“MEMS”技术的融合,光谱学世界正在经历变化。 MEMS 微测辐射热计阵列与MEMS 扫描法布里 - 珀罗干涉仪和小型化成像透镜的集成使得能够创建小型,低成本的高光谱成像仪器,可以在电磁频谱的红外“指纹”区域工作。到目前为止,这主要是大型,昂贵的基于傅立叶变换干涉仪(FTIR)的仪器领域。这些仪器通常仅限于实验室环境,由经过培训的专家操作。小型、低成本的成像光谱仪的出现将极大地减少这些设备进入的障碍,使得这些技术在实验室外得到更广泛的应用。随后,在农业和食品质量,先进制造业,生物医学,国防和安全等领域设想开发一系列新应用。
    留言咨询

红外吸收成像相关的试剂

红外吸收成像相关的方案

红外吸收成像相关的论坛

  • 显微成像近红外技术

    [font=宋体]传统的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术测量的是平均光谱,反映样本的平均组成,而近红外显微成像技术增加了光谱的空间分布信息,可以使样品的异质性得到进一步[/font][font=宋体]确定。近红外显微成像系统是将[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]与光学显微镜联用的系统,主要由近红外主机、近红外显微镜系统和计算机组成。近红外主机多采用干涉分光原理,主要部件包括迈克尔逊干涉仪、显微镜光学系统、检测器等。显微镜把光束聚焦到测量样品的微区上,可移动镜头从而对样品进行点、线、面的分子水平的扫描,可以快速获得大量的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]图,并把测量点的坐标与对应的红外光谱同时存入计算机,得到不同化合物在微区分布的平面图或立体图。[/font][font='Times New Roman']1. [/font][font=宋体]近红外显微成像技术的特点[/font][font=宋体][font=宋体]([/font][font=Times New Roman]1[/font][font=宋体])样品不需预处理。[/font][/font][font=宋体][font=宋体]([/font][font=Times New Roman]2[/font][font=宋体])穿透能力强。[/font][/font][font=宋体][font=宋体]([/font][font=Times New Roman]3[/font][font=宋体])水的干扰小,可以对鲜活组织和溶液中的细胞样品直接测定。[/font][/font][font=宋体][font=宋体]([/font][font=Times New Roman]4[/font][font=宋体])测定的区域可达到[/font][/font][font='Times New Roman']lcm[/font][sup][font='Times New Roman']2[/font][/sup][font=宋体]以上,并且可以检测粗糙表面的样品。[/font][font=宋体][font=宋体]([/font][font=Times New Roman]5[/font][font=宋体])非接触性、非破坏性、无环境污染。[/font][/font][font=宋体][font=宋体]([/font][font=Times New Roman]6[/font][font=宋体])二维光谱可以增强分辨率,展示更多的细节。[/font][/font][font=宋体][font=宋体]([/font][font=Times New Roman]7[/font][font=宋体])可分析多种物态的样品。[/font][/font][b][font='Times New Roman']2. [/font][font=宋体]成像方式[/font][/b][font=宋体][font=宋体]([/font][font=Times New Roman]1[/font][font=宋体])总吸收图像,以每一个的数据点的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]图为基础,宏观显示图像分析区域内的近红外吸收强度。[/font][/font][font=宋体][font=宋体]([/font][font=Times New Roman]2[/font][font=宋体])单波长成像,以特定波长的近红外吸收强度为特征,显示对应化学官能团在图像分析区域内的分布信息。[/font][/font][font=宋体][font=宋体]([/font][font=Times New Roman]3[/font][font=宋体])化学成像,也叫峰面积图像,是以特定吸收峰的峰面积为特征,显示对应化学官能团在图像分析区域内的分布信息。[/font][/font][font=宋体]([/font][font='Times New Roman']4[/font][font=宋体])相关谱成像,以某一张[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]为标准,计算出整个图像上的像素点光谱与它的相关性,再以相似度为度量成像。特别适于鉴别纯物质中的零星污染物。[/font][font=宋体]([/font][font='Times New Roman']5[/font][font=宋体])峰比率成像,以[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]图不同吸收峰的峰比率为特征,显示对应化学官能团在图像分析区域内的分布信息。[/font][font=宋体]近红外显微成像技术在材料、食品、医药等行业已经发挥了较大的作用,利用其进行化学成分测定及微区分析,快速、简单、直观。与扫描电镜、透射电镜、电子探针、[/font][font='Times New Roman']X[/font][font=宋体]射线衍射等其他微区分析技术相比,近红外显微成像技术具有制样简单、操作方便、快速定量、无损分析的优点。因此,作为现代分析技术,近红外显微成像技术必将得到越来越广泛的应用。如何建立适用性、稳定性更好的数学模型,实现不同仪器之间、同一仪器不同条件下的定标模型的转移,以及与其他分析技术的联用将是近红外显微成像技术的发展趋势。[/font]

  • AR加持红外热成像,彻底解放双手

    近日,AR头显公司Leapsy发布热成像AR头显,将AR与红外热像技术集成,以此来解决传统热像仪设备占用双手不方便操作的问题。据悉,Leaspy热成像AR头显采用自由曲面方案,视场角(FOV)为60°,内置单目红外镜头,通过软件算法实现对热源温度的检测,将具有不同温度区分的热像结果显示于AR头显上。在使用环境是30℃的情况下,热灵敏度可以精确到0.05℃。考虑用途的特殊性,Leaspy的这款热成像AR头显在外形设计上与安全帽相结合,以保护使用者在工业场景下的安全。从呈现效果来看,热成像AR头显可以三维效果近眼距离查看温度检测结果,了解温度等指标,并将数据收集,远程传送。另外,人体工学设计和材质选择适用于长期作业的使用场景。[url=http://www.861718.com/]了解更多请看仪商网[/url]Leapsy的一名负责人表示:“AR热成像头显的研发以及与电力场景的结合,是我们与传统行业的一次创新尝试。在此基础上,随着市场的逐渐成熟,未来Leapsy计划拓展防火预警及安防等领域。” 此外,其还表示该热成像AR头显或将于2018年第四季度上市。其实,红外热像技术主要用于工业检测、设备维护、防火、夜视以及安防等领域。Leapsy则希望为这一细分领域注入新的技术动力,通过热成像AR头显为使用者提供了更多元化的操控方式,切实解放了双手。最后,Leapsy也表示,未来将不断完善热成像技术,提高产品的性能。

  • 【求助】红外/近红外成像系统

    最近学习中,看到有一种红外/近红外成像系统,不知道它具体有什么用,以及原理是什么?在网上搜索了没找到合适的学习资料,不知道在哪儿能找到有用的东西?

红外吸收成像相关的资料

红外吸收成像相关的资讯

  • 【瑞士步琦】从猫爪草提取物当中有效分离紫外吸收与非紫外吸收成分
    从猫爪草提取物中分离紫外吸收与非紫外吸收成分Pure 应用”猫爪草是一种热带藤本植物,是科学研究的一种宝贵的药物资源。活性成分为生物碱,丹丁酸和其它可能有促进免疫系统功能潜力的植物素。其中,生物碱有降压药的效果,可降低胆固醇,除此之外,还具有消炎、抗氧化和抗癌等特性。1方法萃取条件萃取类型研磨重量2g萃取溶剂乙醚溶剂体积20ml超声波提取30minFlash 色谱条件FlashPure EcoFlex 12g Sclia流速25ml/minUV1 波长254nmUV2 波长280nm溶剂 A正己烷溶剂 B乙酸乙酯进样模式液体ELSD 载体空气柱平衡时间5min洗脱方法步骤1234时间(min)0.03.03.04.0%B3030100100▲ 图 1. 在装有 12g Sclia 填料的 FlashPure EcoFlex 柱上对猫爪草进行纯化。色谱图说明使用紫外检测器和蒸发光散射检测器检测峰的诸多优点。通过调整流动相的梯度对方法进行优化以期获得更好的分离效果,方法如下:洗脱方法步骤1234时间(min)0.03.09.01.0%B3030100100▲ 图 2. 优化后的方法使得整体分离度大大提高,在 ELSD 检测器的加持下,可以有效检测到无紫外吸收的目标产物。使用分析型 HPLC 将两组实验与初始粗提物进行分析对照,结果如下:▲ 图 3. 通过对照发现只用 UV 检测器对样品进行纯化,不能检测非发色团的产物,导致馏分纯度不高。使用 ELSD 检测器收集的馏分可分离出高回收率和高纯度的组分。2结论天然产物在新药物研发中发挥重要的作用。粗提物通常含有活性良好的先导化合物,因此分离和纯化时需要很多步骤且充满未知性。Pure 系统收集包括 UV 检测器和 ELSD 检测器在内的多个检测器的信号,克服了使用传统 Flash 色谱方法遇到的纯化瓶颈,大大提高目标产物的纯度和回收率。化学家可以在双检测器以及 Navigator 技术的帮助下,有效地从粗提取物中分离目标化合物和含量低的成分,节省时间和人力成本。3参考Cat's Claw Technical Literature, Raintree Nutrition, Carson City, Nevada.Medicinal natural products a biosynthetic approach, 3rd edition Dewick, P. John Wiley & Sons, Inc., Hoboken, New Jersey, 2009.
  • 中海油天津钻采院红外测油仪OCMA-305验收成功
    中海油天津钻采院红外测油仪OCMA-305验收成功我司于2013年11月20日在中海油天津钻采院对红外测油仪OCMA-305进行现场验收。工程师对仪器的基本技术参数进行现场的校正和标定,经检测仪器性能及各项技术指标显示良好,完全符合其给出的标准。同时,现场工程师针对仪器的使用及维护做了详细的说明和介绍,相关使用者参与了现场培训,最终在钻采院相关项目执行人的配合下签订了验收合格报告,最后,在通过专家组的严格评审之后,项目顺利通过验收,至此,HORIBA红外测油仪OCMA-305项目圆满完成。标志着此次验收的圆满成功。中海油天津钻采院作为中国海洋石油系统的重点单位,能够选择日本HORIBA红外测油仪OCMA-305作为其实验仪器,说明我们的仪器在业界得到了一定的认可。其使用此红外测油仪主要用于检测油田废水中的油含量,一旦超标在排出后将会对环境造成很大的影响,不利于环保理念的践行,因此希望我司的仪器以后能够在类似行业中得到更广泛的推广。再次祝贺中海油天津钻采院OCMA-305项目验收取得圆满成功。
  • 全新一代纳米光谱与成像系统-neaSCOPE,在可见、红外和太赫兹光谱范围实现10 nm高分辨光谱和成像!
    一、 neaspec推出全新一代纳米光谱与成像系统neaSCOPE系列产品 近期,全球知名纳米显微镜领域制造商neaspec推出了纳米光学显微镜neaSCOPE全新一代系列产品,加载了全新技术,拓展了产品功能,以满足客户多样的实验需求。neaSCOPE是基于针增强的纳米成像和光谱,以应用为目的,满足客户在科学,工程和工业研究等不同领域的科研需求。由于其高度的可靠性和可重复性,neaSCOPE已成为纳米光学领域热点研究方向的科研设备,在等离子激元、二维材料声子化、半导体载流子浓度分布、生物材料红外表征、电子激发及衰减过程等众多研究方向得到了许多重要科研成果。neaSCOPE技术特点和优势包括:♢ 行业的针增强技术,高质量的纳米分析实验数据。♢ 采用模块化设计,针对用户的实验需求量身定制配置,同时兼顾未来的升需求,无需重复购置主机。♢ 软件使用方便,提供交互式用户引导功能,让新用户也能快速上手。流程化的软件界面,逐步引导用户轻松完成实验操作。♢ 功能多样、可靠性高,已得到大量发表文章的印证,在纳米光学领域有很深的影响力,是国内外实验室的头号选择。二、neaSCOPE全新一代产品型号 IR-neaSCOPE:基于AFM 针的激光诱导光热膨胀的纳米红外成像和光谱。IR-neaSCOPE可测量纳米红外吸收谱。该设备利用AFM-IR机械信号来检测样品中激光诱导的光热膨胀。IR-neaSCOPE无需红外探测器和光学干涉仪,为热膨胀系数大的样品(如聚合物、生物材料等)提供了一种经济高效的纳米红外成像及光谱研究的解决方案。IR-neaSCOPE提供红外吸收成像,点光谱和高光谱成像,并可升到IR-neaSCOPE+s,拓展更多功能,实现更多种类材料的研究。♢ 将样品的光学与机械性质有效地去耦,实现无伪影的吸收测量。♢ 将激光地聚焦在探针上,实现优化条件下对样品的无损表征。♢ 互动式软件界面,帮助新用户直接上手,获取高质量数据。IR-neaSCOPE+s:探测商用AFM针的弹性散射光,实现纳米红外成像和光谱。IR-neaSCOPE+s能实现10 nm空间分辨率的化学分析和电磁场成像。该设备利用先进的近场光学显微镜技术来测量红外吸收和反射率,以及局部电磁场的振幅和相位。设备支持红外纳米成像、点光谱、高光谱、以及纳米 FTIR,可使用CW照明源,宽波激光器,以及同步辐射源。IR-neaSCOPE+s在有机和无机材料分析方面具有广泛的应用案例以及特殊的近场表征手段,如定量s-SNOM或亚表面分析。♢ 同时探测样品吸收和反射,适用于各类型材料。♢ 快速可靠的s-SNOM成像和光谱系统,在不影响数据质量的情况下实现高效数据产出。♢ 结合多光路设计和多项技术,实现大量选配功能(纳米 FTIR、透射、底部照明、光电流等)。...… VIS-neaSCOPE+s:局部电磁场偏振分辨的近场成像(振幅和相位)。VIS-neaSCOPE+s优化了可见光波长范围内的振幅和相位的矢量场成像。利用的s-SNOM技术实现对等离子体纳米结构和波导结构的近场成像和光谱研究。VIS-neaSCOPE+s提供灵活的光路配置,能够进行偏振测量、侧面和底部照明。同时支持升纳米FTIR 和TERS功能。♢ 检测局域电磁场的振幅和相位,实现对波衰减、模场和色散的全面表征。♢ 有的100%无背景检测技术和稳定的无像差对焦,保证在可见光全波数范围内的实验结果。♢ 灵活的光路选配,可将光源聚焦到样品或探针上,适用于等离子体不同的研究方向。 THz-neaSCOPE+s:纳米尺度太赫兹 (THz) 近场成像和光谱多功能平台。THz-neaSCOPE+s可在纳米尺度上实现太赫兹成像和光谱。该设备基于完全集成的紧凑型 THz-TDS 系统,可直接用于半导体纳米结构、二维纳米材料和新型复合材料系统的电导率研究。THz-neaSCOPE+s同时支持用户自由耦合太赫兹和亚太赫兹源,并集成了市面上SPM仪器中的软件界面,是强大的纳米太赫兹分析仪器。 ♢ 全反射光路,大程度上兼容宽波和单波太赫兹源,覆盖全部光谱范围。♢ 模块化设计和多光束路径设计,支持多种分析功能,包括光电流、泵浦以及纳米FTIR。♢ 基于THz-TDS 技术,实现紧凑且完全集成的太赫兹纳米光谱。 IR-neaSCOPE+fs:10 fs 时间分辨率和 10 nm 空间分辨率的超快泵浦光谱。IR-neaSCOPE+fs实现了泵浦光谱空间分辨率的突破。设备基于纳米FTIR 的fs激光系统,提供完全集成的硬件和软件系统,实现纳米的时间动态研究。该系统具备有的双光路设计、无色散光学元件、以及可选配的SDK,兼容各种泵浦激光器,使用成熟的高功率实验配置进行突破性的超快研究。♢ 完全集成的系统,帮助用户免于复杂的设备调试,专注于研究本身。♢ 无芯片的光学元件进行光聚焦和收集达到大时间分辨率。♢ 灵活的硬件和软件界面,可根据客户实验需求定制。 IR-neaSCOPE+TERs:nano-FTIR与nano-PL和TERS相结合,突破性的纳米尺度光谱探测技术。IR-neaSCOPE+TERs将纳米FTIR与针增强拉曼TERS和光致发光(PL)光谱相结合,在同一显微镜内利用弹性和非弹性散射光同时进行表征。该系统通过简单的光路校准可实现互补的红外光和可见光散射,可使用商用镀金的AFM探针进行稳定的纳米拉曼和PL表征。 ♢ 模块化设计和多光路设计,实现AFM探针在同一位置的纳米FTIR和纳米拉曼/PL光谱。♢ 通过简单的光路校准收集AFM探针针的强弹性散射光。♢ 使用商用AFM探针获得大 TERS 信号。♢ 优化的软件数据收集处理,在同一用户界面进行所有测量。 cryo-neaSCOPE+xs:超低温环境纳米光学成像和光谱。cryo-neaSCOPE+xs可在端低温下实现近场光学纳米成像和纳米光谱。该设备可获得高质量的近场信号,且支持可见光、红外光、以及太赫兹源。因此,该系统可实现10 K以下不同能相关的研究。cryo-neaSCOPE+xs 基于全自动干式低温恒温器,无需液氦。该系统同时具备共聚焦以及接电功能,以实现低温条件下的多功能研究。♢ 的s-SNOM和纳米FTIR技术,实现低温下纳米光学分析,温度低至10K。♢ 使用neaspec 照明和检测模块,兼容红外到太赫兹光源,应用领域广泛。♢ 使用全自动闭式循环高真空干式低温恒温器,降温速度快,使用成本低。 三、背景简介neaspec创立于2007年,起源于德国马克斯普朗克研究所,因其在纳米分析领域的一系列突破性技术而受到广泛关注。neaspec和Quantum Design结为全球战略合作伙伴,并于2013年次引入中国。产品经过多次升换代,设备的各方面性能均已达到高度优化。目前在国内的用户包括清华大学、北京大学、中国科学技术大学、中山大学、中科院诸研究所等高校和研究所。此次升使得系统在软件用户交互性、模块化、后续升兼容性方面具有更大的提升。 四、应用案例1. Nature: 双层旋转的范德瓦尔斯材料中的拓扑化激元和光学魔角 相关产品:IR-neaSCOPE+s 2018年W. Ma等在Nature报道了范德瓦尔斯材料α-MoO3 中的面内双曲声子化激元的重要发现。2020年6月,G.W. Hu等在此基础上通过理论预测并在实验上证实了双层旋转范德瓦尔斯材料α-MoO3体系,可以实现由转角控制的声子化激元从双曲到椭圆能带间的拓扑变换。在这个变换角附近,光学能带变成平带,从而实现激元的直线无衍射传播。类比于双层旋转石墨烯中的电子在费米面的平带,作者因此将这一转角命名为光学魔角。 研究中作者采用散射型近场光学显微镜(s-SNOM)对双层α-MoO3 旋转体系进行扫描测试。实验结果显示,在接近魔角时,光学能带变平,声子化激元沿直线无衍射传播。此外,通过测试不同转角的双层体系,作者成功观测到在不同频段大幅可调的低损耗拓扑转换和光学魔角。这一重要发现奠定了“转角光子学”的基础,为光学能带调制、纳米光操控和超低损耗量子光学开辟了新的途径,同时也衍生出“转角化激元”这一重要分支研究方向,为进一步发展“转角声学”或“转角微波系统”提供了重要的线索和启发。(引自:中国光学-公众号,2020年6月11日《Nature:光学魔角!二维材料转角遇见光》) 【参考】 Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature, 2020, 582, 209-213.2. Nature: 天然双曲材料的声子化研究 相关产品:IR-neaSCOPE+s W. Ma在自然材料体系(α-MoO3)中观察到在平面内各项异性传播的声子化激元,包括传播速度不同的平面椭圆型和单向传播的平面双曲型声子化激元;并发现了在α-MoO3中支持的声子化激元具有低的损耗。实验发现,α相三氧化钼在两个光谱范围内存在两个剩余射线带,声子化激元的传播行为在两个剩余射线带内表现出不同的性质。在低剩余射线带内,α相三氧化钼可以在中红外波段支持双曲型声子化激元,也就是说声子化激元仅沿一个方向传播([001]方向),在垂直方向[100]的传播完全被抑制,这种化激元有多种具吸引力的性质,它具有强的场局域特性,可以支持厚度可调节的波导模式,并且损耗低。而在另外一个剩余射线带内,α相三氧化钼在中红外波段支持椭圆型声子化激元,化激元沿着[001]和垂直方向[100]以不同的波长进行传播,这种化激元传播寿命高达约8 ±1 ps,远高于目前已知的高寿命。研究进一步促进了光学器件的微型化和多元的调制特性,并且再次证明自然材料中仍然具有无穷的挖掘潜力。 【参考】 In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature, 2018, 562, 557–562. 3. 纳米空间分辨超快光谱和成像系统在范德瓦尔斯半导体研究中的应用 相关产品:IR-neaSCOPE+fs近年来,范德瓦尔斯(vdW)材料中的表面化激元(SP)研究,例如等离化激元、声子化激元、激子化激元以及其他形式化激元等,受到了广大科研工作者的关注,成为了低维材料领域纳米光学研究的热点。其中,范德瓦尔斯原子层状晶体存在特的激子化激元,可诱导可见光到太赫兹广阔电磁频谱范围内的光学波导。同时,具有较强的激子共振可以实现非热刺激(包括静电门控和光激发)的光波导调控。2020年7月,美国哥伦比亚大学Aaron J. Sternbach和D.N. Basov教授等研究者在Nature Communications上发表了题为:“Femtosecond exciton dynamics in WSe2 optical waveguides”的研究文章。研究者以范德瓦尔斯半导体中的WSe2材料为例,利用德国neaspec公司的纳米空间分辨超快光谱和成像系统,通过飞秒激光激发研究了WSe2材料中光波导在空间和时间中的电场分布,并成功提取了飞秒光激发后光学常数的时间演化关系。同时,研究者也通过监视波导模式的相速度,探测了WSe2材料中受激非相干的A-exciton漂白和相干的光学斯塔克(Stark)位移。【参考】 Aaron J. Sternbach et.al. Femtosecond exciton dynamics in WSe2 optical waveguides, Nature Communications, 11, 3567 (2020) 4. ACS Nano:光致发光、拉曼、近场光学同步测量技术揭示二维合金材料新特性 相关产品:IR-neaSCOPE+TERs 单层异质结构的应用潜力直接受到材料内在和外在的缺陷影响。乔治亚大学的研究人员在Abate教授的带领下,利用neaSNOM散射式近场光学显微镜,研究了二维(2D)单层合金光致氧化过程中纳米尺度下的奇异界面现象。他们发现界面张力可以通过建立稳定的局部势阱来集中本征激子,从而实现高的热稳定性和光降解稳定性。该实验结果由neaspec公司特的nano-PL / Raman和s-SNOM同步测量技术所采集,并已发表在ACS NANO中。在实验中,作者合成了由单层面内MoS2-WS2异质结构制成的2D纳米晶体,这些晶体在富Mo的内部区域和富W的外部区域间,显示出了较强的纳米合金界面。在针增强照明刺激下(100天),作者进一步观察到,光降解过程中界面的激子稳定性、局域性和不均匀性。得益于高度敏感的s-SNOM成像技术,作者探测到富W的外部区域的反射率出现急剧下降。该反射率始于晶体边缘,并随时间向内传播。在同一样品区域获得的高光谱纳米光致发光(nano-PL)图像显示,W氧化相关的激子的猝灭会遵循与s-SNOM相同的模式(在边缘开始并向内传播)。值得注意的是,合金界面的内部区域表现出了强大的抗氧化能力。即使在光降解100天后,它仍具有很强的s-SNOM信噪比和未淬灭的nano-PL信号。为了进一步研究结构变化,作者使用nano-PL进行了增强拉曼高光谱纳米成像测量,并在同一扫描区域的每个像素处获取了空间和光谱信息。实验结果表明,在整个晶体的光降解过程中,WS2拉曼峰逐渐消失,而在内部区域中的MoS2仍然存在。该结果表明在相同的环境条件、同一显微镜下测量相同的晶体,由于热诱导的合金和基底晶格常数的不匹配,导致光氧化与局部应变存在一定的关联。而合金界面可防止该应变传播到内部区域,从而防止其降解。 【参考】 Photodegradation Protection in 2D In-Plane Heterostructures Revealed by Hyperspectral Nanoimaging: The Role of Nanointerface 2D Alloys. ACS Nano 2021, 15, 2, 2447–2457. 5. Cryo-SNOM低温近场在氧化物界面的新应用 相关产品:cryo-neaSCOPE+xs 氧化物界面处的二维电子体系(2DES)做为一个特的平台,将典型复合氧化物、强电子相关的物理特性以及由2DES有限厚度引起的量子限域集成于一体。这些特的性质使其在电子态对称性、载流子的有效质量和其它物理特性方面与普通半导体异质结截然不同,可以产生不同于以往的新现象。然而氧化物界面多掩埋于物质间使其难以探测,为探究其局限2DES需要一个无创并且具有很高空间分辨率的表征技术,如果还能提供一个较宽范围内温度变化的平台将大地推进该领域的研究。通常光学显微镜可用于上述研究,其中,远场的探测技术由于受到波长和衍射限的限制缺乏空间分辨率,而红外波段的光束探测传导电子的Drude反应分辨率仅有几个微米的量,无法满足测试需求,而利用散射式近场光学显微镜(s-SNOM)可以克服这一限制,使其具有10-20 nm的空间分辨率并获得光响应信号中的强度和相位信息。近期,Alexey B. Kuzmenko团队在Nat. Commun.上获得新进展,他们利用s-SNOM来研究从室温下降到6K时LaAlO3/SrTiO3界面的变化情况,从近场光学信号,特别是其中的相位分量信息可以看出对于界面处的电子系统的输运性质具有其高的光学敏感度。这一模型说明了2DES敏感性来源于AFM针和耦合离子声子模型在很小穿透深度下的相互作用,并且该模型可以定量地将光信号的变化与冷却和静电选通控引起的2DES传输特性的变化相关联,从而提供操控光学信息的有效手段。从利用s-SNOM得到的实验结果和建立的模型结果来看,二者之间具有很好的拟合,这一结果说明了电子声子相互作用对于在零动量时的表面声子离子模型的散射化吸收具有至关重要的作用。【参考】 High sensitivity variable-temperature infrared nanoscopy of conducting oxide interfaces. Nature Communications 2019, 10, 2774. 6. Science:近场太赫兹光电流-石墨烯等离子体在近费米速度传播下的非局域量子效应 相关产品:THz-neaSCOPE+s西班牙光子科学研究所(ICFO)的 Marco Polini教授和Frank H. L.Koppens教授在《Science》上发表了题为:Tuning quantum nonlocal effects in graphene plasmonics的文章。 在本篇文章中,研究者利用散射式近场光学手段,对石墨烯-(h-NB)-金属复合体系表面进行了纳米尺度下的精细扫描,由此观测到了太赫兹波段下的石墨烯等离子体以近费米速度进行传播。研究发现,在慢的速度(数百倍低于光速)下,石墨烯等离子的非局域响应得以探测,通过近场成像能够以无参数匹配手段清晰地揭示无质量的Dirac电子气体的量子描述,进而展示了三种类型的非局域量子效应,即单粒子速率匹配,相互增强费米速率和相互减弱压缩性。通过该近场光学的研究方法,研究者终提供了确定电子体系的全时空反应的新途径。 【参考】 Tuning quantum nonlocal effects in graphene plasmonics. Science 2017, 357, 187. 五、部分发表文章[1]. Nature (2021) 596, 362[2]. Science (2021) 371, 617[3]. Nature Physics (2021) 17, 1162[4]. Nature Phot. (2021) 15, 594[5]. Nature Chem. (2021) 13, 730[6]. Nature (2020) 582, 209[7]. Nature Phot. (2020) 15, 197[8]. Nature Nanotech. (2020) 15, 941[9]. Nature Mater. (2020) 19, 1307[10]. Nature Mater. (2020) 19, 964[11]. Nature Phys. (2020) 16, 631[12]. Nature (2018) 562, 557 [13]. Nature (2018) 359, 892[14]. Science (2018) 362, 1153 [15]. Science (2018) 361, 6406 [16]. Science (2018) 359, 892[17]. Science (2017) 357, 187[18]. Science (2014) 344, 1369[19]. Science (2014) 343, 1125
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制