同步辐射纳米分辨谱学成像技术

仪器信息网同步辐射纳米分辨谱学成像技术专题为您整合同步辐射纳米分辨谱学成像技术相关的最新文章,在同步辐射纳米分辨谱学成像技术专题,您不仅可以免费浏览同步辐射纳米分辨谱学成像技术的资讯, 同时您还可以浏览同步辐射纳米分辨谱学成像技术的相关资料、解决方案,参与社区同步辐射纳米分辨谱学成像技术话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

同步辐射纳米分辨谱学成像技术相关的资讯

  • 高能所等应用同步辐射纳米分辨谱学成像技术揭示氧化还原反应的相变过程
    p style="text-align: justify " 中国科学院高能物理研究所多学科中心X射线成像实验站副研究员袁清习和国内外课题组合作,建立了基于同步辐射纳米分辨谱学成像技术追踪氧化还原反应相变过程的方法,并成功应用于锂离子电池电料相变过程的研究。研究成果近期发表在《自然-通讯》(Nature Communications)期刊上。/pp style="text-align: justify " 同步辐射谱学成像(XANES imaging)是利用特定元素对X射线能量的不同响应特性来获得样品内部对应元素的化学价态三维分布。基于波带片全场成像方法的纳米分辨谱学成像技术可以获得高空间分辨的形貌和化学信息,近年来受到了越来越多的重视,在材料科学领域尤其是在能源材料领域的研究中表现出重要潜力。/pp style="text-align: justify " 针对纳米分辨谱学成像方法学和应用研究,高能所多学科中心X射线成像实验站近年来开展了大量的工作。其中,袁清习和国内外多个同步辐射装置建立紧密联系,在技术研发、科研应用等方面开展了广泛的合作。近期,袁清习联合美国斯坦福同步辐射光源研究员刘宜晋课题组、弗吉尼亚理工大学教授林锋课题组提出了应用同步辐射纳米分辨谱学成像技术研究氧化还原反应的不均匀相变过程的新方法。这个联合团队成功将他们提出的新方法应用于Li(NixMnyCoz)O2(NMC) 三元正极材料的研究中,揭示了该材料热稳定性的一系列问题。该项工作发表于Nature Communications9, 2810,2018,共同第一作者为弗吉尼亚理工大学博士穆林沁和高能所袁清习。/pp style="text-align: justify " 以NMC正极材料中的应用为实例,该实验方法的工作流程如下:首先,为了研究该材料体系在不同温度下的行为,开展原位实验,利用谱学成像获得大量空间分辨的吸收谱数据;其次,提取Ni元素K边吸收能量表示相应的化学状态,高能量代表高价态(相对氧化态),低能量代表低价态(相对还原态)。进而使用样品在不同温度条件下的化学价态分布结果来表征氧化还原相变过程;第三,选择特定的Ni元素价态(例如,选择氧化还原反应最剧烈的能量点代表的价态),利用所采集的大量数据来描绘Ni元素等价态面的三维分布,对比不同反应条件下的等价态面分布来表征相变的发生、发展及相变前沿的推进过程;最后,引入等价面局域曲率(反应界面局域曲率)的概念,来描绘成核生长及整个相变的复杂过程。/pp style="text-align: justify " 图1为Ni的价态随NMC材料加热过程的变化,其中的每一条曲线代表了相应条件下基于全部像素的Ni价态的分布情况,可以看出化学反应从开始到结束全过程Ni元素价态分布的演变情况。图2给出了四个特定反应条件下Ni等价态面的发生、发展过程,所选择的Ni价态为8341eV对应的价态。从图1可以看出,8341eV代表的价态可以代表是化学反应最剧烈情况。图3中用不同颜色表示了镍元素的吸收边能量代表的镍元素的价态。受由晶粒边界和其局域的化学环境(不同组分和缺陷)所影响,相变过程通常非常复杂,如图3a所示,镍阳离子三维的形貌由不同的价态组成,从相对还原态(低能量态)到相对氧化状态(高能量态)。这些三维的价态推进前端提供了一个直观的三维立体多面体。还原态和氧化态分别代表了子相和母相,相变反应的推移前端从图3a到图3c。同时,作者将这些三维多面体每个局域的曲率计算出来,并分别用红色和蓝色代表局域曲率为正值和负值。从图3d、e可以看出相变过程中局域价态曲率的演化过程。br//pp style="text-align: justify " 这项工作不仅对锂离子电极材料的热稳定性和热致相变给出了详细的描述,还为下一步的储能材料优化提供了一些思路。研究工作所使用的方法可以推广到更加广阔的研究领域,尤其是复杂体系的非均匀相变过程等的研究中。特别是考虑到下一代同步辐射光源的发展,更高的亮度将会大大降低实验的时间,从而能够更好地捕捉到相变过程中的非稳定状态,为能源材料、环境科学等研究领域提供有力的工具。/ppbr//pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/863601e7-f186-445f-b8b1-ff31fd5d1984.jpg" title="图1111.jpg"//pp style="text-align: center "图1 NMC样品中镍元素的价态随加热过程的变化。(a)为镍元素的局域价态直方图。(b-e)为原位观测镍价态信息示意图。镍的价态由Ni 的K吸收边能量表示,高能量和低能量分别代表了高价态和低价态。/ppbr//pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/974970c5-2fc2-4129-beeb-217abf22612c.jpg" title="图2222.jpg"//pp style="text-align: center "图2 NMC样品不同反应条件下Ni等价态面的产生、发展及推进过程/ppbr//pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/d29d8585-987d-4cf3-9540-9ad6e2f158af.jpg" title="图3333.jpg"//pp style="text-align: center "图3 局部镍元素价态曲率随相转变的演化。(a,b,c)分别代表了不同能量(8339, 8340 和8341 eV)的Ni K-edge的等值面形成的三维曲面。图d和e表示了在不同能量范围内价态曲率随着能量值的变化。/ppbr//p
  • 新型纳米力学成像探针实现原子力显微镜下DNA的直读检测和高分辨成像
    p  近日,中国科学院上海应用物理研究所物理生物学研究室与上海交通大学、南京邮电大学合作,基于DNA纳米技术发展了一系列DNA折纸结构并作为纳米力学成像探针,实现了原子力显微镜下对基因组DNA的直读检测和高分辨成像。相关结果发表于《自然-通讯》(Nature Communications 2017, 8, 14738)。/pp  DNA折纸结构是利用DNA碱基互补配对原则,通过程序性设计将M13 DNA在上百条DNA短链的辅助下折叠成指定几何形状。上海应物所博士张宏陆等在研究员樊春海指导下,并与晁洁、师咏勇等合作,通过设计DNA折纸结构作为原子力显微镜的纳米力学成像探针,在单分子水平下实现了对DNA分子的特异性标记和单核苷酸变异性(SNP)的直读检测。相较于基于荧光成像的直读方法,这种新技术将分辨率提升一个数量级,可达到远超光学衍射极限的10 纳米分辨。基于DNA纳米折纸结构设计的探针为原子力显微镜的图像获取提供了精确的标尺和丰富的选择,为遗传分析等生物学应用提供了新的工具。进一步,他们还将该方法与之前发展的纳米PCR和单倍型分析技术(Nature Nanotechnology 2011, 6, 639)结合,实现了单分子水平的遗传样本单倍型分析。这种单分子水平的单倍型分析通量高,可靠性好,有望用于易感基因的发现、疾病相关基因的鉴定和药物设计等方面。/pp style="text-align: center "img title="W020170419526524657437.jpg" src="http://img1.17img.cn/17img/images/201704/insimg/5ce2d220-65c2-4a85-8844-d5d4e94428db.jpg"/  /pp/pp style="text-align: center "上海应物所等在DNA折纸纳米力学成像探针设计方面取得进展/pp/pp/p
  • 全新一代纳米光谱与成像系统-neaSCOPE,在可见、红外和太赫兹光谱范围实现10 nm高分辨光谱和成像!
    一、 neaspec推出全新一代纳米光谱与成像系统neaSCOPE系列产品 近期,全球知名纳米显微镜领域制造商neaspec推出了纳米光学显微镜neaSCOPE全新一代系列产品,加载了全新技术,拓展了产品功能,以满足客户多样的实验需求。neaSCOPE是基于针增强的纳米成像和光谱,以应用为目的,满足客户在科学,工程和工业研究等不同领域的科研需求。由于其高度的可靠性和可重复性,neaSCOPE已成为纳米光学领域热点研究方向的科研设备,在等离子激元、二维材料声子化、半导体载流子浓度分布、生物材料红外表征、电子激发及衰减过程等众多研究方向得到了许多重要科研成果。neaSCOPE技术特点和优势包括:♢ 行业的针增强技术,高质量的纳米分析实验数据。♢ 采用模块化设计,针对用户的实验需求量身定制配置,同时兼顾未来的升需求,无需重复购置主机。♢ 软件使用方便,提供交互式用户引导功能,让新用户也能快速上手。流程化的软件界面,逐步引导用户轻松完成实验操作。♢ 功能多样、可靠性高,已得到大量发表文章的印证,在纳米光学领域有很深的影响力,是国内外实验室的头号选择。二、neaSCOPE全新一代产品型号 IR-neaSCOPE:基于AFM 针的激光诱导光热膨胀的纳米红外成像和光谱。IR-neaSCOPE可测量纳米红外吸收谱。该设备利用AFM-IR机械信号来检测样品中激光诱导的光热膨胀。IR-neaSCOPE无需红外探测器和光学干涉仪,为热膨胀系数大的样品(如聚合物、生物材料等)提供了一种经济高效的纳米红外成像及光谱研究的解决方案。IR-neaSCOPE提供红外吸收成像,点光谱和高光谱成像,并可升到IR-neaSCOPE+s,拓展更多功能,实现更多种类材料的研究。♢ 将样品的光学与机械性质有效地去耦,实现无伪影的吸收测量。♢ 将激光地聚焦在探针上,实现优化条件下对样品的无损表征。♢ 互动式软件界面,帮助新用户直接上手,获取高质量数据。IR-neaSCOPE+s:探测商用AFM针的弹性散射光,实现纳米红外成像和光谱。IR-neaSCOPE+s能实现10 nm空间分辨率的化学分析和电磁场成像。该设备利用先进的近场光学显微镜技术来测量红外吸收和反射率,以及局部电磁场的振幅和相位。设备支持红外纳米成像、点光谱、高光谱、以及纳米 FTIR,可使用CW照明源,宽波激光器,以及同步辐射源。IR-neaSCOPE+s在有机和无机材料分析方面具有广泛的应用案例以及特殊的近场表征手段,如定量s-SNOM或亚表面分析。♢ 同时探测样品吸收和反射,适用于各类型材料。♢ 快速可靠的s-SNOM成像和光谱系统,在不影响数据质量的情况下实现高效数据产出。♢ 结合多光路设计和多项技术,实现大量选配功能(纳米 FTIR、透射、底部照明、光电流等)。...… VIS-neaSCOPE+s:局部电磁场偏振分辨的近场成像(振幅和相位)。VIS-neaSCOPE+s优化了可见光波长范围内的振幅和相位的矢量场成像。利用的s-SNOM技术实现对等离子体纳米结构和波导结构的近场成像和光谱研究。VIS-neaSCOPE+s提供灵活的光路配置,能够进行偏振测量、侧面和底部照明。同时支持升纳米FTIR 和TERS功能。♢ 检测局域电磁场的振幅和相位,实现对波衰减、模场和色散的全面表征。♢ 有的100%无背景检测技术和稳定的无像差对焦,保证在可见光全波数范围内的实验结果。♢ 灵活的光路选配,可将光源聚焦到样品或探针上,适用于等离子体不同的研究方向。 THz-neaSCOPE+s:纳米尺度太赫兹 (THz) 近场成像和光谱多功能平台。THz-neaSCOPE+s可在纳米尺度上实现太赫兹成像和光谱。该设备基于完全集成的紧凑型 THz-TDS 系统,可直接用于半导体纳米结构、二维纳米材料和新型复合材料系统的电导率研究。THz-neaSCOPE+s同时支持用户自由耦合太赫兹和亚太赫兹源,并集成了市面上SPM仪器中的软件界面,是强大的纳米太赫兹分析仪器。 ♢ 全反射光路,大程度上兼容宽波和单波太赫兹源,覆盖全部光谱范围。♢ 模块化设计和多光束路径设计,支持多种分析功能,包括光电流、泵浦以及纳米FTIR。♢ 基于THz-TDS 技术,实现紧凑且完全集成的太赫兹纳米光谱。 IR-neaSCOPE+fs:10 fs 时间分辨率和 10 nm 空间分辨率的超快泵浦光谱。IR-neaSCOPE+fs实现了泵浦光谱空间分辨率的突破。设备基于纳米FTIR 的fs激光系统,提供完全集成的硬件和软件系统,实现纳米的时间动态研究。该系统具备有的双光路设计、无色散光学元件、以及可选配的SDK,兼容各种泵浦激光器,使用成熟的高功率实验配置进行突破性的超快研究。♢ 完全集成的系统,帮助用户免于复杂的设备调试,专注于研究本身。♢ 无芯片的光学元件进行光聚焦和收集达到大时间分辨率。♢ 灵活的硬件和软件界面,可根据客户实验需求定制。 IR-neaSCOPE+TERs:nano-FTIR与nano-PL和TERS相结合,突破性的纳米尺度光谱探测技术。IR-neaSCOPE+TERs将纳米FTIR与针增强拉曼TERS和光致发光(PL)光谱相结合,在同一显微镜内利用弹性和非弹性散射光同时进行表征。该系统通过简单的光路校准可实现互补的红外光和可见光散射,可使用商用镀金的AFM探针进行稳定的纳米拉曼和PL表征。 ♢ 模块化设计和多光路设计,实现AFM探针在同一位置的纳米FTIR和纳米拉曼/PL光谱。♢ 通过简单的光路校准收集AFM探针针的强弹性散射光。♢ 使用商用AFM探针获得大 TERS 信号。♢ 优化的软件数据收集处理,在同一用户界面进行所有测量。 cryo-neaSCOPE+xs:超低温环境纳米光学成像和光谱。cryo-neaSCOPE+xs可在端低温下实现近场光学纳米成像和纳米光谱。该设备可获得高质量的近场信号,且支持可见光、红外光、以及太赫兹源。因此,该系统可实现10 K以下不同能相关的研究。cryo-neaSCOPE+xs 基于全自动干式低温恒温器,无需液氦。该系统同时具备共聚焦以及接电功能,以实现低温条件下的多功能研究。♢ 的s-SNOM和纳米FTIR技术,实现低温下纳米光学分析,温度低至10K。♢ 使用neaspec 照明和检测模块,兼容红外到太赫兹光源,应用领域广泛。♢ 使用全自动闭式循环高真空干式低温恒温器,降温速度快,使用成本低。 三、背景简介neaspec创立于2007年,起源于德国马克斯普朗克研究所,因其在纳米分析领域的一系列突破性技术而受到广泛关注。neaspec和Quantum Design结为全球战略合作伙伴,并于2013年次引入中国。产品经过多次升换代,设备的各方面性能均已达到高度优化。目前在国内的用户包括清华大学、北京大学、中国科学技术大学、中山大学、中科院诸研究所等高校和研究所。此次升使得系统在软件用户交互性、模块化、后续升兼容性方面具有更大的提升。 四、应用案例1. Nature: 双层旋转的范德瓦尔斯材料中的拓扑化激元和光学魔角 相关产品:IR-neaSCOPE+s 2018年W. Ma等在Nature报道了范德瓦尔斯材料α-MoO3 中的面内双曲声子化激元的重要发现。2020年6月,G.W. Hu等在此基础上通过理论预测并在实验上证实了双层旋转范德瓦尔斯材料α-MoO3体系,可以实现由转角控制的声子化激元从双曲到椭圆能带间的拓扑变换。在这个变换角附近,光学能带变成平带,从而实现激元的直线无衍射传播。类比于双层旋转石墨烯中的电子在费米面的平带,作者因此将这一转角命名为光学魔角。 研究中作者采用散射型近场光学显微镜(s-SNOM)对双层α-MoO3 旋转体系进行扫描测试。实验结果显示,在接近魔角时,光学能带变平,声子化激元沿直线无衍射传播。此外,通过测试不同转角的双层体系,作者成功观测到在不同频段大幅可调的低损耗拓扑转换和光学魔角。这一重要发现奠定了“转角光子学”的基础,为光学能带调制、纳米光操控和超低损耗量子光学开辟了新的途径,同时也衍生出“转角化激元”这一重要分支研究方向,为进一步发展“转角声学”或“转角微波系统”提供了重要的线索和启发。(引自:中国光学-公众号,2020年6月11日《Nature:光学魔角!二维材料转角遇见光》) 【参考】 Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature, 2020, 582, 209-213.2. Nature: 天然双曲材料的声子化研究 相关产品:IR-neaSCOPE+s W. Ma在自然材料体系(α-MoO3)中观察到在平面内各项异性传播的声子化激元,包括传播速度不同的平面椭圆型和单向传播的平面双曲型声子化激元;并发现了在α-MoO3中支持的声子化激元具有低的损耗。实验发现,α相三氧化钼在两个光谱范围内存在两个剩余射线带,声子化激元的传播行为在两个剩余射线带内表现出不同的性质。在低剩余射线带内,α相三氧化钼可以在中红外波段支持双曲型声子化激元,也就是说声子化激元仅沿一个方向传播([001]方向),在垂直方向[100]的传播完全被抑制,这种化激元有多种具吸引力的性质,它具有强的场局域特性,可以支持厚度可调节的波导模式,并且损耗低。而在另外一个剩余射线带内,α相三氧化钼在中红外波段支持椭圆型声子化激元,化激元沿着[001]和垂直方向[100]以不同的波长进行传播,这种化激元传播寿命高达约8 ±1 ps,远高于目前已知的高寿命。研究进一步促进了光学器件的微型化和多元的调制特性,并且再次证明自然材料中仍然具有无穷的挖掘潜力。 【参考】 In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature, 2018, 562, 557–562. 3. 纳米空间分辨超快光谱和成像系统在范德瓦尔斯半导体研究中的应用 相关产品:IR-neaSCOPE+fs近年来,范德瓦尔斯(vdW)材料中的表面化激元(SP)研究,例如等离化激元、声子化激元、激子化激元以及其他形式化激元等,受到了广大科研工作者的关注,成为了低维材料领域纳米光学研究的热点。其中,范德瓦尔斯原子层状晶体存在特的激子化激元,可诱导可见光到太赫兹广阔电磁频谱范围内的光学波导。同时,具有较强的激子共振可以实现非热刺激(包括静电门控和光激发)的光波导调控。2020年7月,美国哥伦比亚大学Aaron J. Sternbach和D.N. Basov教授等研究者在Nature Communications上发表了题为:“Femtosecond exciton dynamics in WSe2 optical waveguides”的研究文章。研究者以范德瓦尔斯半导体中的WSe2材料为例,利用德国neaspec公司的纳米空间分辨超快光谱和成像系统,通过飞秒激光激发研究了WSe2材料中光波导在空间和时间中的电场分布,并成功提取了飞秒光激发后光学常数的时间演化关系。同时,研究者也通过监视波导模式的相速度,探测了WSe2材料中受激非相干的A-exciton漂白和相干的光学斯塔克(Stark)位移。【参考】 Aaron J. Sternbach et.al. Femtosecond exciton dynamics in WSe2 optical waveguides, Nature Communications, 11, 3567 (2020) 4. ACS Nano:光致发光、拉曼、近场光学同步测量技术揭示二维合金材料新特性 相关产品:IR-neaSCOPE+TERs 单层异质结构的应用潜力直接受到材料内在和外在的缺陷影响。乔治亚大学的研究人员在Abate教授的带领下,利用neaSNOM散射式近场光学显微镜,研究了二维(2D)单层合金光致氧化过程中纳米尺度下的奇异界面现象。他们发现界面张力可以通过建立稳定的局部势阱来集中本征激子,从而实现高的热稳定性和光降解稳定性。该实验结果由neaspec公司特的nano-PL / Raman和s-SNOM同步测量技术所采集,并已发表在ACS NANO中。在实验中,作者合成了由单层面内MoS2-WS2异质结构制成的2D纳米晶体,这些晶体在富Mo的内部区域和富W的外部区域间,显示出了较强的纳米合金界面。在针增强照明刺激下(100天),作者进一步观察到,光降解过程中界面的激子稳定性、局域性和不均匀性。得益于高度敏感的s-SNOM成像技术,作者探测到富W的外部区域的反射率出现急剧下降。该反射率始于晶体边缘,并随时间向内传播。在同一样品区域获得的高光谱纳米光致发光(nano-PL)图像显示,W氧化相关的激子的猝灭会遵循与s-SNOM相同的模式(在边缘开始并向内传播)。值得注意的是,合金界面的内部区域表现出了强大的抗氧化能力。即使在光降解100天后,它仍具有很强的s-SNOM信噪比和未淬灭的nano-PL信号。为了进一步研究结构变化,作者使用nano-PL进行了增强拉曼高光谱纳米成像测量,并在同一扫描区域的每个像素处获取了空间和光谱信息。实验结果表明,在整个晶体的光降解过程中,WS2拉曼峰逐渐消失,而在内部区域中的MoS2仍然存在。该结果表明在相同的环境条件、同一显微镜下测量相同的晶体,由于热诱导的合金和基底晶格常数的不匹配,导致光氧化与局部应变存在一定的关联。而合金界面可防止该应变传播到内部区域,从而防止其降解。 【参考】 Photodegradation Protection in 2D In-Plane Heterostructures Revealed by Hyperspectral Nanoimaging: The Role of Nanointerface 2D Alloys. ACS Nano 2021, 15, 2, 2447–2457. 5. Cryo-SNOM低温近场在氧化物界面的新应用 相关产品:cryo-neaSCOPE+xs 氧化物界面处的二维电子体系(2DES)做为一个特的平台,将典型复合氧化物、强电子相关的物理特性以及由2DES有限厚度引起的量子限域集成于一体。这些特的性质使其在电子态对称性、载流子的有效质量和其它物理特性方面与普通半导体异质结截然不同,可以产生不同于以往的新现象。然而氧化物界面多掩埋于物质间使其难以探测,为探究其局限2DES需要一个无创并且具有很高空间分辨率的表征技术,如果还能提供一个较宽范围内温度变化的平台将大地推进该领域的研究。通常光学显微镜可用于上述研究,其中,远场的探测技术由于受到波长和衍射限的限制缺乏空间分辨率,而红外波段的光束探测传导电子的Drude反应分辨率仅有几个微米的量,无法满足测试需求,而利用散射式近场光学显微镜(s-SNOM)可以克服这一限制,使其具有10-20 nm的空间分辨率并获得光响应信号中的强度和相位信息。近期,Alexey B. Kuzmenko团队在Nat. Commun.上获得新进展,他们利用s-SNOM来研究从室温下降到6K时LaAlO3/SrTiO3界面的变化情况,从近场光学信号,特别是其中的相位分量信息可以看出对于界面处的电子系统的输运性质具有其高的光学敏感度。这一模型说明了2DES敏感性来源于AFM针和耦合离子声子模型在很小穿透深度下的相互作用,并且该模型可以定量地将光信号的变化与冷却和静电选通控引起的2DES传输特性的变化相关联,从而提供操控光学信息的有效手段。从利用s-SNOM得到的实验结果和建立的模型结果来看,二者之间具有很好的拟合,这一结果说明了电子声子相互作用对于在零动量时的表面声子离子模型的散射化吸收具有至关重要的作用。【参考】 High sensitivity variable-temperature infrared nanoscopy of conducting oxide interfaces. Nature Communications 2019, 10, 2774. 6. Science:近场太赫兹光电流-石墨烯等离子体在近费米速度传播下的非局域量子效应 相关产品:THz-neaSCOPE+s西班牙光子科学研究所(ICFO)的 Marco Polini教授和Frank H. L.Koppens教授在《Science》上发表了题为:Tuning quantum nonlocal effects in graphene plasmonics的文章。 在本篇文章中,研究者利用散射式近场光学手段,对石墨烯-(h-NB)-金属复合体系表面进行了纳米尺度下的精细扫描,由此观测到了太赫兹波段下的石墨烯等离子体以近费米速度进行传播。研究发现,在慢的速度(数百倍低于光速)下,石墨烯等离子的非局域响应得以探测,通过近场成像能够以无参数匹配手段清晰地揭示无质量的Dirac电子气体的量子描述,进而展示了三种类型的非局域量子效应,即单粒子速率匹配,相互增强费米速率和相互减弱压缩性。通过该近场光学的研究方法,研究者终提供了确定电子体系的全时空反应的新途径。 【参考】 Tuning quantum nonlocal effects in graphene plasmonics. Science 2017, 357, 187. 五、部分发表文章[1]. Nature (2021) 596, 362[2]. Science (2021) 371, 617[3]. Nature Physics (2021) 17, 1162[4]. Nature Phot. (2021) 15, 594[5]. Nature Chem. (2021) 13, 730[6]. Nature (2020) 582, 209[7]. Nature Phot. (2020) 15, 197[8]. Nature Nanotech. (2020) 15, 941[9]. Nature Mater. (2020) 19, 1307[10]. Nature Mater. (2020) 19, 964[11]. Nature Phys. (2020) 16, 631[12]. Nature (2018) 562, 557 [13]. Nature (2018) 359, 892[14]. Science (2018) 362, 1153 [15]. Science (2018) 361, 6406 [16]. Science (2018) 359, 892[17]. Science (2017) 357, 187[18]. Science (2014) 344, 1369[19]. Science (2014) 343, 1125

同步辐射纳米分辨谱学成像技术相关的方案

同步辐射纳米分辨谱学成像技术相关的论坛

  • 深圳先进院碳纳米X射线成像技术取得进展

    中国科学院深圳先进技术研究院承担的国家科技支撑计划“基于碳纳米X射线发射源的CT系统研发”课题团队利用自主研发的碳纳米管薄膜成功地获取首张X射线二维成像图。1月17日,科技部组织的专家组在先进院听取了团队工作汇报并现场考察了该成像装置,对该技术表示了充分肯定,这是我国在碳纳米管X射线源成像研究方面取得的突破性进展和成果。 碳纳米管X射线源是最近几年发展起来的被认为是具有革命性的新型X射线源。具有一百年历史的传统X射线源基于热电子发射阴极,而碳纳米管X射线源创新性的用碳纳米管场发射阴极取代热阴极,从而使该X射线源具有可控发射、高时间分辨、低功耗且易于集成等诸多优势。这些优势将给X射线CT带来结构上的突破。其中,最具潜力的方向之一即基于碳纳米管X射线源阵列的静态扫描CT。该CT以电子式的扫描取代传统的机械转动来获取不同角度的图像,可消除机械转动带来的成像伪影,缩短扫描时间,从而减少病人的辐射剂量,有望提高CT扫描的图像精度。 先进院医工所劳特伯医学成像中心研究团队,经近2年的技术攻关,制备出性能优异的碳纳米管薄膜并研制了基于新光源的X射线成像系统。自主研发的碳纳米管薄膜发射电流密度已达到国际先进水平,研制的X射线源成像系统获得了首张X射线二维成像图。团队目前正在进一步提高阴极稳定性、优化射线源结构,以期开展CT的三维成像。 据悉,作为该课题承担单位的深圳先进院在注重自主研发的同时,也重视与国际前沿单位的密切合作。项目团队所在研究影像中心及国家地方联合高端影像工程实验室在CT系统研制方面具有重要的经验和基础,曾成功研发了高分辨显微CT和低剂量口腔CT,显微CT已经成功应用到中国科学院动物研究所,口腔CT已经进入产业化阶段。正在研发的碳纳米管X射线CT作为一项前瞻性的科学研究,为开发新一代的CT系统储备技术,形成自主知识产权。http://www.cas.cn/ky/kyjz/201301/W020130122537020414424.png左:成像装置图              右:成像图

  • 同步辐射X射线装置实现小型化

    科技日报讯 (记者王小龙)据物理学家组织网11月25日(北京时间)报道,通过使用一个小巧但功能强大的激光器,美国内布拉斯加大学林肯分校的科学家开发出了一种能够放在普通房间或卡车上的小型同步辐射X射线装置,有望改变人们对这类装置的印象,拓展同步辐射X射线的应用范围。相关论文发表在最近出版的《自然·光子学》杂志上。 同步辐射光源是多学科前沿研究和高技术开发应用的“超级显微镜”,能够帮助科学家看到人类无法想象的物质细微结构。同步辐射X射线是其中的一种,与普通X射线相比,其成像质量更高、细节更为丰富,在探索物质内部结构和医学成像等领域均有着重要的应用价值。但因其规模大、造价高、运行维护费用昂贵,目前只有为数不多的几个国家建有这样的设备,极大地限制了该技术的应用和普及。 在传统的同步辐射设备中,要产生这样的射线需要将电子加速到非常高的能量,而后周期性地改变方向,引导其在X射线的波长范围内释放能量,产生同步辐射X射线,因此必须用到巨大的加速器。而新研究中,科学家们用激光取代了电子加速器和其中的磁铁,实现了同样的目的。他们首先将激光束集中汇聚到一个气体射流上,形成强流相对论性电子束。而后再让另外一束激光与其汇聚,由此产生电子高速振动,生成高质量的同步辐射X射线,这一过程也被称为康普顿散射。值得注意的是,在此过程中光子的能量被增加了上百万倍,而产生这些高能射线的核心装备还没有一个硬币大。 该技术的核心是找到让散射激光束和激光加速的电子束这两条细微光束发生碰撞的方法。这就如同让两颗子弹在空中相撞一样。而要让这种“光子子弹”相撞更为困难,因为它们速度都接近光速。 领导这项研究的内布拉斯加大学林肯分校强光实验室主任唐纳德·乌姆斯塔特教授认为,小型化同步辐射X射线设备让更多的科研人员和医生获得了更强大的研究和诊断工具。 总编辑圈点原本作为高能对撞机“副产品”的同步辐射光源,现在已经是人类对“光”最前沿的应用。不过正如文中所说,巨大的体积和昂贵的价格,成为其大规模使用的巨大障碍——欧洲同步辐射光源的储存环周长达844米,上海光源的投资超过12亿元。如今,不论“迷你版”X射线装置与“巨型版”同步辐射装备相比,原理是否相同、功能是否弱化,都可以说它代表了一个方向——科学史上,很多了不起的技术都是通过微型化道路迎来了空前发展。比如计算机,如果还是原先那般臃肿,怎么可能有今天众多IT产业的神话?来源:中国科技网-科技日报 作者:王小龙 2013年11月26日

  • 中国科大实现世界最高分辨率单分子拉曼成像

    《自然》审稿人:“该领域迄今质量最高的顶级工作”2013年06月06日 来源: 科技日报 作者: 吴长锋 最新发现与创新 http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20130606/011370453619890_change_hzp3622_b.jpg 在绿色入射激光的激发下,处于STM纳腔中的卟啉分子受到高度局域且增强的等离激元光的强烈影响,使得分子的振动指纹信息可以通过拉曼散射光进行高分辨成像。 科技日报合肥6月5日电 (记者吴长锋)记者从中国科学技术大学了解到,该校的科学家们在国际上首次实现亚纳米分辨的单分子光学拉曼成像,将具有化学识别能力的空间成像分辨率提高到前所未有的0.5纳米。国际权威学术期刊《自然》杂志于6月6日在线发表了这项成果。世界著名纳米光子学专家Atkin教授和Raschke教授在同期杂志的《新闻与观点》栏目以《光学光谱探测挺进分子内部》为题撰文评述了这一研究成果。《自然》三位审稿人盛赞这项工作“打破了所有的纪录,是该领域创建以来的最大进展”,“是该领域迄今质量最高的顶级工作,开辟了该领域的一片新天地”,“是一项设计精妙的实验观测与理论模拟相结合的意义重大的工作”。 这一成果是由该校微尺度物质科学国家实验室侯建国院士领衔的单分子科学团队董振超研究小组完成的,博士生张瑞、张尧为论文共同第一作者。 光的频率在散射后会发生变化,而频率的变化情况取决于散射物质的特性,这是物理学上获得诺贝尔奖的著名的“拉曼散射”。“拉曼散射光中包含了丰富的分子振动结构的信息,不同分子的拉曼光谱的谱形特征各不相同,因此,正如通过人的指纹可以识别人的身份一样,拉曼光谱的谱形也就成为科技工作者识别不同分子的‘指纹’光谱。”论文通讯作者之一的董振超教授介绍说,拉曼光谱已经成为物理、化学、材料、生物等领域研究分子结构的重要手段。 上世纪70年代以来,随着表面增强拉曼散射技术,特别是针尖增强拉曼散射(TERS)技术的发展,光谱探测的灵敏度以及拉曼成像的分辨率都有了极大提高。“迄今,科学家们已将TERS测量的最佳空间成像分辨率发展到几个纳米的水平,但这显然还不适合于对单个分子进行化学识别成像。”董振超说。 微尺度实验室单分子科学团队多年来一直致力于自主研制科研装备,发展了将高分辨扫描隧道显微技术与高灵敏光学检测技术融为一体的联用系统。他们利用针尖与衬底之间形成的纳腔等离激元“天线”的宽频、局域与增强特性,通过与入射光激发和分子拉曼光子发射发生双重共振的频谱匹配调控,实现了亚纳米分辨的单个卟啉分子的拉曼光谱成像,使化学识别的分辨率达到前所未有的0.5纳米,可识别分子内部的结构和分子在表面上的吸附构型。 “可以说,在任何需要在分子尺度上对材料的成分和结构进行识别的领域,该项研究成果都有很大的用途。”董振超说,这项研究对了解微观世界,特别是微观催化反应机制、分子纳米器件的微观构造和包括DNA测序在内的高分辨生物分子成像,具有极其重要的科学意义和实用价值,也为研究单分子非线性光学和光化学过程开辟了新的途径。 《科技日报》(2013-06-06 二版)

同步辐射纳米分辨谱学成像技术相关的资料

同步辐射纳米分辨谱学成像技术相关的仪器

  • 首创、独有的纳米红外功能和性能Bruker公司推出的Dimension IconIR是一款集合了纳米级红外光谱(nanoIR)技术和扫描探针显微镜(SPM)技术的系统。它整合了数十年的技术创新和研究成果,可以在单一平台上提供无与伦比的纳米级红外光谱、物理和化学性能表征。该系统具有超高的单分子层灵敏度和化学成像分辨率,在保留DimensionIcon最佳的AFM测量能力的同时,还提供了极大的样品尺寸灵活性。Dimension IconIR利用Bruker独有的PeakForce Tapping纳米级物性表征技术和专利的纳米红外光谱技术,使得它能够在纳米尺度下对样品进行纳米化学、纳米电学和纳米力学的关联性表征。只有Dimension IconIR具备:与FTIR完全吻合的红外光谱,优于10 nm的空间分辨率和单分子层灵敏度的高性能纳米红外光谱化学成像可与Peakforce Tapping纳米力学和纳米电学属性表征相关联高性能的AFM成像功能和极大的样品尺寸灵活性广泛适用的应用配件和AFM功能模式专利技术保证真实的红外吸收光谱AFM-IR通过采集样品的热膨胀信号(PTIR)还原样品的红外吸收光谱。由于检测区域的热膨胀只与样品在该波长下的吸收强度有关,而常规的傅里叶红外光谱(FTIR)检测的也是样品在该波长下的吸收强度,因此AFM-IR获得的红外吸收光谱与传统的红外吸收光谱高度吻合。红外吸收成像除采集指定区域的红外吸收光谱外,Dimension IconIR同时提供了固定红外脉冲波长,检测样品表面某一区域在该波长下吸收强度的功能。在该工作模式下,Dimension IconIR会将红外脉冲激光固定在研究者所选的波长,用AFM探针扫描需要检测的表面,记录探针针尖在每个位置检测到的红外吸收强度,并同时给出AFM形貌和该波长下的红外吸收成像。专利保护的接触共振技术专利保护的共振增强技术将测量灵敏度提高到单分子层级别,达到最高的光谱检测灵敏度。因为基于原子力系统的红外技术是以探针来检测样品表面在红外激光作用下的机械振动,随着厚度的减小,这种位移量变得极其微小,超出了原子力显微镜的噪音极限。我们利用专利保护的可调频激光优化脉冲信号频率,使之与探针和样品的接触共振频率吻合,那么这种单谐振子共振模式就能把微弱信号放大两个数量级。。智能光路优化调整,保证实验效率红外激光和AFM联用系统的最大挑战在于光路的优化,为了得到最佳的信号,在实验过程中光斑中心应该始终跟随探针针尖位置并保持良好的聚焦。但是在调频过程中,激光光束的发射角度会随着波长的变化而改变,进而改变光斑位置,聚焦状态也会变化。布鲁克采用全自动软件控制automatic beam steering和自动聚焦系统来修正光斑位置的偏移和聚焦,大大改善了传统联用系统需要手动调节的不便和低效率。同时全自动动态激光能量调整保证信号的稳定性,避免红外信号受激光不均匀功率的影响。
    留言咨询
  • 2015年Anasys发布了最新一代产品nanoIR2-s,在广受欢迎的第二代纳米红外光谱系统的基础上增加了散射近场光学成像和光谱功能(s-SNOM)。实现了同一平台兼具AFM-IR和s-SNOM两种技术。仪器的空间分辨率达到10nm,广泛用于各种聚合物、有机无机复合材料、生物样本、半导体、等离子体、纳米天线等。纳米红外&散射近场光学成像和光谱系统(nanoIR2-s)AFM-IR &s-SNOM l AFM-IR 消除分析化学研究人员的担忧--与FTIR光谱完全吻合,没有吸收峰的任何偏移l s-SNOM使用金属镀层AFM探针代替传统光纤探针来增强和散射样品纳米区域内的光辐射,空间分辨率由AFM针尖的曲率半径决定l 专利技术实现智能的光路优化调整,无需担心光路偏差拖延你的实验进度l 最准确的定性微区化学表征,得到美国国家标准局NIST, 橡树岭国家实验室等美国权威机构的认可l 简单易用的操作,被三十多位企业用户和近百位学术界所选择l 基于DI传承的多功能AFM实现纳米热学,力学,电学和磁学测量:l 纳米热分析模块(nanoTA, SThM)l 洛仑兹接触共振模块(LCR)l 导电原子力显微镜镜(CAFM)l 开尔文电势显微镜(KPFM)l 磁力显微镜(MFM)l 静电力显微镜(EFM)10纳米空间分辨率化学成像和光谱石墨烯等离子体 高分辨率成像 石墨烯表面等离子体的近场相位和振幅成像;优于10nm的光学成像PTFE的nano FTIR光谱显示相干分子振动时域图(上图),和相应的近场光谱(下左图)。pNTP分子层的近场光谱(图下右)。
    留言咨询
  • Gatan Mono CL4高分辨成像与光谱分析阴极发光成像系统 品牌: GATAN名称型号:MonoCL4新一代阴极发光系统制造商: GATAN公司经销商:欧波同有限公司 产品综合介绍:产品功能介绍MonoCL4是Gatan公司生产的世界领先的阴极发光(CL)系统中的最新一代。MonoCL成为高分辨阴极发光成像及光谱分析的代名词己经超过15年,已成功安装在成百上千的扫描电镜、透射电镜和电子探针上。MonoCL4在性能和功能上的最新进展使其继续站在CL领域的最前沿。Gatan阴极荧光谱仪MonoCL4是目前用于扫描电镜中,深入研究光电子学、半导体材料学以及地质勘探学材料发光成像方面最先进的仪器设备。品牌介绍美国Gatan公司成立于1964年并于70年代末进入中国市场。Gatan公司以其产品的高性能及技术的先进性在全球电镜界享有极高声誉。作为世界领先的设计和制造用于增强和拓展电子显微镜功能的附件厂商,其产品涵盖了从样品制备到成像、分析等所有步骤的需求。产品应用范围包括材料科学、生命科学、地球物理学、电子学,能源科学等领域, 客户范围涵盖全球的科研院所,高校,各类检测机构及大型工业企业实验室,并且在国际科学研究领域得到了广泛认同。经销商介绍欧波同有限公司是中国领先的微纳米技术服务供应商,是一家以外资企业作为投资背景的高新技术企业,总部位于香港,分别在北京、上海、辽宁、山东等地设有分公司和办事处。作为蔡司电子显微镜、Gatan扫描电子显微镜制样设备及附属分析设备在中国地区最重要的战略合作伙伴,公司秉承“打造国内最具影响力的仪器销售品牌”的经营理念,与蔡司,Gatan品牌强强联合,正在为数以万计的中国用户提供高品质的产品与国际尖端技术服务。产品主要技术特点:MonoCL4的设计使用直接耦合腔式单色器与高效率探测器。该设计的最大优势在于使阴极发光的采集效率达到最大化。这种方式的光损失最低,并在很宽的光谱范围内获得最大的灵敏度,从而使MonoCL4拥有无与伦比的灵敏度。因而可实现:低注入量,获得高空间分辨率,避免非平衡状态的产生及最小化光诱导假象;窄带宽操作,获得高光谱分辨率及单色成像;缩短采集时间,提高使用效率;为更多的样品提供CL应用.甚至可应用在某些束流有限的SEM;为产生阴极发光体积元有限的样品提供CL分析。比如薄膜、纳米线、纳米颗粒和TEM样品等。产品主要技术参数:采集镜1、可伸缩、可拆卸、金刚石加工的抛物面形CL采集镜,标准伸缩距离为75mm2、具有LED采集镜位置指示器。*3、采集镜厚度为8.75 mm光谱仪4、直接耦合腔式单色器与高效率探测器,与腔式单色仪直接光学耦合,达到阴极发光的采集效率达到最大化。5、高效消色差光学。6、马达驱动的反射镜,用于切换全色模式与单色模式。7、配备分光器:1200 l/mm 500nm闪耀波长的光栅,可对任一波长进行单光成像并可结合全光光谱图8、千分尺狭缝,用于控制光谱分辨率和带通。9、直列4位置过滤架,包括可移动的RGB过滤片。10、内置ITSL光谱校正灯。11、对应于每个探测器与衍射光栅组合的系统响应曲线(350nm到探测器的极限)。12、自动控制全光分光调节装置,可得全光影像,单光影像及谱图探测器13、内置前置放大器的PMT探测器,波长范围185nm~ 850nm控制器14、PA4控制器,用于控制单色仪和探测器。15、手动远程控制器,用于成像控制和PMT高压的数字读出。软件:*16、配置 Digital Micrograph软件,用于系统控制,数据记录、存档、展示与输出。MonoCL4软件插件,用于控制单色器、探测器和光谱的串行采集。启动仪器时将自动运行光谱校准程序,以及多个高斯曲线拟合的脉冲计数光谱程序。电脑:17、带Windows系统的计算机与22英寸的宽屏显示器。4.8、主流PC,Window 7 32位和22”纯平显示器产品主要应用领域:地质矿物学: 地层学, 断裂与成岩学, 锆石, 宝玉石陶瓷: 微观结构, 相组织, 烧结, 摩擦学研究新材料: 金刚石, 碳化硅光电材料:氮化物半导体薄膜,磷化锢和稀有掺杂材料应用举例地质学MonoCL4能够用来确定物源及成岩作用,提供一种简单的方法用来区别矿物,观察愈合裂纹、化学过增长和鉴定精细的振荡环带,因而CL在地质学中发挥着极其重要的作用。新材料MonoCL4的应用促进了导体材料和光电材料的理解和认识,这包括氮化物半导体薄膜、纳米结构和异质结及纳米结构氧化物(ZnO1 ZrO2和Y3Al5O12)、磷化锢和稀有掺杂材料。尽管硅是一种弱的发光体.但是MonoCL的高效收集效率、色散性能及探测能力使其成为硅基光伏材料和发光材料的一种重要的表征工具。医药工业MonoCL4可用来大量地筛选活性药物的成分,并提供光谱指纹图谱。在司法鉴定和食品科学中也具有重要的应用价值。生命科学结合荧光显微分析的优点和电子显微镜的高空间分辨能力,使CL能够作为发光标记使用。图A.石英晶体次生变化规律以及晶体内部织构图B. InGaN 多量子阱结构H:断裂与愈合的石英晶体,Dr R,Reed,Bureau of Economic Geology,University of Texas.J:GaN的平面图,显示出螺位错和杂质偏析
    留言咨询

同步辐射纳米分辨谱学成像技术相关的耗材

  • GATTA-STED NANORULER 受激辐射损耗超分辨标准纳米尺
    GATTA-STED NANORULER作为第一种超分辨率显微镜技术,STED(受激辐射损耗技术)方法彻底改变了光学显微镜。有了GATTA-STED系列的纳米尺子,现在终于有了足够的校准探针。单色纳米尺子携带两个由高量子产率染料ATTO 647N密集排列而成的荧光标记。我们提供50纳米,70纳米,90纳米和120纳米尺寸的标记距离。此外,我们还提供了一种新的设计,包含两个不同荧光团的三个发射点,可以获得非常引人注目的图像。多色纳米尺有三个发射点,尺寸为140 nm (ATTO 647N和ATTO 594)。我们还可以根据您的要求设计特殊的解决方案。所有的纳米样品将在一个密封的玻璃载片上,你可以舒服地直接放在你的显微镜上。订购选单
  • PAINT 超高分辨显微镜纳米标尺
    产品特点:GATTA-PAINT 系列纳米标尺是适用于各种定位技术的超高分辨显微镜的理想标尺。因为采用DNA PAINT技术实现亮暗转换,GATTA-PAINT 纳米标尺几乎不会淬灭。此外,标尺的设计中包含了三个荧光发射点,可以获取到醒目的图像。荧光标记间的距离有如下几个尺寸:20nm, 40nm, 80nm。每种距离都有如下几种颜色可供选购:红色(ATTO 647N),绿色(ATTO 542)或蓝色(Alexa Fluor 488),或者红/绿组合(ATTO 655/ ATTO 542)纳米标尺,AFM纳米标尺,原子力显微镜纳米标尺,共聚焦显微镜纳米标尺,超高分辨显微镜纳米标尺,SIM纳米标尺,STED纳米标尺,STORM纳米标尺,电镜纳米螺旋标尺,金纳米螺旋标尺,显微镜亮度灵敏度标尺,显微镜纳米标尺技术参数:
  • 超高分辨TERS针尖增强拉曼探针/Nano IR纳米红外探针
    NEXT-TIP SL公司成立于2012年,是西班牙研究委员会 (CSIC) 的衍生公司。其生产的TERS针增强拉曼探针和纳米红外探针,基于纳米粒子沉积技术,形成具有可控尺寸和成分的纳米颗粒涂层,具有超高的横向分辨率,大大提高了使用寿命。TERS针增强拉曼探针Next-Tip TERS 探针的出色性能与其形态特征有关。这些探头的设计经过开发,具有优异的 AFM 性能和超强的拉曼信号。突破针增强拉曼探针的限制:&bull 高可靠性,使用户能够专注于样品的表征。&bull 高达3 nm的超高分辨率&bull 超高灵敏度,可获得完全清晰/稳定的光谱,质量优于传统TERS。增强因子和对比度增强系数 (EF) 值是根据探针针的增强电场来量化拉曼信号的增强的参数。这个参数基于对比度值。对比度值根据在同一点的近场和远场扫描收集的实验数据计算。金TERS探针保证对比度高于20,银TERS探针保证对比度高于40,使得Next-Tip TERS 探针的增强系数高达105 -106。寿命银镀层的TERS探针由另一层金纳米粒子保护,以避免氧化和污染,保持等离激元的效应。致密的金纳米颗粒涂层提升了金属层厚度,大大提高了探针的耐用性。此外,纳米颗粒沿探针表面形成的不规则结构延长了其测量的寿命。性能可控的涂层沉积过程可实现坚固探头的高可重复性和高分辨率。此外,这种涂层工艺可以在针的点放置一个或两个纳米颗粒,实现超高空间分辨率。测量显示 AFM 分辨率小于5 nm,TERS 分辨率小于10 nm。TERS针增强拉曼探针类型高分辨率TERS在锐的硅基针上附着尤其致密,不规则和锐的纳米颗粒涂层,可获得超高空间分辨率和高质量的成像。基础TERS: 通过致密、不规则、颗粒状坚固的纳米颗粒涂层,用优化的涂层产生超强的拉曼信号,获得准确的成像和光谱数据。各型号参数对比银芯基础TERS探针高分辨金TERS探针高分辨银芯TERS探针型号NT-EASY-TERS-70银NT-EASY-TERS-300银NT-TERS-E-85金NT-TERS-E-335金NT-TERS-E-85银NT-TERS-E-335金共振频率(kHz)703008533585335力常数(N/m)2262.8452.845悬臂长度(μm)240160240160240160TERS针增强拉曼探针 测量结果1L MoS2/AuCNT/Graphene Oxide单层过渡金属二硫化物(TMDC)拉曼激发模式高精度表征参考文献:Alvaro Rodriguez, Matěj Velický , Jaroslava &Rcaron áhová, Viktor Zólyomi, János Koltai, Martin Kalbá&ccaron , and Otakar Frank. Activation of Raman modes in monolayer transition metal dichalcogenides through strong interaction with gold. Phys. Rev. B 105, 195413 – Published 10 May 2022. DOI: https://doi.org/10.1103/PhysRevB.105.195413Nano IR纳米红外探针纳米红外光谱的原理是基于一个锐的金属涂层前沿,激发激光束落在该前沿上。探针针的电磁场由于局部表面等离激元共振和避雷针效应的共同作用而具有局域限制和增强的效果。更强的纳米红外信号Next-Tip探针得到的红外信号比常用AFM探针高出几倍(约5倍)。下图显示了使用相同带宽激光源的两种探针在硅上获取的未标准化的近场振幅光谱。更高的纳米红外信噪比与使用标准的探针得到的光谱相比,使用Next-Tip探针得到的光谱具有更小的背景干扰,从而得到更高的SNR和更清晰的光谱。下图显示了使用两种探头在13.6秒内记录的PMMA的三阶解调纳米红外吸收光谱。Nano IR纳米红外探针类型各型号参数对比象鼻形金字塔形型号NT-IR-E-85NT-IR-E-335NT-IR-P-75NT-IR-P-330共振频率(kHz)8533575330力常数(N/m)2.8452.842悬臂长度(μm)240160225125

同步辐射纳米分辨谱学成像技术相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制