体外神经毒性

仪器信息网体外神经毒性专题为您整合体外神经毒性相关的最新文章,在体外神经毒性专题,您不仅可以免费浏览体外神经毒性的资讯, 同时您还可以浏览体外神经毒性的相关资料、解决方案,参与社区体外神经毒性话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

体外神经毒性相关的耗材

  • IVF体外受精级器官培养皿中心井353653
    Falcon体外受精培养器皿体外受精培养器皿(IVF Dish)◎产品符合美国病理学会(CAP)和美国生殖协会(AFS)提出的IVF实验室标准,可节约时间和费用。此类产品有FDA510K医学设备证明和符合医学设备指导的CE标志◎每批IVF产品都经2细胞小鼠胚胎检测胚胎毒性◎独特4孔板的盖子可以两孔敞开两孔关闭,减少污染的可能并最大限度减少蒸发订货编号产品包装35365550mm10035365260mm50035365360mm中心井5003536544孔板100
  • Falcon耗材IVF体外受精级培养皿353655
    Falcon体外受精培养器皿体外受精培养器皿(IVF Dish)◎产品符合美国病理学会(CAP)和美国生殖协会(AFS)提出的IVF实验室标准,可节约时间和费用。此类产品有FDA510K医学设备证明和符合医学设备指导的CE标志◎每批IVF产品都经2细胞小鼠胚胎检测胚胎毒性◎独特4孔板的盖子可以两孔敞开两孔关闭,减少污染的可能并最大限度减少蒸发订货编号产品包装35365550mm10035365260mm50035365360mm中心井5003536544孔板100
  • Falcon耗材IVF体外受精级培养皿353652
    Falcon体外受精培养器皿体外受精培养器皿(IVF Dish)◎产品符合美国病理学会(CAP)和美国生殖协会(AFS)提出的IVF实验室标准,可节约时间和费用。此类产品有FDA510K医学设备证明和符合医学设备指导的CE标志◎每批IVF产品都经2细胞小鼠胚胎检测胚胎毒性◎独特4孔板的盖子可以两孔敞开两孔关闭,减少污染的可能并最大限度减少蒸发订货编号产品包装35365550mm10035365260mm50035365360mm中心井5003536544孔板100

体外神经毒性相关的仪器

  • 针对环境污染、紧急事故、安检及常规检测等目的而设计便携式毒性分析仪。哈希新一代的便携式水质毒性分析仪 Hach TX1315 既可用于世界上流行的发光细菌法生物毒性分析,也可用于适用于恶劣环境的化学发光法毒性分析。用于现场水中重金属、毒剂、神经毒剂、农药制剂等物质总体毒性检测。不仅如此,Hach TX1315 集成的ATP(三磷酸腺苷)微生物活性快速检测技术,几分钟就可以获得水体中或物体表面的微生物浓度的关键数据,带来微生物检测的突破技术。
    留言咨询
  • Maestro Edge/Pro 高通量微电极阵列系统-早发性帕金森体外模型研究 帕金森病 (PD) 的发病机制已被证实是由遗传和非遗传因素共同影响的。该研究者利用同卵双胞胎的iPSC进行PD疾病体外建模,并使用了Maestro MEA系统评估了健康组和患病组多巴胺能神经元的电生理功能表型特征。 Day30:正常组样本显示出频繁的神经元放电,帕金森病人样本则放电稀疏。Day52:正常组样本有清晰的同步性簇放电,表明其已经发展出有功能的神经网络。疾病样本放电率虽较Day30有所增加,但未发展出网络功能。 以上的结果提示我们PD可能与细胞自身可兴奋性缺陷或者缺乏来自周围细胞的突触驱动有关。神经网络功能实时检测攻略◆ ◆ ◆ ◆PART I 原理介绍为什么要检测神经电活动?研究证明构建体外神经元疾病模型是研究神经元功能和神经系统复杂疾病的一个有效策略。细胞成像、基因表达分析或者蛋白印迹这些方法能够全面地反应神经疾病模型的复杂性吗?神经网络功能又是怎样的?科学家们很难得到一个完整的答案。而使用Maestro MEA技术,任何科学家都能够快速简单地高通量检测活细胞的网络电活动。 什么是高通量微电极阵列? Axion的MEA板底部紧密嵌合了呈网格状的电极阵列。科学家们可以在电极上贴附培养神经元等可兴奋性细胞,它们会逐渐成熟并形成网络,并最终生成网络功能。这样MEA板上每个电极就都可以捕捉到毫秒级的神经元自发放电,为您在时间和空间两个维度提供精准的实验数据。您还可以通过电刺激或者光刺激进一步拓展实验设计。适用样本原代神经元细胞,iPSC衍生神经元,脑片,iPSC衍生神经球/类器官/迷你大脑三个层面了解神经网络功能神经细胞(橙色)经培养覆盖于固定在MEA板底部的电极(灰色)上。Maestro MEA系统检测神经网络的功能,包括电活动、同步性和网络震荡。Activity 电活动 如何判断神经元有没有功能?动作电位是一个重要标志。动作电位发放频率高表明其放电频繁;发放频率低意味着神经元电生理功能可能已受损。Synchrony 同步性 如何评判神经元间突触的功能?突触的存在使得神经元之间的联系成为可能。一个神经元的动作电位藉此得以影响到另一个神经元发放的可能性。同步性检测能够反映出突触连接的强弱,及不同的神经元在毫秒级别时间范围内产生同步放电的可能。Oscillation 网络震荡 如何确定样本的网络功能?有功能的神经网络是由兴奋性和抑制性神经元共同构成的。它的一个重要特征就是神经震荡,即不断变化中的神经活动高潮-低谷周期。而一个MEA孔内检测到的所有神经元电发放在时间轴上的规律就是该样本的震荡数据。PART II Maestro系统介绍Maestro MEA实验流程Maestro使得MEA实验简单到超乎想象。仅需三步:A将神经元培养在Axion MEA板上。B将MEA板放入Maestro MEA系统,静待环境仓达到温度和气体浓度的平衡。C使用AxIS Navigator软件无创且实时地从三个层面(电活动、突触功能、网络震荡)定量分析神经元电活动。配套的其他分析软件,还能自动计算出多于25种类别的二级参数,供您进行数据深度挖掘。Maestro平台优势提供关键答案 与常规方法间接检测可兴奋性不同,Maestro MEA系统的测试直接反映神经元的动作电位。比较常见的间接技术如钙成像,无法捕获微小却重要的神经网络信号变化。而蛋白表达水平的检测结果与细胞疾病模型功能的相关性也很差。只有使用Maestro MEA系统实时追踪细胞的可兴奋性,您才能回答这个关键问题:样本是否在以您期待的方式放电?无标记分析 Maestro MEA系统无创地检测神经元群落的电信号,杜绝使用染料或报告子,避免其对细胞模型的干扰,您数据的准确性无需置疑。更使您得以实现对一个样本电活动的长期(数小时、数周甚至数月)追踪。原位检测 其它的高通量平台(例如自动化膜片钳或者流式细胞仪)通常会要求对样本做预处理,制备成单细胞悬液再上机检测。对于可兴奋性细胞这种以互相交联的功能性网络形式存在的样本来说,这是一种非常不理想的状态。此外,细胞收集的过程也需要大量的手动操作步骤。只有Maestro MEA系统能够在捕获神经元细胞可兴奋性的同时维持其形态学上的复杂性。简单易用 只有电生理专家才会使用Maestro MEA系统?不存在的!只要把细胞培养在MEA板上,然后把板放入Maestro MEA仪器检测仓内,即可记录神经元电生理数据。Axion提供的一系列软件会帮您完成剩下的数据分析步骤,甚至连可直接用于文献发表的图表都搞定了。您也可以!PART III 应用方向简介神经疾病细胞模型,药物神经毒性筛选,神经细胞功能检测,光遗传学,模式生物表型筛选,干细胞开发及质控,神经球、脑类器官研究帕金森神经肌肉接头病脆性X综合症智障癫痫化合物神经毒理检测星形胶质细胞对神经元功能的影响精神分裂孤独症/自闭症脑瘫偏头痛蛇毒腺类器官前额叶痴呆精神类药物滥用/成瘾神经元代谢干细胞治疗/修复注意缺陷多动障碍/多动症高通量微电极阵列+光遗传的强大组合Axion公司创新的高通量光遗传刺激系统Lumos,可对MEA板内样本进行光强(1-100%)和光照时长(低至100ms)的控制。您可以选择多至四种不同波长的LED光源来刺激单孔内的细胞,并行处理通量高至96个。您也可以对每个孔内混合培养细胞样本中的某一类细胞群体进行单独控制,建立高阶神经疾病模型。所以,通过在软、硬件上与Maestro系统无缝整合,Lumos可以助您精准、灵活、高效地实现神经细胞网络的调节及实时的功能检测。 Axion BioSystems ImagineExploreDiscover
    留言咨询
  • 3D微流体人体器官模拟系统体外干细胞诱导分化培养系统产品特点:1.SEED种植 任何细胞都能轻松的种植在开放式的培养板上。 广泛的培养形式选择,包括商业植入物,器官切片,3D基质和凝胶,组 织特异性支架,无支架培养 容易定制或验证细胞/组织模型的加载系统包括MucilAir™ ,EpiSkin™ 和更 多其他系统2.CULTURE培养 可编程应用流体学。器官内流量可调,优化氧气,营养和机械力 可方便地优化各器官间的流速,以实现精确的平台药动学 ?媒介变化迅速 且容易实现 3.DOSE给药 介入生物制剂(肽、蛋白质)、小分子、激素等 ?基因编辑(CRISPR, Talen, ZFN) 引入免疫细胞(如细胞毒性T细胞、CAR-T细胞、NK细胞等)进行免疫分析和观察 无PDMS组件,很大限度减少非特定绑定干扰4.ANALYZE 分析 简单的(重复的)介质取样用于生物标志物分析(LC-MS, ELISA, multiplex) 可移动支架允许对微组织进行全方位的分析组学方法 组织模拟可用于成像,以可视化细胞形态、细胞迁移和蛋白标记物定位 应用领域生物工程学与3D细胞培养动物实验替代方案神经,代谢系统靶向药物研发个人化药物研发在培养皿中临床试验药物,烟草,化妆品,化学行业监管测试免疫
    留言咨询

体外神经毒性相关的方案

体外神经毒性相关的论坛

  • 【资料】化学品毒性鉴定技术规范

    化学品毒性鉴定技术规范目 录一、总则………………………………………………………………………………3二、试验方法(一)第一阶段试验…………………………………………………………………151、急性吸入毒性试验 ……………………………………………………………162、急性经皮毒性试验……………………………………………………………203、急性经口毒性试验 ……………………………………………………………234、急性眼刺激性/腐蚀性试验……………………………………………………265、皮肤刺激性/腐蚀性试验………………………………………………………326、皮肤变态反应试验(皮肤致敏试验)………………………………………36(二)第二阶段试验………………………………………………………………541、鼠伤寒沙门氏菌回复突变试验(Ames试验)………………………………552、体外哺乳动物细胞染色体畸变试验…………………………………………623、体内哺乳动物骨髓细胞染色体畸变试验……………………………………684、体内哺乳动物骨髓嗜多染红细胞微核试验…………………………………755、哺乳动物精原细胞/初级精母细胞染色体畸变试验,或…………………79精子畸形试验…………………………………………………………………876、啮齿类动物显性致死试验……………………………………………………907、免疫毒性评价试验方法………………………………………………………958、亚急性吸入(14/28天)毒性试验…………………………………………1049、亚急性经皮(21/28天)毒性试验…………………………………………11010、亚急性经口(28天)毒性试验……………………………………………115(三)第三阶段试验………………………………………………………………1211、亚慢性吸入毒性试验…………………………………………………………1222、亚慢性经皮毒性试验…………………………………………………………1263、亚慢性经口毒性试验…………………………………………………………1304、致畸试验………………………………………………………………………1365、两代繁殖毒性试验……………………………………………………………1426、迟发性神经毒性试验…………………………………………………………147(四)第四阶段试验………………………………………………………………1531、慢性吸入毒性试验……………………………………………………………1542、慢性经皮毒性试验……………………………………………………………1603、慢性经口毒性试验……………………………………………………………1664、致癌试验,或…………………………………………………………………172慢性毒性/致癌性合并试验 ………………………………………………1805、毒物代谢动力学试验 ………………………………………………………1896、接触人群调查与观察(参考国内外有关专著或教科书)(五)参考试验……………………………………………………………………1961、皮肤变态反应试验-局部淋巴结法…………………………………………1972、大肠杆菌回复突变试验………………………………………………………2023、酵母菌基因突变试验………………………………………………………2104、体外哺乳动物细胞正向基因突变试验……………………………………2145、果蝇伴性隐性致死试验………………………………………………………2206、枯草杆菌基因重组试验………………………………………………………2247、体外哺乳动物细胞程序外DNA合成(UDS)试验……………………………2328、体内哺乳动物外周血细胞微核试验…………………………………………2389、体外哺乳动物姊妹染色单体交换(SCE)试验………………………………24410、体内哺乳动物骨髓细胞姊妹染色体交换(SCE)试验……………………25011、繁殖/生长发育毒性筛选试验………………………………………………25612、亚急性毒性合并繁殖/发育毒性筛选试验…………………………………26213、一代繁殖试验………………………………………………………………26914、神经毒性筛选组合试验……………………………………………………274[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=53491]点击下载[/url]

  • 【分享】药物毒理研究体外实验国家标准

    GBT16886.5-2003医疗器械生物学评价第5部分体外细胞毒性试验http://www.instrument.com.cn/download/shtml/032150.shtmlGB15193.12-91体外哺乳类细胞(V79/HGPRT)基因突变试验http://www.instrument.com.cn/download/shtml/032147.shtmlGB15193.8-94小鼠睾丸染色体畸变试验http://www.instrument.com.cn/download/shtml/032145.shtmlGB15193.6-94 骨髓细胞染色体畸变试验http://www.instrument.com.cn/download/shtml/032146.shtml

  • [资料]甲醇的毒性

    甲醇 甲醇 木醇 木酒精 甲基氢氧化物 Methanol Methyl alcohol Carbinol Wood alcohol Wood spirit Methyl hydroxide CAS: 67-56-1理化性质:无色、透明、高度挥发、易燃液体。略有酒精气味。分子式 C-H4-O。分子量32.04。相对密度0.792(20/4℃)。熔点-97.8℃。沸点64.5℃。闪点 12.22℃。自燃点463.89℃。蒸气密度 1.11。蒸气压 13.33KPa(100mmHg 21.2℃)。蒸气与空气混合物爆炸下限 6~36.5 % 。能与水、乙醇、乙醚、苯、酮、卤代烃和许多其他有机溶剂相混溶。遇热、明火或氧化剂易着火。遇明火会爆炸。 侵入途径 主要经呼吸道和胃肠道吸收,皮肤也可部分吸收。毒理学简介 人(男性)经口LDL 6422mg/kg TDL 3429mg/kg。女性经口TDL4mg/kg 。另有报道,人类经口LDLo:428mg/kg,143mg/kg不等;吸入TCL 86000mg/m3 ,300ppm不等。 大鼠经口LD50: 5628mg/kg 吸入LC50: 64000ppm/4H 。小鼠经口LD50: 7300mg/kg 吸入 LCL50 gm/m3/2H。兔经皮LD50: 15800 mg/kg。甲醇吸收至体内后,可迅速分布在机体各组织内,其中,以脑脊液、血、胆汁和尿中的含量最高, 眼房水和玻璃体液中的含量也较高, 骨髓和脂肪组织中最低。甲醇在肝内代谢, 经醇脱氢酶作用氧化成甲醛,进而氧化成甲酸。本品在体内氧化缓慢,仅为乙醇的 1/7 ,排泄也慢,有明显蓄积作用。 未被氧化的甲醇经呼吸道和肾脏排出体外,部分经胃肠道缓慢排出。推测人吸入空气中甲醇浓度 39.3~65.5g/m^3, 30~60 分钟,可致中毒。人口服5~10ml, 可致严重中毒 一次口服 15ml , 或 2天内分次口服累计达 124~164ml,可致失明。有报告,一次口服 30ml 可致死。甲醇主要作用于神经系统,具有明显的麻醉作用,可引起脑水肿。甲醇的麻醉浓度与LC较接近,故危险性较大。对视神经和视网膜有特殊的选择作用,易引起视神经萎缩, 导致双目失明。 甲醇蒸气对呼吸道粘膜有强烈刺激作用。甲醇的毒性与其代谢产物甲醛和甲酸的蓄积有关。 以前认为毒性作用主要为甲醛所致, 甲醛能抑制视网膜的氧化磷酸化过程,使膜内不能合成ATP,细胞发生变性,最后引起视神经萎缩。近年研究表明,甲醛很快代谢成甲酸,急性中毒引起的代谢性酸中毒和眼部损害,主要与甲酸含量相关。甲醇在体内抑制某些氧化酶系统,抑制糖的需氧分解,造成乳酸和其他有机酸积聚以及甲酸累积,而引起酸中毒。一般认为,甲醇的毒性是由其本身及其代谢产物所致的。 临床表现 急性甲醇中毒后主要受损靶器官是中枢神经系统、 视神经及视网膜。吸入中毒潜伏期一般为 1~72小时, 也有96小时的 口服中毒多为8~36小时 如同时摄入乙醇,潜伏期较长些。 临床特点 刺激症状:吸入甲醇蒸气可引起眼和呼吸道粘膜刺激症状。中枢神经症状:患者常有头晕、头痛、眩晕、乏力、步态蹒跚、失眠,表情淡漠,意识混浊等。重者出现意识朦胧、昏迷及癫痫样抽搐等。严重口服中毒者可有锥体外系损害的症状或帕金森氏综合征。头颅CT检查发现豆状核和皮质下中央白质对称性梗塞坏死。幻觉、忧郁等症状。眼部症状:最初表现眼前黑影、闪光感、视物模糊、眼球疼痛、畏光、复视等。严重者视力急剧下降,可造成持久性双目失明。检查可见瞳孔扩大或缩小,对光反应迟钝或消失,视乳头水肿,周围视网膜充血、出血、水肿,晚期有视神经萎缩等。酸中毒:二氧化碳结合力降低,严重者出现紫绀、呼吸深而快呈Kussmaul呼吸。 消化系统及其他症状:患者有恶心、呕吐、上腹痛等,可并发肝脏损害。口服中毒者可并发急性胰腺炎。少数病例伴有心动过速、心肌炎、S-T段和T波改变,急性肾功能衰竭等。严重急性甲醇中毒出现剧烈头痛、恶心、呕吐、视力急剧下降,甚至双目失明,意识朦胧、谵妄、抽搐和昏迷。最后可因呼吸衰竭而死亡。根据甲醇接触史,短期内出现中枢神经损害、眼部损害和代谢性酸中毒为主的临床表现,参考现场卫生学调查,除外其他类似表现的疾病,综合分析后诊断并不困难。必要时可作血和尿甲醇测定。中毒早期应与感冒、神经衰弱、急性胃肠炎等鉴别。此外应与氯甲烷、乙二醇急性中毒和其他原因引起的脑病、视神经损害等相鉴别。必须详细询问职业史,现场卫生学调查,密切观察病情进展,结合实验室检查,可得出正确诊断。处理 患者应立即移离现场,脱去污染的衣服。口服者用 1%碳酸氢钠洗胃,硫酸镁导泻。清除体内已吸收的甲醇。透析疗法:中毒严重者应及早进行血液透析或腹膜透析,以减轻中毒症状,挽救病人生命,减少后遗症。血液透析疗法的指征为: ①血液甲醇15.6mmol/L 或甲酸4.34mmol/L ②严重代谢性酸中毒 ③视力严重障碍或视乳头视网膜水肿。解毒剂: 乙醇为甲醇中毒的解毒剂,应用乙醇可阻止甲醇氧化, 促进甲醇排出。用10%葡萄糖液配成 5%乙醇溶液,静脉缓慢滴注。国内临床经验不多。纠正酸中毒:根据血气分析或二氧化碳结合力测定及临床表现,及早给予碳酸氢钠溶液或乳酸钠溶液。支持和对症治疗:根据病情积极防治脑水肿,降低颅内压,改善眼底血循环, 防止视神经病变。维持呼吸和循环功能,维持电解质平衡。给予大量B族维生素。有人建议用甲酸盐和4-甲基吡唑(4MP)治疗甲醇中毒, 在猴的实验研究中已证实,迄今尚未用于临床。 标准 车间空气卫生标准:中国 MAC 50mg/m^3 美国 OSHA PEL-TWA 260mg/m^3 危规: GB 3.2 类 32058。原铁规: 一级易燃液体, 61069。UN NO.1230。 IMDG CODE 3087页,3类。副危险 6.1 类。

体外神经毒性相关的资料

体外神经毒性相关的资讯

  • 保护儿童大脑免受环境危害的21世纪方法——用于物质筛选的发育神经毒性体外电池
    © IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf概述 神经发育涉及几个相互关联的过程,这些过程特别容易受到化学物质的影响。发育中的儿童接触破坏这些过程的物质会导致发育神经毒性(DNT),从而导致自闭症、智商下降以及学习和记忆缺陷等神经发育障碍。目前识别物质 DNT 潜在危险的监管指南仅依赖于动物测试。然而,测试通量不足、物种差异和伦理问题需要建立基于人体细胞模型的替代体外方法,以确保测试结果对人群有足够的预测能力。根据这一拟议的 DNT 测试范式转变,在经济合作与发展组织 (OECD) 的支持下建立了 DNT 体外测试组 (DNT-IVB),以便以更具成本效益的方式识别有害物质。有效的方式并解决伦理和生理问题环境化学物质对发育中大脑的潜在伤害尚未得到充分测试在发育过程中,会发生各种相互关联的神经发育过程,这些过程促进了人脑的形成和功能。由于其高度复杂性和可塑性,发育中的大脑对化学物质暴露特别敏感,包括农药、药物,甚至天然食品补充剂。目前,法律不要求指定供人类使用的产品制造商在上市前测试新化合物的 DNT 潜力。然而,与此同时,有大量关于不同化合物类别(包括金属、农药和药品)的数据,将发育暴露与儿童神经发育不良影响联系起来,例如智商较低或记忆力和注意力缺陷[1]。然而,迄今为止,仅使用体内 DNT 指南研究评估了 110-140 种化学物质,而大多数化学物质都缺乏数据。造成这种危险知识差距的主要原因是啮齿动物体内研究仍然是 DNT 测试的黄金标准。这些动物实验资源极其密集,通常成本超过 100 万欧元,需要一年多的时间才能完成,并且每种化合物需要使用至少 1,400 只动物。由于这些因素,迄今为止进行的 DNT 指南研究很少。鉴于 DNT 所产生的巨大社会、社会和经济后果,需要更快、更具成本效益且对人群具有足够预测性的替代方法来识别 DNT [4]。近年来,人们在开发基于细胞的测试策略来表征有毒物质的DNT危险潜力方面做出了相当大的努力,这符合替代、减少和细化动物研究的3R原则[5]。与此同时,毒理学测试原理也发生了范式转变,这表明在化学测试中应追求更高的通量和以机制为导向的方法,最好是基于人的方法,以避免化学暴露对物种特异性的影响,并消除令人担忧的知识差距[6]。阅读第 15 页的完整文章Wiley Analytical Science Magazine Volume 2 - April/24.参考文献[1] Vorhees, C. V. et al. (2018). A better approach to in vivo developmental neurotoxicity assessment: Alignment of rodent testing with effects seen in children after neurotoxic exposures. Toxicology and applied pharmacology. DOI: 10.1016/J.TAAP.2018.03.012.[2] Makris, S. L. et al. (2009). A retrospective performance assessment of the developmental neurotoxicity study in support of OECD test guideline 426. Environmental Health Perspectives. DOI: 10.1289/EHP.11447.[3] Paparella, M. et al. (2020). An analysis of the limitations and uncertainties of in vivo developmental neurotoxicity testing and assessment to identify the potential for alternative approaches. Reproductive Toxicology. DOI: 10.1016/J.REPROTOX.2020.08.002.[4] Grandjean, P. and Landrigan, P. J. (2014). Neurobehavioural effects of developmental toxicity. The Lancet Neurology. DOI: 10.1016/S1474-4422(13)70278-3.[5] Fritsche, E. et al. (2018). Consensus statement on the need for innovation, transition and implementation of developmental neurotoxicity (DNT) testing for regulatory purposes. Toxicology and Applied Pharmacology. DOI: 10.1016/j.taap.2018.02.004.[6] Sachana, M. et al. (2019). International Regulatory and Scientific Effort for Improved Developmental Neurotoxicity Testing. Toxicological Sciences. DOI: 10.1093/toxsci/kfy211.关于作者Katharina KochIUF-Leibniz Institute for Environmental Medical Research, Düsseldorf, Germany, DNTOX, Düsseldorf, GermanyKatharina Koch 博士是 DNTOX 的联合创始人兼研发主管,自 2019 年以来一直在德国杜塞尔多夫的 IUF – 莱布尼茨环境医学研究所担任博士后职位。她的研究重点是开发内分泌干扰(ED)介导的发育神经毒性(DNT)的测试方法。她在研究不同人类和啮齿动物原代以及人类 iPSC 衍生的神经 3D 体外细胞模型中关键神经发育过程的激素依赖性方面拥有丰富的经验。文章来源:A 21st century approach to protect children’s brains from environmental hazards,Wiley Analytical Science Magazine, 4 April 2024供稿:符 斌
  • 生物3D打印应用 | 构建体外肝毒性模型
    受伦理和费用影响,使用动物来进行毒理实验变得越来越困难。同时,动物所得到的结果很有可能与实际临床试验有差别,因而给临床试验带来了潜在的风险。于是,科研工作者开始尝试在体外构建三维细胞培养物——类器官。类器官通常具有相应器官的关键特征,以此科研工作者就可以使用它们来进行相应器官的药物毒理学试验,常见的如使用肝脏类器官检测药源性肝损伤(Drug Induced Liver Injury,DILI)。一些较为简单的模型构建事实上已经使用了较长时间,但这些模型缺乏长效性(Longevity)和组织复杂度(Tissue-level Complexity),得出的结论往往不具有充分的可靠性。 在此背景下,Deborah G. Nguyen等人使用病人来源的肝脏细胞和非薄壁细胞以3D打印的形式构建了无支架类器官。相较于传统的偏二维模型或简单三维模型,该类器官在4周后仍然能够维持一定程度的ATP、白蛋白甚至是药物介导的活性细胞色素P450s酶。为评估该类器官的功能性,作者选用曲伐沙星——一种因肝毒性较强而无法用标准临床前模型评估肝毒性的药物——与无明显肝毒性药物左氧氟沙星进行对比。发现曲伐沙星在临床浓度下(≤4 μM)的肝脏毒性与浓度呈显著性正比关系。图1 置于24孔板中的肝脏类器官此外,尽管有很多相关的文献,但对于准备进入这一领域的科学工作者而言,面对各种各样的细胞模型、种类繁多的模型构建方法,可能会耗费许多时间理清头绪。面对这种情况,Xihui等人在综述Three-dimensional liver models: state of the art and their application for hepatotoxicity evaluation一文中,详细阐述了构建体外三维肝脏模型的相关内容。分为模型建立方法、细胞种类、在药源性肝损伤(DILI)中的重要性及相关商业化情况,主要内容如下: l 模型构建:根据辅助材料的使用与否分为有支架(主要为水凝胶、琼脂糖等遇水形成一定支撑力的材料,其中便提到在regenHU技术和产品的推动下,利用细胞外基质(extracellular matrix,ECM)作为支架材料进行肝脏3D打印成为了非常重要的模型构建方法)和无支架模型两种,分别介绍了建立方法和优缺点。 l 细胞种类:原代人类肝脏细胞(Primary Human hepatocytes)、干细胞分化的类肝脏细胞(stem cell derived hepatocyte like cells)、永生化肝细胞系(immortalized hepatic cell lines)等三种不同类型的肝脏细胞。 l 肝毒性研究应用:肝毒性主要有两个来源——药物本身或经由药物代谢产生的产物。因而在本章节对直接毒性和慢性毒性均进行了介绍。同时,作者也总结了纳米药物的肝脏毒性。 l 商业化情况:因生物3D打印的速率尚不足以满足批量生产,因而作者认为该项应用仍以定制为主。通过使用病人来源的细胞,科研工作者可构建类器官进行个性化药物筛选和个体化药效评价,随着商业医疗的逐步完善,这一市场将极具发展前景。 该综述全面的内容为正要和即将进行类似实验的科研工作者提供了便利。但正如作者所言,类器官仍在多个国家遭受不同程度的文化、法规障碍,在努力争取科研许可的同时,也应牢记科学底线,为社会带来正能量。 参考文献:[1] Zhang X, Jiang T, Chen D, et al. Three-dimensional liver models: state of the art and their application for hepatotoxicity evaluation[J]. Critical Reviews in Toxicology, 2020(11):1-31.[2] Nguyen D G, Funk J, Robbins J B, et al. Bioprinted 3D Primary Liver Tissues Allow Assessment of Organ-Level Response to Clinical Drug Induced Toxicity In Vitro[J]. Plos One, 2016, 11(7):e0158674.目前,regenHU产品可经由我司购买。regenHU生物3D打印机具有高精度、高稳定性、打印方式广泛、应用面广等特点,欢迎大家咨询!联系电话021-37827858 或 13818273779(微信同号)。点击以下链接,查看往期回顾生物3D器官打印——人工角膜生物3D器官打印——肠道体外模型生物3D器官打印——喉部软骨
  • 文献速递|动物活体成像系统在细胞外囊泡与神经退行性疾病关系研究中的应用
    ● 快讯近日,同济大学医学院附属上海市第十人民医院神经内科赵延欣教授及刘学源教授课题组在细胞外囊泡与神经退行性疾病关系研究领域取得了新的进展。该项研究从小细胞外囊泡的角度为阿尔兹海默症中发生的兴奋抑制失衡提供了新见解。相关研究成果已发表在国际知名期刊《Journal of Nanobiotechnology》(IF:10.435,JCR 2区)。图1|国际知名期刊《Journal of Nanobiotechnology》(IF:10.435,JCR2区)细胞外囊泡 (EV) 是由细胞释放到细胞外环境中的小囊泡。EVs 由脂质双层膜组成,该膜包裹着小的无细胞器的细胞质。根据它们的大小,通常分为三种类型,小EVs (sEVs) (50-150 nm)、大EVs (100-1000 nm) 和凋亡小体 ( 5 μm)。其中,sEVs 通常可通过血脑屏障 (BBB),成为中枢神经系统 (CNS) 细胞之间通讯的关键介质,有证据表明,sEV 中的微小RNA (miRNA)参与到众多细胞和生物过程,例如神经元细胞的生长和凋亡。目前,E/I(兴奋/抑制)失衡假设被概念化为谷氨酸能和氨基丁酸(GABA)能突触输入之间的不平衡。E/I 失衡被认为是神经退行性疾病脑功能障碍的基础,包括阿尔茨海默病 (AD)、帕金森病 (PD)、精神分裂症和其他神经疾病。谷氨酸兴奋性毒性和 GABA 能神经元功能障碍似乎是 AD 中发生的神经元细胞死亡的关键原因。但是关于 E/I 失衡对AD的影响,其中的机制仍不明确。为了对该机制进行进一步阐释,赵延欣教授及刘学源教授团队在本研究中用谷氨酸/GABA/PBS 处理原代培养的神经元,并分离出 sEV。然后,将不同来源的 sEV 添加到用 Aβ(β淀粉样蛋白)处理的神经元或注射到 AD 模型小鼠中。此后对经 Aβ 治疗的小鼠和神经元进行了评估。经GABA 处理的神经元释放的 sEVs 减轻了 Aβ 诱导的损伤,而谷氨酸处理的神经元释放的 sEVs 加重了 Aβ 的毒性。此外,本研究通过 miRNA 测序比较了从谷氨酸/GABA/PBS 处理的神经元中分离的 sEV 的 miRNA 组成。该研究进一步表明,sEV 中 miR-132 的变化加速了表征病理的生化改变。图2|实验方案示意图分离原代神经元后,用谷氨酸/GABA/PBS 处理原代培养的神经元,并分离出 sEV。将不同来源的 sEV 添加到用 Aβ 处理的神经元或注射到 AD 模型小鼠中,并对小鼠进行MWM测试。文章中,在评估在小鼠体内系统传递的 sEVs 的分布的实验中,使用了博鹭腾AniView100多模式动物活体成像系统拍摄。该实验中使用近红外染料DiR进行标记,同时进行了阴性对照实验(仅注射 DiR,不注射 sEV)。通过 APP/PS1 小鼠的尾静脉注射 DiR 标记的 sEV,使用Aniview100活体成像系统在注射后 24 小时拍摄小鼠的图像并评估分布情况。在带有 DiR 标记的 sEV 的小鼠的大脑和重要器官中均检测到荧光。随后,处死小鼠,取出器官并成像,目的为识别荧光信号来源的器官并使信号干扰最小化。此外,为了排除游离染料干扰实验结果的可能,在收集器官前用不含 sEV 的游离 DiR处理小鼠。实验结果显示,脑、心、肝、肺、脾、肠、肾均呈不同程度荧光。图3|sEV的体内外分布情况在注射 DiR 标记的 sEV 后 24 小时,使用活体成像系统对A - C活小鼠进行成像。a)、小鼠背面成像b)、小鼠腹侧成像c)、收集指定器官后使用活体成像系统成像本研究中证明了 sEV 的功能可以受神经递质平衡状态的调节,并对神经元中的 Aβ 毒性有不同的影响。并且该研究从 sEV 的角度为 AD 中发生的 E/I 失衡提供了新见解,并表明通过GABA 能系统对 sEV 进行生物学改造可能是预防或减轻 AD 发病机制的治疗途径。论文链接:https://doi.org/10.1186/s12951-021-01070-5
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制