体视形变应变

仪器信息网体视形变应变专题为您整合体视形变应变相关的最新文章,在体视形变应变专题,您不仅可以免费浏览体视形变应变的资讯, 同时您还可以浏览体视形变应变的相关资料、解决方案,参与社区体视形变应变话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

体视形变应变相关的耗材

  • 光纤应变传感器
    光纤应变传感器是一种高精度光纤应变监测仪器,结合我们的WLPI信号源,即使在恶劣环境箱依然提供超高测量精度和可靠性。光纤应变传感器参数BenefitsMiniature design (230 μm diameter)Outstanding repeatabilityTemperature independentInsensitive to transverse strainsEMI/RFI and microwave immuneIntrinsically safeLong cable with no comprise in accuracyApplicationsEM, RF and microwave environmentsHigh voltage environmentsNuclear and hazardous environmentsCivil engineering and geotechnical applicationsCryogenic MR coilsOEM-type and custom version available
  • 应变应力测量系统
    JHYC应变应力测量系统应用范围1.适用于测点相对集中,被测物理量缓慢变化的试验中。2.主要用于静态结构应力分析及静载荷强度研究中测量结构件及材料任意点的静态应力应变及残余应力。3.广泛应用于桥梁、建筑物、飞机、船舶、车辆、起重机械、压力容器等结构静载荷测试、安全和健康状态测试。4.接入不同的传感器,可对力、荷重、压力、扭矩、位移、电压、电流等进行采集。5.可用于实验性测量,也可用于长期监控测量。JHYC应变应力测量系统功能特点1.全数字电路,精度高,稳定性好,具有极强抗干扰性能力仪器采用全数字电路,每通道独立AD、独立MCU,所有通道同步采样,仪器检定指标达到0.1级,显示精度0.1。采用独特的硬件隔离技术,系统具有极强的现场抗干扰性能力。2.配合不同传感器实现多种物理量测量,功能强大,性价比高。仪器通过软件选择不同的输入类型即可轻松接入不同传感器,实现你所需要的物理量的测测量,操作简单方便。3.具有多种补偿方式,能适应各种环境下的测量要求仪器具有桥路、长导线、公共,软件多种补偿方式,稳定性好。尤其是公共补偿方式,可方便快捷的对模块上10个通道进行同时补偿,避免了繁琐的桥路补偿,节约测量成本和时间。4.简洁的面板设计,闪烁式通道及状态指示灯仪器面板简洁大方,省掉一切不必要的端口,简化了测量接线难度。每个模块的状态和通道状态用高亮指示灯闪烁指示,一目了然。5.设置简单,操作方便快捷,海量存贮适合各种应变花和传感器,仪器桥路和配置采用菜单式设计,只需选择测量类型,软件控制仪器完成自动配置和清零,全量程自动平衡,不损失测量范围,无需复杂专业的测前设置。应变片和仪器连接简单方便,主机与计算机usb接口连接,即插即用。可进行不间断或间断性长时间在线测量,数据存储量取决于计算机硬盘大小。6.具有掉电自动保存测量数据功能在测量过程中,如出现意外断电,仪器可自动保存断电前的所有测量数据,并自动形成测量文件,防止意外丢失测量数据。JHYC应变应力测量系统软件功能1.软件操作、自动识别、显示方式灵活仪器设置全软件操作,所有功能嵌与同一软件内。具有自动识别系统配置,程控设置仪器的量程、测量类型、滤波及采样参数,完成信号的实时采集、处理、分析等功能,具有多种显示方式。2.应变实时显示,被测物理量直接显示多通道应变值实时显示,实时绘制时域曲线。根据传感器的输出灵敏度,完成被测物理量单位量纲的归一化,并直接显示被测物理量。3.数据实时保存,自动生成报表,功能多样软件可对历史数据回放浏览,具有多样的浏览工具、截图工具,浏览中可对数据进行去直流、去趋势、数据统计、数据的截取、删除、另存、导出、数字滤波器等操作。并自动生成测试报告,在线打印。4.每个通道都可根据测量需求选择测量类型,简单方便可根据每通道接入的传感器类型,各通道选择不同的输入类型、工程单位、标定值、调零、补偿方式等。实现对不同物理量的实时同步测量。5.任意通道间X-Y绘图功能,可实时显示相关物理量间的关系曲线6.提供分析功能软件具有时域和频谱分析功能,对历史数据进行滤波,微分和积分计算,数据统计等数据处理功能。南京聚航科技是应变仪生产商,种类多样,型号齐全,欢迎广大客户咨询!
  • 动态应力应变测试
    JHDY动态应力应变测试系统应用范围1.适用于测点相对集中,被测物理量快速变化的试验中。2.主要用于动态应力分析及动载荷研究中测量结构及材料任意点的动态应力应变测量。3.接入不同的传感器,可完成应力应变、振动(加速度、速度、位移)、冲击、温度、压力、流量、力、扭矩等各种物理量的测量。4.广泛应用于桥梁、建筑物、飞机、船舶、车辆、起重机械、旋转构件等结构动载荷测试,疲劳测试。5.可用于实验性测量,也可用于长期监控测量。JHDY动态应力应变测试系统特点1.模块化设计,自选通道数,可扩展仪器集桥路和采集通讯为一体,无需各类适配器和平衡箱,结构紧凑简洁,采用模块化结构,可根据客户要求搭载通道数为8的倍数的采集模块,单机最多64通道,软件可同时控制多台仪器并联使用,可达数百通道,并保持同步。2.全数字电路,抗混滤波,精度高,稳定性好仪器采用全数字电路,每通道独立AD、独立MCU,采用了先进的DDS数字频率合成技术,保证了多通道采样速率的同步性、准确性和稳定性。所有通道同步采样,采样频率软件设置,不随通道数递减,最高可达10KHz。采用独特的硬件隔离技术,系统具有极强的现场抗干扰能力。系统精度高,可以达到0.2%±1με。3.低电压,低功耗,低噪声电路设计仪器采用高精度进口元器件,采用低电压,低功耗,低噪声电路设计,确保了仪器长时间测量稳定性,显示精度可达0.1。同时在加装锂电后,可长期待机测量。4.配合不同传感器实现多种物理量测量,功能强大,性价比高。仪器通过软件选择不同的输入类型即可轻松接入不同传感器,实现你所需要的物理量的测量,操作简单方便。5.具有多种补偿方式,能适应各种环境下的测量要求仪器具有桥路、长导线、软件多种补偿方式,稳定性好。尤其是软件补偿方式,可方便快捷的选择模块上所有通道进行同时补偿,避免了繁琐的桥路补偿,节约测量成本和时间。6.仪器连接简单,设置方便,操作快捷,海量存贮仪器与计算机usb接口连接,即插即用。仪器与各类传感器通过航插连接,方便可靠。可连接各种应变花和传感器,仪器桥路和配置采用菜单式设计,只需选择测量类型,软件控制仪器完成自动配置和清零,全量程自动平衡,不损失测量范围,无需复杂专业的测前设置。可进行不间断长时间在线测量,数据存储量取决于计算机硬盘大小。7.简洁的面板设计,闪烁式通道及状态指示灯仪器面板简洁大方,具有通讯和电量指示,每个模块的状态高亮指示灯闪烁指示,一目了然。8.具有标准模拟量电平输出,可与其他控制采集单元互联9.具有远程同步触发控制端口,可各种仪器实现同步采样控制10.具有掉电自动保存测量数据功能JHDY动态应力应变测试系统软件功能1.软件操作、自动识别、显示方式灵活仪器设置全软件操作,所有功能嵌与同一软件内。具有自动识别系统配置,程控设置仪器的量程、测量类型、滤波及采样参数,触发类型,完成信号的实时采集、处理、分析等功能,具有多种显示方式,可实时在线进行频谱分析和应力计算。2.多通道同时实时显示曲线,可直接显示所需物理量多通道实时显示时域曲线和频域曲线。根据传感器的输出灵敏度,完成被测物理量单位量纲的归一化,并直接显示被测物理量。无需复杂的变换计算。3.测量数据高度实时同步,自动保存,自动生成报表,功能多样软件可对历史数据回放浏览,具有多样的浏览工具、截图工具,浏览中可对数据进行去直流、去趋势、频谱分析、数据统计、数据的截取、删除、另存、导出、数字滤波器等操作。并自动生成测试报告,在线打印。4.根据测量需求灵活设置参数,满足不同的测试需求可根据不同需要对各通道参数独立设置工程单位、测量类型、控制参数等。5.任意通道间X-Y绘图功能,可实时显示相关物理量间的关系曲线6.提供分析功能软件具有时域和频谱分析功能,对历史数据进行滤波,微分和积分计算,数据统计等数据处理功能。

体视形变应变相关的仪器

  • 德国ViALUX公司针对日常现场测试推出了AutoGrid Comsmart测试头。基于广大用户的反馈,AutoGrid Comsmart测试头极大地满足了金属板料工业的需求。AutoGrid Comsmart测试头可以应用于整个工艺流程中,从设计、试验、产品检测到质量保证。 该系统的基本原理是在板料成形后,对初始印制在板料表面的方网格进行三维测量。AutoGrid comsmart系统集可移动性、便携性、稳定性、易操作性于一身,可在现场对整个零件做全应变场测试。最新的照相技术和解决方案的采用完全基于移动计算技术,另外标准笔记本电脑的采用也为系统提供了最大的可移动性。 四个摄像头刚性地固定在测试头里面,使得摄像头不需要安装和标识块。操作人员通过REC按钮对感兴趣部位进行拍摄。在测试过程中,通过激光三角法控制物件工作距离,自动控制高亮度LED照明。简约的AutoGrid用户界面提供曝光时间和增益设置的软件控制。AutoGrid comsmart系统采用570万像素的高分辨摄像头,再配合高性能的施耐德光学镜头可将拍摄面积扩展至390*340mm2 ,扫点频率:15000个节点/min。 应用拼接功能则测试面积不受限制。测试头和标识块可以放在安全箱里,安全箱的尺寸符合飞机托运标准。ViALUX便携式网格应变测试仪技术优势:*手持式设计使得操作十分简单。*一次标定后长时间不需要标定,不在测试过程中放至标识块或比例尺,能给出整个测试 范围的应变场分布(如果在测试过程中放置标识块,则标识块将遮住某部分区域)。*由于采用标准网格图案,结果重现性十分卓越,测试精度有保障。*不受样件形变大小的限制,应变值范围上限可达100%以上。*网格制作工艺简单,对操作人员无技巧要求。网格尺寸可供用户选择。*采用四个摄像头,视野范围更宽广,即使样件表面的弯曲大于90º 也能胜任测试。*网格图案的采用使得样件表面十分直观,破裂区域很明显。*采用Windows操作系统,对操作者计算机水平要求甚低。软件用户界面友好, 功能十分强大,操作极其简便,测试耗时短。所有处理过程自动完成,无需人工干预。*自动创建FLD报告*图片输出格式多样: *.bmp, *.tif, *.png, *.jpg, *.vrml, *.ps, *.eps 数据输出格式多样:ASCII, MS-Excel, AutoForm, Pam-Stamp, *.stl, AutoCAD, LS-Dyna*便携式设计,仪器箱尺寸符合飞机行李箱尺寸标准。*ViALUX提供的技术指标(如测试精度、应变范围、测试体积等)都是实际测量值而非理 论值,所有指标都能做实验检验。ViALUX便携式网格应变测试仪技术规格:*测试头:4个同步数字CCD摄像头*高精度测试镜头(2000万像素)*单次测试体积:390*340mm2 (测试体积可定制)*计算速度:15000个节点/min*标定: 尺寸可调整的标识块。自动标定,大约3min,一次标定后可长时间工作*测试时间:3-5min*结果: 各节点三维立体坐标图、主要应变、次要应变、等效应变、厚度应变*图片输出格式 *.bmp, *.tif, *.png, *.jpg, *.vrml, *.ps, *.eps*数据输出格式:ASCII, MS-Excel, AutoForm, Pam-Stamp, *.stl, AutoCAD, LS-DynaViALUX便携式网格应变测试仪软件功能 :*图像采集、控制和测试头标定*照相机光线调整设置(曝光时间、亮度和增益)*自动3D网格测量*自动应变计算*拼接功能*成形阶梯分析*友好的结果后处理界面*调用或测量FLC*创建测试报告
    留言咨询
  • 技术参数:LaVision introduces a new member to its StrainMaster family. In addition to the well known StrainMaster Lab system, LaVision is now offering the StrainMaster Portable system, a compact and lightweight turnkey DIC system for shape, deformation and strain measurement. Suitable for a huge range of applications where flexibility and portability is essential, the StrainMaster Portable system is appropriate for a wide range of subject sizes. The system comes with new software that guides the user through his experiment step by step. Rapid 3D calculations are possible via the intuitive surface height and displacement calculation. Comprising state of the art laptop computer, highly sensitive Imager E-Lite cameras, and cold illumination system, this device is dedicated to the study and analysis of material behaviour.
    留言咨询
  • 压电应变传感器是用于测量动态表面形变的传感器。该传感器配备电子器件及连接器类型为10-32UNF。 芯明天应变传感器介绍 什么是应变?被测量的物理被测量是应变ε的相对量度,被定义为负载下机械的一部分的长度变化量除以原始长度l0。如果尺寸增加,那么就称为正应变(或拉伸应变),否则称为负应变(或压缩应变)。 被测量ε是无量纲的,即没有单位的物理量。国际单位制中应变ε作为一个相对量度,它的单位为米/米,[m/m]。 我们使用με作为相对应变的单位,1με=1微应变=10-6m/m=1μm/m。正向应变-剪切应变任何部件在纵向上被拉伸或被压缩都会经历横向的应变。剪切应变通常约为另一方向正向应变的30%。例如,如果部件是在纵向被压缩,在横向它是被拉伸的。取决于应用,可以利用这种效应,来进行相应地测量剪切应变,代替测量正向应变。使用应变传感器的原因应变传感器主要用于测量一个结构表面的形变。然而,在施加力的整个过程,机械的承载结构会受到比所需要的力大或小的拉力或压缩力应变,应变传感器可以同样有效地进行间接测量动态和准静态力。与直接力的测量相比,使用应变间接测量的敏感度会低一些,但在大多数情况下,力与应变的关系是线性的,有效满足准确测量和监控。另外,利用应变进行间接测量时,力的分流可接近99%,而直接测量时,力的分流约小于10%。 特点 ●高的测量敏感度,且允许在坚硬的结构上或涉及小的力的情况下进行应变测量。●加速度灵敏度低,也适用于移动部件的测量。●轻松安装,只需一个M6内六角螺钉。●对称的拉伸和压缩应变测量范围等。 应用 ●中间力的过程监测,如压装、卷边、压焊、键合、冲压、精密冲裁、深冲压、压花等。●在压力机施加较大力的过程监测,如用于锻造和车身的生产等。●机床监控等。 结构组成 A、机械结构,用于循环地被拉伸或被压缩。B、应变发送的两个接触脚(黄色区域)通过摩擦将结构的应变传送给传感器的主体及压电元件,以测量剪切力。C、压电测量元件,产生与施加的剪切力成比例的电荷。D、传感器外壳或主体,类似弹簧,将应变转化为比例的力。 原理 为了使机械结构的应变能够通过摩擦传送到应变传感器,接触脚必须通过预紧力压到结构的表面,预紧力与承载面垂直。芯明天应变传感器可使用一个M6螺钉通过壳体预紧到承载面(接触脚)。随着长度的变化,形成机械设备结构材料的应变作用于传感器结构的表面。应变传感器稳固地连接到机械结构的表面,两个接触脚间的距离随着应变而变化。这种距离的变化由传感器主体拾起,并转换成与应变成比例的剪切力,作用于压电测量元件。芯明天应变传感器被设计为结构拉伸时在传感输出端产生正电荷,当压缩时,信号极性发生变化,即为负电荷。 加速度补偿 芯明天应变传感器的特殊设计,连接了两个压电剪切测量元件,使它对于纵向的加速度(及合力)不敏感。如果两个压电元件在同一剪切方向受力,将产生两个相反极性的电荷,由于并联,两种电荷相互补偿。通常表面材料的拉伸或压缩将在两个相反的方向作用于压电元件,它们会产生同极性的等量的电荷。并联使得两种电荷被加在一起,因此它具有高的灵敏度。NSE2001压电应变传感器技术参数参数小值 典型值大值单位测量参数在较长轴的方向的形变敏感度40mV/με 室温下+20%/-10%极性施加张力时为正压低频下限0.01Hz谐振频率14.7kHz动态范围100με连接器同轴 10-32 UNF电源电流2 420mADC偏置电压8 1214VDC偏置稳定60s安装螺纹M6 x 20, 锥形头安装扭矩3510Nm工作温度范围-40+85℃
    留言咨询

体视形变应变相关的试剂

体视形变应变相关的方案

体视形变应变相关的论坛

  • 【分享】电阻应变片的定义原理

    电阻应变测量原理,是以电阻应变片作为传感元件,将其牢固地粘贴在构件的测点上,构件受力后由于测点发生应变,应变片也随之变形而使应变片的电阻发生变化,再由专用仪器测得应变片的电阻变化大小,并转换为测点的应变值。  根据不同的用途,电阻应变片的阻值可以由设计者设计,但电微型压力传感器阻的取值范围应注意:阻值太小,所需的驱动电流太大,同时应变片的发热致使本身的温度过高,不同的环境中使用,使应变片的阻值变化太大,输出零点漂移明显,调零电路过于复杂。而电阻太大,阻抗太高,抗外界的电磁干扰能力较差。一般均为几十欧至几十千欧左右。金属电阻应变片的工作原理是吸附在基体材料上应变电阻随机械形变而产生阻值变化的现象,俗称为电阻应变效应。

  • 应变片压力传感器原理与应用

    1、应变片压力传感器原理与应用  力学传感器的种类繁多,如电阻应变片压力传感器、半导体应变片压力传感器、压阻式压力传感器、电感式压力传感器、电容式压力传感器、谐振式压力传感器及电容式加速度传感器等。但应用最为广泛的是压阻式压力传感器,它具有极低的价格和较高的精度以及较好的线性特性。下面我们主要介绍这类传感器。  在了解压阻式力传感器时,我们首先认识一下电阻应变片这种元件。电阻应变片是一种将被测件上的应变变化转换成为一种电信号的敏感器件。它是压阻式应变传感器的主要组成部分之一。电阻应变片应用最多的是金属电阻应变片和半导体应变片两种。金属电阻应变片又有丝状应变片和金属箔状应变片两种。通常是将应变片通过特殊的粘和剂紧密的粘合在产生力学应变基体上,当基体受力发生应力变化时,电阻应变片也一起产生形变,使应变片的阻值发生改变,从而使加在电阻上的电压发生变化。这种应变片在受力时产生的阻值变化通常较小,一般这种应变片都组成应变电桥,并通过后续的仪表放大器进行放大,再传输给处理电路(通常是A/D转换和CPU)显示或执行机构。金属电阻应变片的内部结构   如图1所示,是电阻应变片的结构示意图,它由基体材料、金属应变丝或应变箔、绝缘保护片和引出线等部分组成。根据不同的用途,电阻应变片的阻值可以由设计者设计,但电阻的取值范围应注意:阻值太小,所需的驱动电流太大,同时应变片的发热致使本身的温度过高,不同的环境中使用,使应变片的阻值变化太大,输出零点漂移明显,调零电路过于复杂。而电阻太大,阻抗太高,抗外界的电磁干扰能力较差。一般均为几十欧至几十千欧左右。 电阻应变片的工作原理  金属电阻应变片的工作原理是吸附在基体材料上应变电阻随机械形变而产生阻值变化的现象,俗称为电阻应变效应。金属导体的电阻值可用下式表示:式中:ρ——金属导体的电阻率(Ω·cm2/m) S——导体的截面积(cm2) L——导体的长度(m) 我们以金属丝应变电阻为例,当金属丝受外力作用时,其长度和截面积都会发生变化,从上式中可很容易看出,其电阻值即会发生改变,假如金属丝受外力作用而伸长时,其长度增加,而截面积减少,电阻值便会增大。当金属丝受外力作用而压缩时,长度减小而截面增加,电阻值则会减小。只要测出加在电阻的变化(通常是测量电阻两端的电压),即可获得应变金属丝的应变情

  • 奥氏体形变产生???

    奥氏体形变(拉拔后,甚至是磨样过程),会产生很多滑移,在显微镜下能看到很多滑移线,我的问题是:磨样后,试样的磁性增加(用铁素体含量测定仪测定的,我知道这个结果不准,但是起码能说明磁性增加),是滑移线的问题,还是产生了形变马氏体??形变马氏体形貌是什么样的呢?总体情况就知道是:奥,304不锈钢,应该是冷轧吧,钢带,0.4mm厚的,做了个拉伸,发现磁性比没拉之前大了很多,做个金相,因为没做过,所以不太清楚这个金相怎么分析,就知道铁素体没有增加以上请老师看看~~~

体视形变应变相关的资料

体视形变应变相关的资讯

  • 课堂 | Leica EM TIC3X应用实例:高应变率作用下高导无氧铜(OFHC)的晶粒细化分析
    通过leica em tic3x 对样品进行离子束切割,样品ebsd mapping解析率得到明显提升,可达80%-90%以上,并且结果稳定可重复,更好地表征了晶粒的变形,以及大小角晶界的转变。实验样品高应变率作用下高导无氧铜(ofhc)实验目的通过电子背散射衍射技术(ebsd)对在高应变率、高温和大变形条件下获得的材料进行晶粒变形细化以及再结晶行为的表征,以期达到表征材料力学属性的目的。实验过程 1 原始样品的制备高速切削是一种集合高应变率、高温和大变形的一种材料变形的复杂材料変形条件,通过改变切削速度来改变上述的变形边界条件,高速切削的过程示意图如下:(图1 高速切削过程示意图)获得的切屑经过金相镶嵌和腐蚀之后的试样如图所示:(图2 经过镶嵌和腐蚀之后的切屑)从图2中可知晶粒已经严重变形,光镜已经无法分辨,而且对于晶粒到底发生了什么变化,光镜也无法做到表征的目的,因此对于材料ebsd表征十分必要。 2 实验样品的制备ebsd制样是本次实验的重中之重,本次实验较难主要体现在3个方面:一是因为经历了严重塑形变形的材料自身的晶粒内部就会存在一定的残余应力,在表征的时候有一定的难度;二是高导无氧铜是一种特别软的材料,在制样的时候非常容易带入应力,或者划伤测试面;三是经过高速切削得到的样品宽度非常细长,不是传统的块体,制样过程比较困难。目前解决方案主要有四种:机械抛光,电解抛光,振动抛光,离子抛光,这几种方法目前都有所尝试,解析率都不太高,究其原因,主要还是因为我的样品细长弯曲的原因,经过镶嵌之后,电解抛光无法满足,机械抛光很容易带入划痕,离子抛光镶嵌之后的样品效果不是十分理想,很多方法都不太适用。通过与徕卡电镜制样技术人员沟通,认为离子切割的方法能比较好的解决目前存在的问题,经过leica em tic 3x离子切割出来的样品解析率超过了80%,部分区域甚至能够达到90%以上,最重要的是这种制样方法非常稳定,实验的结果能够比较方便的被复现出来,可较好地满足我的研究需要。 3 实验观测通过ebsd测试,获得的mapping图的解析率有了较为明显的提升,更高的解析率意味着晶粒的变形,以及大小角晶界的转变也能更好的表征出来。图3 经过振动抛光之后获得的ebsd角度取向分布图图4 经过离子切割之后获得的ebsd角度取向分布图总结通过上述实验的结果可以得出结论,相比于目前主流的振动抛光、电解抛光和离子抛光,在进行一些形状比较特殊的样品的ebsd试样的制备时,离子切割方法所具备的不受样品自身形状限制,效率高,稳定性好,可重复性高等都是目前比较常用的制样方法所不具备的,因此离子切割为ebsd的制样方法做了一个十分重要的扩充!致谢:西安交通大学 机械学院 许祥关于徕卡显微系统leica microsystems 徕卡显微系统是全球显微科技与分析科学仪器之领导厂商,总部位于德国维兹拉(wetzlar, germany)。主要提供显微结构与纳米结构分析领域的研究级显微镜等专业科学仪器。自公司十九世纪成立以来,徕卡以其对光学成像的极致追求和不断进取的创新精神始终得到业界广泛认可。徕卡在复合显微镜、体视显微镜、数码显微系统、激光共聚焦扫描显微系统、电子显微镜样品制备和医疗手术显微技术等多个显微光学领域处于全球领先地位。 徕卡显微系统在全球有七大产品研发与生产基地,在二十多个国家拥有服务支持中心。徕卡在全球一百多个国家设有区域分公司或销售分支机构,并建有遍及全球的完善经销商服务网络体系。
  • 金属所纳米孪晶金属形变机制的定量电子显微学研究获进展
    纳米孪晶金属以其优异的力学性能和良好的导电性受到广泛关注,该材料的变形行为是材料学家长期关注的问题之一。作为一类大角度晶界,共格孪晶界能够强烈地阻碍位错的运动,提高材料的强度,一般来说孪晶片层厚度越小,纳米孪晶材料的强度也应该越高。然而,实验发现,当孪晶片层厚度减小到一个临界尺寸(约为15 nm)以下时,纳米孪晶材料反而出现软化现象。研究者利用分子动力学计算发现,这种软化现象是由于软化模式位错的开动所致,不过到目前为止还未定量地确定纳米孪晶金属的这一宏观力学特性与微观变形机制之间的关系。  最近,中国科学院金属研究所沈阳材料科学国家(联合)实验室固体原子像研究部杜奎研究组与材料疲劳与断裂研究部卢磊研究组合作,通过原位透射电镜观察和定量应变分析,发现孪晶片层厚度对不同类型位错形核处的局部应力集中有明显影响,因此位错的主导形核机制在某一临界片层厚度(18 nm)会发生转变。这一研究揭示了块体纳米孪晶材料的微观变形机制与宏观力学性能之间的直接联系。  研究结果表明,在等轴晶纳米孪晶铜的屈服阶段,位错活动的类型主要有两种:I型(Hard mode I)位错在孪晶界上的台阶处形核并在倾斜于孪晶界的滑移面上滑移 III型 (Soft mode)位错在孪晶界/晶界交界处形核并在孪晶界上滑移。当孪晶片层厚度下降到12-37 nm时,主导位错机制从I型位错的形核和滑移为主转变为以III型位错的形核和滑移为主。由于位错形核和局部应力集中有关,所以纳米孪晶铜变形的主导位错形核机制主要取决于孪晶界台阶处和孪晶界/晶界交界处的局部应力集中程度。而局部应力集中受孪晶片层厚度的影响,在孪晶界台阶处的局部应力集中随着孪晶片层厚度的减小而缓慢减小,而孪晶界/晶界交界处的应力集中随着片层厚度的减小而显著增加。两者应力集中程度相等时对应的临界孪晶片层厚度为18nm。这一原子尺度定量应变分析的结果与宏观力学性能测试得到的临界孪晶片层厚度(15nm) 相符,这为预测进而优化具有纳米片层结构的金属材料的力学性能提供了一条新途径。  该研究得到了国家自然科学基金、科技部“973”计划项目的资助。  相关论文已于7月16日在线发表于《自然通讯》上(Nature Communications 6:7648 (2015), DOI: 10.1038/ncomms8648)。  全文链接  图1 (a-d) I型位错在孪晶界上形核并滑移穿越孪晶界的动态过程。(e-h) III型位错在孪晶界/晶界交界处形核并且在孪晶界上滑移的原位动态过程和相应的示意图。  图2 具有不同孪晶片层厚度l的纳米孪晶铜在原位形变过程中的两类位错的比例。  图3 (a) 孪晶界发射I型位错的动态过程。(b) I型位错发射前的剪切应变分布。(c) 图(b)中黑框区域内的定量分析。(d) 孪晶界/晶界交界处发射III型位错的动态过程。(e) III型位错发射前的剪切应变分布。(f) 图(e)中黑框区域内的定量分析。  图4 纳米孪晶铜中对应于不同孪晶片层厚度l的孪晶界上台阶处和孪晶界/晶界交界处的应力集中因子K。
  • Nat. Nanotechnol.:范德华磁体中应变诱发的可逆磁相变——OptiCool、Montana低温光学设备大显神通
    晶体的机械形变会对其物理性质产生深远的影响。值得注意的是,即使是化学键几何形状很小的修改也可以完全改变磁交换相互作用的大小和符号,从而改变磁基态。来自华盛顿大学的徐晓栋教授课题组通过可以连续原位施加单轴张应力的装置在低温下使二维A型层状反铁磁半导体材料CrSBr产生了高达几个百分点形变。利用该装置,研究者实现了零磁场下应变诱导的可逆反铁磁-铁磁相变,及应变调控的自旋翻转过程。该工作为二维材料的磁性和其他电子态的应变调控创造了机会。该工作于2022年1月20日发表在nature nanotechnology上。该研究中涉及到了多种原位低温光谱的测量。为这些低温光学测量提供高稳定性低温及磁场环境的正是目前光学低温设备中的代表:OptiCool-超全开放强磁场低温光学研究平台和Montana超精细多功能无液氦低温光学恒温器。OptiCool-超全开放强磁场低温光学研究平台Montana超精细多功能无液氦低温光学恒温器全干式系统全自动软件控制,一键变温变场8个光学窗口超大磁场:±7T1.7K~350K全温区控温智能触摸屏,“一键式操作”2小时快速降温(300K-4.2K)5个光学窗口震动稳定性:5 nm助力数百篇发表 ☛ 低温拉曼原位检测应变大小——基于OptiCool的低温拉曼测量研究者利用新的应变装置,通过对压电陶瓷施加电压来原位改变二维材料的单轴应变。为了估算CrSBr的应变大小,研究者比较了在应变区域和远离间隙的非应变区域的拉曼光谱。为此,该团队使用应变片异质结构校准了345 cm−1拉曼峰位(标记为P3)与压电陶瓷所加电压以及应变率之间的关系。校准得到的红移率为~4.2 cm−1每1%应变,与原理计算预测的~4.4 cm−1每1%应变相一致。图1:原位可调应变装置与拉曼测量应变率图2:应变诱导的反铁磁-铁磁相变☛ 低温PL光谱探测CrSBr磁性变化——基于Montana超精细多功能无液氦低温光学恒温器的PL光谱测量由于向RMCD对面外磁性比较敏感,而CrSBr是面内的A型反铁磁结构,因此用RMCD来测量磁性并不是一种好的方法,近期研究发现,激子光致发光(PL)和吸收谱对CrSBr的层间反铁磁和铁磁排列非常敏感。因此该工作中用低温PL光谱研究了CrSBr不同应变下的磁性态。图3:应变诱导的磁相变前后与磁场相关的PL光谱 ☛ 低温RMCD探测CrSBr自旋翻转过程——基于Montana定制型光学恒温器的RMCD测量在对CrSBr二维材料施加面外磁场时,自旋会逐渐翻转至面外方向。研究者发现,应变会导致自旋翻转过程发生剧烈的变化。利用低温限RMCD作为面外磁化的敏感探针,研究者测量了应力对自旋翻转的影响。图4:应变调控的面外磁翻转过程总结在此作中,研究者展示了新的技术手段以用来探测低温下原位可调的单轴应变对二维材料和异质结的影响。利用这一技术,研究者实现了对层状磁性半导体CrSBr磁性能前所未有的控制。研究结果表明利用自旋、电荷、晶格之间特的耦合作用可以用于制造二维器件,例如应力控制的磁阻开关、通过应变导致的磁性态反转对称性破缺实现调控二次谐波,或者零磁场下调控磁隧道结。利用应变的调控还可以扩展到范德瓦尔斯材料之外的其他二维材料、异质结、莫尔超晶格中,为应变调控开辟了广阔的前景。设备简介OptiCool超全开放强磁场低温光学研究平台OptiCool是Quantum Design于2018年2月新推出的超全开放强磁场低温光学研究平台,创新特的设计方案确保样品可以处于光路的关键位置。系统拥有3.8英寸超大样品腔、双锥型劈裂磁体,可在超大空间为您提供高达±7T的磁场。多达7个侧面窗口、1个部超大窗口方便光线由各个方向引入样品腔,高度集成式的设计让您的样品在拥有低温磁场的同时摆脱大型低温系统的各种束缚。OptiCool是全干式系统,启动和运行只需少量氦气。全自动软件控制实现一键变温、一键变场、部窗口90°光路张角让测量更便捷;控温技术让控温更智能;新型磁体结合了超大均匀区与超大数值孔径。OptiCool让低温光学实验无限可能。OptiCool技术特点:▪ 全干式系统:完全无液氦系统,脉管制冷机。▪ 8个光学窗口:7个侧面窗口,1个部窗口;可升底部窗口▪ 超大磁场:±7T▪ 超低震动:10 nm 峰-峰值▪ 超大空间:Φ89 mm×84 mm▪ 控温:1.7K~350K全温区控温▪ 新型磁体:同时满足超大磁场均匀区、大数值孔径的要求。▪ 近工作距离:可选3 mm工作距离窗口或集成镜头方案Montana超精细多功能无液氦低温光学恒温器全球知名光学恒温器制造商Montana Instruments多年来为低温光学、量子信息等领域提供性能的光学恒温器而广受好评。作为低温光学恒温器的旗舰产品,Montana Instruments近推出了全新型号CryoAdvance系列。该系列的目标是助力科技工作者在先进材料和量子信息领域研究研究方面更进一步。CryoAdvance 50新特色▪ 自动控制:全新智能触摸屏系统,“一键式操作”,实时显示温度、稳定性、真空度等多种指标。▪ 模块化设计:多种配置可选,快速满足各种实验需求,后续升简单。▪ 多通道设计:基本配置已包含光学窗口+直流电学+高频电学通道。▪ 稳定性设计:新设计在变温和振动稳定性上进一步优化。CryoAdvance 50主要参数▪ 自动控温:3.2K - 350K 样品台▪ 温度稳定性:10mK(峰-峰值)▪ 震动稳定性:5 nm(峰-峰值)▪ 降温时间: 300K-4.2K ~2小时▪ 样品腔空间:Φ53 mm ×100 mm▪ 光学窗口:5个光学窗口,可选光纤引入▪ 水平光路高度:140 mm▪ 窗口材料:多种材质可选▪ 基本电学通道:20条直流通道。▪ 接口面板:双RF接口+25DC接口
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制