细胞系

仪器信息网细胞系专题为您整合细胞系相关的最新文章,在细胞系专题,您不仅可以免费浏览细胞系的资讯, 同时您还可以浏览细胞系的相关资料、解决方案,参与社区细胞系话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

细胞系相关的耗材

  • Kugelmeiers 3D 细胞培养板-细胞球体类器官培养
    Kugelmeiers 3D 细胞培养板一、Kugelmeiers公司介绍Kugelmeiers Ltd. 成立于 2015 年,是瑞士苏黎世大学的衍生公司。公司起源于苏黎世大学医院用于治疗糖尿病的人胰岛细胞移植临床项目。其业务是将对细胞生物学现实的新见解转化为适合 3D 细胞培养和细胞移植的产品。该公司在细胞移植、3D细胞培养和干细胞生物学方面的专业知识满足了日益增长的市场需求。Sphericalplate 5D细胞培养板可以在每个板上形成多达9000个细胞球状体,从而以可重复且对细胞友好的方式,实现了球状体的高通量开发二、 产品介绍- Sphericalplate 5D 细胞培养板Sphericalplate 5D 细胞培养板可以大规模生成均匀、尺寸可控和标准化的球状体。安全"是细胞培养平台 Sphericalplate 5D 的原则。它具有独特的功能以支持细胞球状体的均一性、活性和可放大性。我们的独特几何形状和表面使细胞聚集成球状体, 让您对细胞培养拥有控制能力。Sphericalplate 5D 型号分为:24孔3D细胞培养板,6孔3D细胞培养板1. Sphericalplate 5D 6孔3D细胞培养板Sphericalplates 5D 用于3D 细胞培养的培养板,6孔培养板是无菌,一次性使用,为形成大小一致的球形细胞聚集体提供培养环境,每个孔有3364个微孔,6孔培养板共有20184 微孔。孔板的材质是COC, 每个孔的工作体积是2-4ml, 总体积是14mL。2. Sphericalplate 5D 24孔3D细胞培养板Sphericalplate 5D 24孔3D细胞培养板含有9000 微孔。Sphericalplate 5D细胞培养板的产品特点:&bull 是易于使用的细胞球状体形成平台&bull 可以实现标准化和大小一致的球形体&bull 易于升级,不会降低球状体的质量&bull 1个6孔Sphericalplate 5D 细胞培养板=20184个球状体Sphericalplate 5D细胞培养板的优势:&bull 形成大小一致均匀,标准化的球状体&bull 预涂层,无表面附着物&bull 可放大生产大量球形体,用于实现高通量成像/筛选/分析(例如,蛋白质组学/基因组学/代谢组学)&bull 适合对病人细胞进行个性化诊断或个性化研究细胞&bull 方便用于在同一板孔内的多个球形体上测试不同的化合物&bull 与现有的标准成像和自动化技术/设备/系统兼容-尤其是球状体处于微孔内中心位置&bull 可进行长时间或短时间培养以生成足够的球状体&bull 可从癌症球体内收集分泌物组三、Sphericalplate 5D 细胞培养板的应用Sphericalplate 5D (SP5D) 是一种 3D 细胞培养板,用于形成高质量和高产量的均匀、大小可控的球状体。它还可以方便扩大规模并进一步扩展到转化研究或诊断。在开发SP5D时,目标是通过培养标准化球体来创造一个模拟生理条件的环境,该球体可以在没有外部干扰信号的情况下进行细胞间通信。同时,它提高了后续测试的可重复性,因为由于培养的细胞球体的尺寸差异较小,因此您始终以相同的初始条件开始实验。自动化性和可放大性是Sphericalplate 5D 的关键特征,这在未来的治疗应用中也至关重要。SP5D 采用获得专利的金字塔几何形状和微孔设计,具有明确的角度、圆润的底部和锐利的边框。这允许在孔底部形成具有预测尺寸且高度规则的球状体。这些设计特征的结合有利于生物保真度和细胞间通讯。此外,特定的几何形状使球体居中,并支持球体在孔内位置的可预测性。使用即用型 SP5D 特别人性化,您将很快熟悉新平台的操作:接种细胞后,培养不需要任何预处理或离心步骤。通过简单的移液,更换培养基也特别方便,微孔的高度被设计为可以保留细胞球状体。SP5D中成功培养的细胞包括:人类胚胎干细胞人乳腺癌细胞系(BT20、MCF-7)小鼠胚胎干细胞系(HM-1)人前列腺癌细胞系(LNCaP)人间充质基质细胞人肺癌细胞系 (A549)原代胰岛细胞(人、猪、啮齿动物)人骨肉瘤细胞系(Saos-2)β细胞系(EndoC-βH1、MIN-6)人肾上腺癌细胞系肝内胆管细胞类器官 (ICO)人卵巢癌细胞系(OVCAR-3、OAW-42、SK-OV-3)人羊膜上皮细胞 (hAEC)人肝癌细胞系(HepG2)原发性平滑肌细胞人肝细胞 (HepaRG)人脐静脉内皮细胞系(huVEC)人白种人胎肺细胞系(WI-38)小鼠3T3成纤维细胞系人胶质母细胞瘤细胞系Sphericalplate 5D应用领域包括:3D 细胞培养,癌症球状体研究,药物筛选,组织工程,再生医学,3D 生物打印,诊断,个性化医疗,3D 干细胞培养等
  • 多孔细胞培养板
    多孔细胞培养板Tissue Culture Plates是TPP公司出品的多孔组织培养板,它采用高级聚苯乙烯材料直接注塑而成,是细胞培养组织培养的理想器具。TPP公司组织培养板的特色:方便和稳定的堆放设计。不同孔板可以是混合并堆叠。板的材料是高级的聚苯乙烯。盖上是单井环,防止交叉污染。易于阅读的字母数字,方便鉴别。基座和盖子上都有黄色标记区域。板用易透明?peel-offó包皮包装。可独立包装或每袋4/6片。通过γ照射保证灭菌。TPP公司新一代组织培养板的特点是黄色条标记区和易于读取的黑色压花,字母数字文字。细胞生长的表面处理只能在孔底部,并为各种类型的细胞系提供最佳的附着和生长。未处理孔壁也会形成一层弯液面,从而降低光的扩散。这些特点,以及孔底部卓越的光学清晰度,使得这些板块成为镜检和光谱测量的理想工具。板侧面的齿状区和盖上微微长出的宽度,使板可以轻易被提起,快速被拔出。由于盖和板的成角,所以盖本身是不能倒转的。板上独特的空气抽出和通风功能,盖子最大化内部/外部气体交换,不改变二氧化碳扩散下大大减少媒介蒸发。这些特殊的处理功能,还可以防止堆叠在一起的板被凝珠粘在一起。盖上的环防止单井缩合物移动时发生交叉污染。注意:除了上述的高品质的表面处理过的细胞和组织培养板,我们也提供低成本的未处理的多孔板。未处理的板没有特殊的标记或书写表面,也没有表面处理给细胞附着。然而,多孔板以无菌多孔板附加盖子的形式提供。对于样品将保持在悬浮液中的应用,或将充满琼脂培养基的孔(例如线虫培养和筛选),使用这种多孔板是非常合适的。Item NumberWell TypeQuantity Per CasePrice?TPU922424 flat-bot. (untreated)100$108TPU929696 flat-bot. (untreated)100$108
  • WHEATON 双侧臂细胞培养瓶
    * 带有磁性搅拌器用于悬浮细胞或微载体培养* 可调整的桨叶以及无菌设计,搅拌杆未伸出瓶盖* 1:1 的顶端比例创造了良好的气体交换条件* 低析硼硅玻璃符合USP I型和 ASTM E 438 I型标准,A 类要求* 可高温高压蒸汽灭菌细胞培养瓶含有一个高度可调的叶片状短桨,搅拌更充分。 培养瓶底部附加了凸起,增强了搅拌的效果并避免了细胞在瓶底的沉积。培养瓶为培养基和瓶内气体提供了很大限度的接触面积。培养瓶适用于如昆虫细胞、杂交瘤细胞以及适应性细胞系的微载体培养和悬浮培养。整个装置可以进行121℃,20 分钟的高压蒸汽灭菌。培养瓶的材质是33 超低析出硼硅玻璃,符合ASTM Type I,Class A 和USPType I 标准。我们还可以提供一个不锈钢搅拌杆组合套装,用于改良您的培养瓶, 500mL 和更大的培养瓶可以配套带孔的盖子( 订货号W240751)。125 ~ 1000mL 的培养瓶有以50mL 为Z小分度的刻度;3000 ~ 8000mL 的培养瓶有以500mL 为Z小分度的刻度;25mL~ 50mL 的培养瓶无刻度。技术参数订货号容积(mL)直径× 高度(mm)顶盖规格侧壁盖规格包装数量3568732538×12238-43015-41513568755038×14138-43015-415135687612565×15551-40033-430135687925085×17551-40033-4301356882500110×190100-40045mm13568841000130×250100-40045mm13568873000178×341100-40045mm13568896000258×404100-40045mm13568908000293×445100-40045mm1

细胞系相关的仪器

  • NovoCyte Opteon 光谱流式细胞仪系统是一款全新的光谱流式细胞解决方案,旨在彻底颠覆您的细胞分析研究。 NovoCyte Opteon 具有多达 5 个激光器和 73 个检测器,采用创新的光学设计以及先进的电子器件和信号处理算法,使其能够提供高分辨率和灵敏度的数据。用于荧光检测和粒径测量的宽动态范围有助于简化实验工作流程。自带温度控制、电子和流体传感器提供实时仪器状态监测,并确保在不同的周围环境中采集一致、可靠的数据。 此外,直观的行业前沿 NovoExpress 软件已更加先进,能够在数据采集、分析和报告方面提供卓越的用户体验。 特性:多达 5 个激光器、73 个高质量检测器创新的光学设计可获得具有高灵敏度和高分辨率的数据双激光小颗粒检测,宽动态范围仪器可靠性高,自带温度控制、电子和流体传感器强大而直观的 NovoExpress 软件多功能自动进样器,与 40 管架和 384/96/48/24 孔板兼容可用于自动化系统性能指标:激光器数量543激光器配置UV/紫色/蓝色/黄色/红色工作原理:每一种荧光染料都能提供不同的细胞信息NovoCyte Opteon 拥有多达 5 个激光器、73 个检测器和经过验证的 45 色 Panel,是您进行多维细胞分析的门户。扩展到传统流式细胞 Panel 之外,以揭示关于您样品的更多信息。应用:免疫表型分析相关行业迫切需要在单细胞水平对免疫系统进行高通量深入分析的方法和仪器。传统的流式细胞方法仅能获得与检测器数量相同的荧光参数,相比之下,光谱流式细胞技术能够捕获所有激光束对应的每个标记物的全荧光光谱,允许在单个实验中获得更多参数。小颗粒检测NovoCyte Opteon FSC/SSC 检测光学系统和信号处理电路已经过 488 nm-SSC 和 405 nm-SSC 双重优化,可分辨小至 80 nm 的微粒,而无需调整设置即可查看相同样品中的较大细胞。利用这一功能,可轻松实现高分辨率的血小板、细菌和各种亚微米颗粒与细胞亚群的共同鉴定和分析。双重 SSC 可将 RBCs 与 WBCs 彼此分离NovoCyte Opteon 上经过优化的双重 488 nm-SSC 和 405 nm-SSC 可用于将红细胞 (RBCs) 与白细胞 (WBCs) 和血小板彼此分离,无需任何 RBC 裂解处理。
    留言咨询
  • 多功能全自动细胞克隆分析及分离系统CellCelector Flex 将高内涵成像系统,高精度全自动细胞挑取机械臂和强大的成像处理分析软件相结合,可对单细胞、细胞团、球体、类器官、单细胞克隆以及贴壁细胞进行全自动检测、筛选、挑取和分离。挑取技术:已经获得专利的挑取技术支持极快的细胞扫描和挑取,从而快速分离细胞。温和地进行细胞转移,保证高度的细胞完整性和生长速率。对于一些应用,如单细胞克隆,可以实现高达 100% 的挑取/转移效率。CellCelector Flex关键特征多功能 &bull 适用于贴壁细胞、悬浮细胞或半固体培养基中的细胞 &bull 单细胞、细胞团、球体或菌落 &bull 原代细胞或细胞系 &bull 活细胞或固定细胞灵活 &bull 明场、相差和荧光成像 &bull 自动、半自动或手动细胞筛选,以供挑取分离 &bull 兼容标准或定制源容器和目标容器,如微孔板、培养皿、载玻片、过滤器、芯片、PCR板或管&bull 可升级的定制解决方案,可整合至大平台可靠 &bull 对特定细胞亚群超过95%的挑取准确性 &bull 对移动的检查对象进行自动重新定位 &bull 如果挑取失败,可重新挑取 &bull 软件自动检测是否成功挑取温和挑取 &bull 不影响细胞特性 &bull 可分离准备用于分子表征或下游培养的纯完整细胞 &bull 挑取后的细胞完整性和存活率高(包括单细胞克隆应用中高达95%及以上的存活率)快速 &bull 实验操作时间短 &bull 每次挑取仅20至30秒上游|下游兼容 &bull 无需复杂的样本制备,无需昂贵的耗材 &bull 与多个上游富集技术(免疫磁珠富集、基于尺寸的分离等)兼容 &bull 抽吸和点样体积小(降至约1 nL) &bull 单细胞PCR、NGS、RNA-Seq、细胞克隆、滴度分析、放大工艺等记录 &bull 符合GLP和GMP标准的完整工作流程记录 &bull 通过在每次挑取事件前后拍摄的实时、高质量图像进行质量控制 &bull 每一个被检测/捕获的对象都可以通过其唯一的ID进行识别,并可以在整个过程中从源板到终板进行完整的追踪,方便导出所有捕获的图像和数据 CellCelector Flex 关键应用单细胞分离&bull 稀有单细胞分离&bull 循环肿瘤细胞CTCs分析和分离&bull 胎儿细胞cbNIPT&bull 精子细胞分离&bull 原生质体/植物细胞&bull 单细胞异质性分析&bull CRISPR单细胞克隆细胞系开发&bull 用于细胞系开发的单细胞克隆 &bull mini Pool建立及筛选 &bull 从半固体培养基中进行菌落挑取及转移抗体发现&bull 单B细胞筛选 &bull 基于纳米孔的杂交瘤筛选 &bull 来自半固体培养基的杂交瘤克隆的筛选和挑取 &bull 杂交瘤亚克隆 &bull 基于微球的检测干细胞&bull iPS单细胞克隆 &bull 干细胞克隆挑取 &bull 造血干细胞克隆挑取 &bull 球体分离 CellCelector Flex 挑头我们根据CellCelector Flex 在不同领域的应用提供多种挑头。针对特定的细胞类型和挑取捕获模块对所有毛细管和挑头进行了优化,以保证温和、精准地挑取挑取细胞、细胞团以及克隆,整个过程无污染。CellCelector Flex 纳米孔板CellCelector Flex 纳米孔板含有十万到数百万个纳米孔,将细胞悬液接种后,数万个纳米孔有效地将细胞隔离开来,并确保共培养环境以促进单克隆生长。有效替代有限稀释法,FACS。&bull 高通量:每孔可获得400-600个单细胞(相当于有限稀释法25块96孔板!)&bull 高效节约:避免重复稀释,单次试验即可获得单克隆性、活力且高产的克隆&bull 100%单克隆性:自动图像鉴别单细胞并跟踪其生长到克隆,避免交叉污染&bull 单细胞活率超95%,无需昂贵外源生长因子CellCelector 机柜当处理活细胞时,无菌条件和经过调节的生理相关环境是关键因素。FlowBox 孵育箱可提供以下独特组合: &bull 经过HEPA过滤的垂直层流 &bull 对温度、湿度和CO2水平的精确控制 &bull 即使在检修门打开时,也能智能控制风速和排气量 &bull 高能紫外线灯,用于表面灭菌 &bull 源板和终板的最优细胞存活率 &bull 用户友好型控制面板 &bull 在不失去受控条件的情况下,充分方便地接触放置在里面的仪器和实验装置
    留言咨询
  • CellCelector全自动无损细胞分离系统,为您的研究提供支持CellCelector Flex仪器是一款多功能、全自动细胞克隆分析及分离系统,用于细胞检测、细胞筛选、挑取和分离单细胞、细胞团、球体、类器官、单细胞克隆以及贴壁细胞。CellCelector具有很高的扫描和细胞挑取速度,可以快速分离转移细胞,与单细胞RNA分析应用兼容,完全适用于活细胞的分离。结合纳米孔板技术,CellCelector可作为高通量单细胞克隆筛选及分离,单B细胞分泌物检测,以及分离稀有单细胞(如CTCs)以进一步分析的有力工具。功能基于图像的分析和分离具有高分辨率光学器件的CellCelector倒置荧光显微镜允许基于形态学属性和荧光信号进行目标细胞检测和识别。高效的成像系统提供了广泛的图像处理选项,因此即使是相似的细胞也可以被区分。高度的灵活性CellCelector 被广泛应用于多种研究领域,如 CTC 循环肿瘤细胞筛选、干细胞研究、细胞系开发和抗体发现,利用三个独特的、可切换的挑取模块实现灵活的多功能性,确保最佳的细胞筛选和分离。温和的挑取技术CellCelector的专利挑取技术的特点是极其温和的细胞转移,从而在挑取后获得高细胞完整性和生长率(包括在单细胞克隆应用中高达95%或更高的存活率)。FlowBox孵育箱:生理条件下的样品处理FlowBox 孵育箱是一种创新设备,将层流细胞培养通风柜与准确的温度、湿度和 CO2 控制相结合,使细胞处于稳定的环境条件下,获得可信任和可重现的实验结果。应用单细胞分离配备单细胞挑取模块,CellCelector可对细胞进行温和、高精度、低体积的抽吸。典型应用领域包括:- 分离循环肿瘤细胞,用于肿瘤应用- 分离单个胎儿细胞,用于基于细胞的无创产前诊断(cbNIPT)- 法医学应用(例如用于遗传分析的精子采集)- 分离精确数量的细胞以作为高质量的参比样品- 分离 100% 纯单个细胞,用于后续单细胞基因分析(单细胞PCR、RNA-seq、NGS)细胞系开发使用CellCelector单细胞克隆技术可加速药物生产的细胞系生成:- 并行分析数千个克隆- 整合了单克隆性证明的一轮单细胞克隆工作流程- 仅选择性分离重要克隆- 靶向选择高产克隆- 超过95%的单细胞生长率,适用于极难生长的细胞系- 节省大量的时间、耗材、培养基和细胞培养容器抗体发现将CellCelector Flex 与独特的纳米孔技术相结合,并将高通量细胞筛选、成像、灵敏的单细胞测定以及精准细胞分离结合,实现了同一天共同处理数千血浆单B 细胞的操作。单细胞分析允许检测具有独特特性的稀有抗体,这些特性在传统筛选方法下很难找到。 单个细胞可立即进行多种测试分析,而不是培养数周以达到测定的最小细胞数量。干细胞干细胞在再生医学领域发挥着重要作用,因为它们的高度自我更新和分化潜力使它们特别适合于广泛的生物医学和制药研究应用。CellCelector Flex 具有专门为贴壁细胞和克隆设计的挑取模块,能够非常温和且高度特异性地分离靶细胞,因此非常适合分离单个干细胞、干细胞集落并进行传代,并且能够分离干细胞集落的特定部分。CellCelector Flex 支持多个干细胞研究:- 新衍生iPS 群体的克隆挑取- 基因组编辑(CRISPR | Cas9)克隆挑取- 分化干细胞集落的分离- 均分克隆并转移到多个目的板(创建复制板)- 从甲基纤维素中扫描和分离造血干细胞集落- 分离干细胞以进行单细胞克隆或异质性研究- HSC 子细胞分离或“ 双细胞分离”- 去除不需要的细胞(例如干细胞培养物中的分化区域)
    留言咨询

细胞系相关的试剂

细胞系相关的方案

  • 人胶质细胞系来源的神经营养因子(GDNF)检测试剂盒
    人胶质细胞系来源的神经营养因子(GDNF)检测试剂盒人胶质细胞系来源的神经营养因子(GDNF)检测试剂盒使用说明书本试剂盒仅供研究使用。检测范围: 规格:96T/48T使用目的:本试剂盒用于测定人血清,血浆及相关液体样本中人胶质细胞系来源的神经营养因子(GDNF)含量。实 验 原 理 本试剂盒应用双抗体夹心酶标免疫分析法测定标本中人胶质细胞系来源的神经营养因子(GDNF)水平。用纯化的抗体包被微孔板,制成固相抗体,往包被单抗的微孔中依次加入人胶质细胞系来源的神经营养因子(GDNF)抗原、生物素化的人胶质细胞系来源的神经营养因子(GDNF)抗体、HRP标记的亲和素,经过彻底洗涤后用底物TMB显色。TMB在过氧化物酶的催化下转化成蓝色,并在酸的作用下转化成最终的黄色。颜色的深浅和样品中的人胶质细胞系来源的神经营养因子(GDNF)呈正相关。 使用酶标仪在450nm波长下测定吸光度(OD值),计算样品浓度。
  • 人胶质细胞系来源神经营养因子(GDNF)ELISA试剂盒
    人胶质细胞系来源神经营养因子(GDNF)ELISA试剂盒人胶质细胞系来源神经营养因子(GDNF)ELISA试剂盒使用说明书本试剂盒仅供研究使用。检测范围: 规格:96T/48T使用目的:本试剂盒用于测定人血清,血浆及相关液体样本中人胶质细胞系来源神经营养因子(GDNF)含量。实 验 原 理 本试剂盒应用双抗体夹心酶标免疫分析法测定标本中人胶质细胞系来源神经营养因子(GDNF)水平。用纯化的抗体包被微孔板,制成固相抗体,往包被单抗的微孔中依次加入人胶质细胞系来源神经营养因子(GDNF)抗原、生物素化的人胶质细胞系来源神经营养因子(GDNF)抗体、HRP标记的亲和素,经过彻底洗涤后用底物TMB显色。TMB在过氧化物酶的催化下转化成蓝色,并在酸的作用下转化成最终的黄色。颜色的深浅和样品中的人胶质细胞系来源神经营养因子(GDNF)呈正相关。 使用酶标仪在450nm波长下测定吸光度(OD值),计算样品浓度
  • 快速筛选和开发高表达GPCR的哺乳细胞系新方法-Molecular Devices ClonePix 2
    ClonePixTM 2系统提供了一种全新、快速评估哺乳细胞系GPCR靶蛋白表达水平的方法1. 用哺乳表达系统快速评估GPCR靶蛋白的內源表达水平2. 增加发现最优细胞反应器的可能性3. 减少细胞系/抗体开发的时间—避免有限稀释法

细胞系相关的论坛

  • 稳定细胞系助力重组蛋白高效生产

    [b][font=宋体]前言[/font][/b][font=宋体]在蛋白质研究领域,稳定细胞系的应用已成为生产高质量结构生物学蛋白质的关键手段。随着技术的不断进步,稳定细胞系的生成与筛选方法得到了显著改进,从而推动了蛋白质生产的高效化与精准化。[/font][font=Calibri] [/font][b][font=宋体]细胞系的建立和应用[/font][font=宋体][font=Calibri]HEK293[/font][font=宋体]和[/font][font=Calibri]CHO[/font][font=宋体]细胞系[/font][/font][/b][font=宋体]因其稳定的蛋白表达和适当的翻译后修饰而被广泛用于结构生物学研究。这些细胞系能有效地生产具有复杂糖基化模式的蛋白质,这对于确保蛋白质的功能和稳定性至关重要。糖基化缺陷细胞系通过特定的基因改造,能够分泌脱糖基化糖蛋白,为蛋白质生产提供了更加纯净的原料。[/font][font=Calibri] [/font][b][font=宋体]稳定细胞系的生成[/font][/b][font=宋体][font=宋体]传统的稳定细胞系生成技术如瞬时转染,虽然方法简便,但存在整合频率低、转基因沉默等问题。为了克服这些困难,研究者们开发出了一系列新技术,如细胞分选技术、位点特异性重组(如[/font][font=Calibri]FLP/FRT[/font][font=宋体]系统)、转座子系统(如[/font][font=Calibri]piggyBac[/font][font=宋体])、慢病毒系统以及噬菌体整合酶等,提高了稳定细胞系的生成效率和稳定性。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]序列特异性基因组工程也为稳定细胞系的生成提供了新的思路。通过敲除或修饰特定的基因,研究者们能够实现对细胞功能的精准调控,从而优化蛋白质生产的效率和纯度。例如,一种同时缺乏[/font][font=Calibri]GnTI[/font][font=宋体]和谷氨酰胺合成酶([/font][font=Calibri]GS[/font][font=宋体])活性的[/font][font=Calibri]CHO[/font][font=宋体]细胞系被成功开发出来,为高效筛选具有[/font][font=Calibri]GS[/font][font=宋体]标记的稳定细胞系提供了有力工具。[/font][/font][font=Calibri] [/font][b][font=宋体]稳定细胞系与瞬时转染的比较[/font][/b][font=宋体]稳定细胞系相较于瞬时转染具有多个优点,包括能够进行大规模生产和保持高水平的蛋白表达稳定性。尽管瞬时转染在某些情况下能快速产生大量蛋白,但其表达水平和重复性通常不如稳定细胞系。[/font][font=Calibri] [/font][b][font=宋体]展望[/font][/b][font=宋体]近年来,利用稳定细胞系高效生产结构生物学蛋白质已成为研究的热点和趋势。通过引入新技术、优化筛选方法和改进整合系统,不仅能够提高蛋白质生产的效率和纯度,还能够为结构生物学研究提供更加精准、可靠的实验工具。随着基因编辑和细胞工程技术的进步,预计在未来,通过精确的基因操作能够更有效地创建和利用稳定细胞系。这些技术的进步将促进结构生物学和药物开发中蛋白质的高效和可持续生产。[/font][font=宋体] [/font][font=宋体]本文由义翘神州进行整理,同时提供[/font][url=https://cn.sinobiological.com/services/stable-cell-line-development-service][u][font=宋体][color=#0000ff]稳定细胞系构建服务[/color][/font][/u][/url][font=宋体],详情可点击了解![/font][font=Calibri] [/font][font=宋体]参考文献:[/font][font=Calibri]Büssow K. Stable mammalian producer cell lines for structural biology. [/font][i][font=Calibri]Curr Opin Struct Biol[/font][/i][font=Calibri]. 2015 32:81-90. doi:10.1016/j.sbi.2015.03.002[/font]

  • 慢病毒构建稳转细胞系:原理、步骤与优势解析

    [font=宋体]慢病毒构建稳转细胞系的原理主要是利用慢病毒载体将外源基因导入宿主细胞,并实现外源基因的稳定表达。具体来说,构建稳转细胞系的核心是将慢病毒矢量载体导入宿主细胞中,慢病毒载体通常包含病毒的复制和包装组件,以及外源基因的表达调控序列。当慢病毒载体被导入宿主细胞后,它可以利用细胞的复制和转录机制将外源基因插入宿主细胞的染色体中,从而实现外源基因的稳定表达。[/font][font=宋体] [/font][font=宋体][b]构建稳定的慢病毒转染细胞系是在细胞中稳定表达外源基因的一种有效方法。下面是一般慢病毒构建稳定转染细胞系的步骤:[/b][/font][font=宋体] [/font][font=宋体][font=Calibri]1[/font][font=宋体]、选择慢病毒载体: 选择适当的慢病毒载体,通常是一个包含[/font][font=Calibri]LTR[/font][font=宋体]、包装信号、引导[/font][font=Calibri]RNA[/font][font=宋体]序列和多功能质粒载体的质粒。这个载体应该包含要表达的外源基因。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]2[/font][font=宋体]、转染慢病毒包装细胞: 使用慢病毒包装细胞系,例如[/font][font=Calibri]293T[/font][font=宋体]或其他适合的细胞系。这些细胞通常被选择因为它们能够支持慢病毒复制和包装。将慢病毒载体与包装蛋白的表达质粒一同转染进这些细胞中。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]3[/font][font=宋体]、病毒产生和收集: 慢病毒包装细胞会开始产生慢病毒颗粒,这些颗粒包含了慢病毒载体和外源基因。培养一定时间后,收集细胞培养上清液,这是富含病毒的液体。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]4[/font][font=宋体]、测定病毒滴度: 对采集的上清液进行病毒滴度的测定,通常可以通过转染一定数量的目标细胞,然后测定这些细胞的感染率来确定病毒的滴度。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]5[/font][font=宋体]、转染目标细胞: 将上一步获得的病毒用于转染目标细胞。这些目标细胞可以是要建立稳定转染细胞系的细胞。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]6[/font][font=宋体]、筛选稳定细胞系: 添加适当的筛选物质,例如抗生素,以选择表达了外源基因的细胞。这可以通过在培养基中添加抗生素,使得只有表达了外源基因的细胞能够存活下来。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]7[/font][font=宋体]、单克隆分离: 对稳定表达细胞群进行单克隆分离,以确保每个克隆都来自单一细胞。这有助于保持表达的一致性。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]8[/font][font=宋体]、验证表达: 对所得的单克隆细胞系进行验证,确认外源基因的表达水平和稳定性。这可以通过[/font][font=Calibri][url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url][/font][font=宋体]、[/font][font=Calibri]Western blotting[/font][font=宋体]等分子生物学技术来实现。[/font][/font][font=宋体] [/font][font=宋体]通过这些步骤,可以建立一个稳定表达外源基因的慢病毒转染细胞系,为后续的实验和研究提供了有力的工具。这种方法常用于基因功能研究、药物筛选和基因治疗等领域。[/font][font=宋体] [/font][font=宋体][b]慢病毒构建稳转细胞系的优点:[/b][/font][font=宋体] [/font][font=宋体]与常用的转染方法相比,慢病毒构建稳转细胞系有以下几个优点:[/font][font=宋体] [/font][font=宋体]①高效性:慢病毒能够将外源基因整合到宿主细胞基因组中,实现稳定的外源基因表达。[/font][font=宋体] [/font][font=宋体]②特异性:由于慢病毒的感染和复制比较特异,只会影响一定类型的细胞,因此可以实现对具体细胞的选择性转染。[/font][font=宋体] [/font][font=宋体]③安全性:慢病毒的基因转移速度较缓慢,对宿主细胞和人体的损伤较小,因此具有较高的安全性。[/font][font=宋体] [/font][font=宋体][font=宋体]义翘神州提供[url=https://cn.sinobiological.com/services/stable-cell-line-development-service][b]稳转细胞株构建服务[/b][/url],包含过表达细胞系构建服务和[/font][font=Calibri]CHO[/font][font=宋体]稳定细胞株开发服务,详情可以关注:[/font][font=Calibri]https://cn.sinobiological.com/services/stable-cell-line-development-service[/font][/font]

细胞系相关的资料

细胞系相关的资讯

  • Cytiva 收购 CEVEC,提升细胞系开发能力
    近日,全球生命科学领域的先行者 Cytiva 收购了德国领先的高性能细胞系开发和病毒载体生产技术供应商 CEVEC 制药有限公司。CEVEC 将进一步巩固 Cytiva 在生物制造解决方案领域的领先地位。  Cytiva 基因组学副总裁 Emmanuel Abate 表示:“CEVEC 的创新技术可以为Cytiva 的产品线提供强势补充,并为不断提升病毒载体生产能力带来更多希望。依托 Cytiva 的全球影响力和规模化生产能力,Cevec的技术与专业知识将使更多客户受益,从而加速和推进创新疗法,惠及更多患者。”  CEVEC 制药有限公司首席执行官 Nicole Faust 博士表示:“我们很高兴成为 Cytiva 的一部分。结合Cytiva 的全球影响力和众多领先品牌,这次收购将助力整个基因治疗行业的发展,通过为可放大的病毒载体生产提供全新而强大的解决方案,开启创新疗法可及的新时代。”  目前,在细胞和基因治疗领域,制药行业面临的一大关键挑战是如何建立生产工艺体系,以满足对病毒载体数量和质量稳定性的更高追求。CEVEC 拥有两种最广泛使用的病毒载体可放大体系——基于腺相关病毒 (AAV) 和腺病毒载体的生产细胞系,尤其适用于将治疗基因导入靶细胞和组织的过程中。  由CEVEC 的 ELEVECTA 技术提供支持的生产细胞系 (PCL) 可以保障生产工艺的产量、可放大性和稳健性。此外,得益于 ELEVECTA 技术,载体生产所需的所有组分均可稳定地整合到 PCL 的基因组中,为基于转染或使用辅助病毒的技术提供了替代方案。  CEVEC 及其位于德国科隆的46名科学专家已正式加入 Cytiva。CEVEC 的产品、服务和技术在近期将继续使用 ELEVECTA 和 CAP 品牌服务于全球客户。  关于 Cytiva  Cytiva(思拓凡)是全球生命科学领域的先行者,在全球40余个国家和地区拥有约10,000名员工,致力于推动未见技术,加速非凡疗法。作为值得信赖的合作伙伴,Cytiva 积极携手学术及转化医学领域的研究人员、生物技术开发者和制造商,专注于生物药物、细胞和基因疗法以及以 mRNA 为代表的一系列创新技术的研究,通过提升药物研发和生物工艺的能力、速度、效率和灵活性,为惠及全球患者开发和生产变革性的药物和疗法。
  • 生物制药市场高速增长下,批量细胞系构建实验室的自动化探索
    远高于国民经济整体增速,中国单抗市场增长迅速生物制药是利用生物活体来生产药物的方法。如利用转基因玉米生产人源抗体、转基因牛乳腺表达人α1抗胰蛋白酶等。生物制药行业前景广阔,全世界的医药品已有一半是生物合成的,它将广泛用于治疗癌症、艾滋病、冠心病、贫血、发育不良、糖尿病等多种疾病。医药上已应用的抗生素绝大多数来自微生物,如红霉素、注射用的青霉素、链霉素、庆大霉素等。2016-2020年期间我国生物医药产值规模高速增长,中国单抗市场将以16% CAGR增长,其中单抗在未来4年将以43% CAGR增长,远高于同期国民经济整体增速。2021年,中国生物医药产值规模突破3.2万亿元。(数据来源: Frost & Sullivan, 财通证券)体外培养细胞的种类和命名体外培养细胞的名称,随培养细胞技术的发展和细胞种类的增多而演变。最早采用的名称为细胞株(Cell strain),以后又出现细胞系(Cell Line)一词,两者曾一度混用致概念不明确,导致文献中也很混乱。我国也曾有类似情况,在我国尚未制定出统一名词前,本书用的名词基本参考 Schaeffer,W.I.(1979)和国内有关会议、以及国内外杂志常用名词为准。各种已被命名和经过细胞生物学鉴定的细胞系或细胞株 ,都是一些形态比较均一、生长增殖比较稳定的和生物 性状清楚的细胞群。因此凡符合上述情况的细胞群也可 给以相应的名称,即文献中常称之为已鉴定的细胞(Certified Cells)。已鉴定的细胞可用于各种实验研究和生产生物制品。当前世界上已建的各种细胞系(株)已难胜数,我国也建有百种以上,并在不断增长中。①细胞系(Cell Line):原代培养物经首次传代成功即成细胞系,由原先存在于原代培养物中的细胞世系(Lineage of Cells)所组成。②细胞株(Cell Strain):通过选择法或克隆形成法从原代培养物或细胞系中获得具有特殊性质或标志物称为细胞株。细胞株的特殊性质或标志必须在整个培养期间始终存在。如果不能继续传代或传代数有限,称为有限细胞株(finitecell strain);如果可以连续传代,称为连续细胞株(continuous cell strain)。对于人类肿瘤细胞,在体外培养半年以上,生长稳定,并连续传代的即可称为连续性株或系。批量细胞系构建是生物制药的核心(单抗生产工艺流程)(CAR-T细胞治疗工艺流程)数据来源:Current Opinion in Biotechnology 2018, 53:164–181. A guide to manufacturing CAR T cell therapies• 批量细胞系开发的主要目的是通过高通量筛选的手段获得数株高产稳定表达的细胞系,为后续的工艺开发及优化提供基础。• 批量细胞系开发的主要实验其中涉及到的实验内容包括细胞培养及转染,单克隆化及单克隆源性鉴定,多维度表征鉴定。• 批量细胞系开发实验室建议根据实验内容划分为高通量克隆筛选实验室和表征实验室,前者专注于高通量筛选,后者专注于表征鉴定。批量细胞系构建实验室的自动化探索常规细胞培养流程从细胞计数开始,经历细胞传代,转染,到转染条件及培养基优化为止,期间需要实验室配置全套的细胞操作相关设备。高通量克隆筛选实验室,由于其高通量及重复性的特征,可将实验过程中需要使用的设备整合起来形成自动化实验室,具体的搭配根据实验设备的不同可进行定制化。细胞培养模式的探索数据来源:Adv Biochem Eng Biotechnol DOI: 10.1007/10_2017_14. Platforms for Manufacturing Allogeneic, Autologous and iPSC Cell Therapy Products: An Industry Perspective [作者简介]程小卫,工商管理学硕士(MBA),现就职上海汉赞迪生命科技有限公司副总裁。曾任依利特分析仪器营销总监, ThermoFisher东区销售经理,并在Agilent、Shimadzu等跨国科学仪器公司就职多年,具有丰富的市场营销经验,擅长商业模式的创新和营销管理。获得上海市注册紧缺人才“高级企业管理师”殊荣,《千万不要学销售》的作者。(本文编辑:刘立东)相关推荐:这场疫情后,生命科学仪器行业的未来趋势在哪里?——汉赞迪生命科技副总裁程小卫【行业征稿】若您有生命科学、医药、临床等行业相关研究、技术、应用、管理经验等愿意以约稿形式共享,欢迎自荐或引荐投稿联系人:刘编辑word图文投稿邮箱:liuld @instrument.com.cn 微信:JaysonXY
  • FluidFM BOT单细胞显微操作赋能CRISPR基因编辑取得重大突破——加速细胞系的开发进程,实现单个细胞多基因编辑
    Jennifer Rottenberger1, Paul Monnier2, Maria Milla2, Tobias Beyer2, Dario Ossola2, Justin S Antony1 and Markus Mezger11 University Children' s Hospital, Department of Pediatrics I, Hematology and Oncology, University of Tübingen, Tübingen, Germany2 Cytosurge AG, Saegereistrasse 25, 8152 Glattbrugg, Switzerland生物制药和生物学研究以及生物制品的生产制造都依赖于基因修饰的细胞系,这些细胞系的基因被修饰,以诱导所需的表现型。随着CRISPR等基因编辑技术的发现和发展,多位点编辑的越来越引起了研究者的重视,但实际研究表明,整个实验进程是冗长而复杂的过程。近期,来自德国图宾根大学附属儿童医院的学者和来自瑞士Cytosurge公司工程师合作,通过FluidFM BOT技术手段,在不到三周的时间内完成了多基因敲除的单克隆细胞系。 FluidFM BOT助力CRISPR实现新突破自CRISPR作为一种基因编辑技术被发现和发展以来,它已经彻底改变了许多生命科学的研究领域。它为科学家提供了一种高度通用的基因工程工具,已经应用于各种广泛的生物体。科学家们对多基因位点编辑的多重策略的兴趣也正在急剧的增加:多重gRNAs的使用可以大大的增强CRISPR的应用范围。如多位点基因编辑,基因失调,细胞凋亡等。用传统技术手段包括转染等方法将多个gRNAs传递到细胞中具挑战。除了由几次DNA双链断裂引起的DNA损伤反应外,细胞活力也可能因物理损伤和化合物进入细胞核所引起的毒性而大大降低。所有这些都大地限制了CRISPR多位点编辑的潜力和效率。FluidFM BOT技术具,可将化合物直接的输送到任何细胞的细胞核中(图1)。因此,所有的试剂可以调整为佳的配比剂量进行注射,这样的话就很大程度上提高了效率,降低了细胞所受的物理压力,同时也减少了脱靶效应。FluidFM BOT技术完全屏蔽了常规基因递送方法的障碍,甚至CRISPR RNP复合物可以与数十甚至数百种不同的gRNAs共同注射。此外,FluidFM BOT的注射物不依赖于待注射物本身的特性,对于难以转染的细胞(如原代细胞)或需要大量的基因插入和沉默时候更具特优势。图1:FluidFM BOT技术可以温和地操作单个细胞。 在传统的细胞系发展系统实验中,为了得到稳定转染的细胞系,候选细胞系在增殖过程中被反复评估。目前需要的时间是12到14周。相比之下,通过FluidFM BOT技术可以挑选一个BOT注射编辑过的单个细胞,并从中产生克隆体——从转染之日起直到克隆体被鉴定出来,不到三周的时间。大大提高了细胞系构建的时间。 FluidFM BOT技术进行多基因敲除构建细胞系接下来,我们将展示了如何使用FluidFM BOT技术在不到三周的时间内生成单克隆多敲除细胞系(图2)。先,通过FluidFM BOT技术将外源物注射到CHO细胞中,同时靶向几个不同基因的基因组位点,直接将gRNA/Cas9 RNP复合物导入细胞核。纳米注射后,记录每个转染细胞的位置,这样以便在注射24小时后使用FluidFM BOT探针进一步分离成功转染的细胞。然后将这些细胞扩展成单克隆细胞系。接下来对细胞进行测序,以确定基因编辑是否成功。图2:FluidFM BOT技术进行细胞株开发流程:1天,细胞经FluidFM BOT注射转染。2天,选择成功转染的细胞,通过FluidFM BOT系统进一步进行单细胞分离。从3天到14天,分离的单细胞扩展成稳定的单克隆细胞系,并对其基因组进行分析。 1天:FluidFM BOT单细胞注射转染通过FluidFM BOT技术进行纳米注射,简单的点击鼠标即可完成对几十个CHO细胞的细胞核进行注射,以大约5个细胞/分钟的速度自动完成注射。荧光标记物与所有不同的gRNA/Cas9 RNP复合物共注射,以方便监测注射过程并识别佳候选复合物(图3)。图3:FluidFM BOT注射CRISPR/Cas9复合物和荧光标记物的CHO细胞的荧光图像。 2天:FluidFM BOT进行单细胞分离和分选FluidFM BOT对细胞进行了注射转染24小时后,使用集成FluidFM BIO系列操作软件(ARYA)可以再次的找到所有目标细胞。进而,进行FluidFM BOT进行单细胞分离和分选,将目标单细胞采用孔径为4 μm的FluidFM探针进行单分离,放入空的孔板中(图4)。从视觉角度可以完全确保细胞系的单克隆性。图4:明场成像可以完全确保细胞系的单克隆性。 3 - 14天:单克隆细胞的扩增和突变分析分离后培养克隆,并在3天和6天后监测其生长情况(图5.1和5.2)。90%以上的分离细胞发育成一个细胞群落。转染后14天,收集克隆并对目标基因进行测序分析。50%的克隆在靶向位点上显示突变。图5.1:分离3天后的12组CHO细胞集落。图5.2:单克隆细胞群落生长6天后 结论结果表明,通过FluidFM BOT技术对单个细胞进行注射,完成了多个gRNAs同时递送到选定的单个细胞中这一艰难的任务。采用FluidFM BOT技术方法进行的CRISPR细胞编辑技术,同时共注入几十种gRNAs所获得的细胞系可以进一步扩增。此外,我们在这里证明了FluidFM BOT技术的使用大大减少了多表型单克隆细胞系的开发时间,从数月减少到三周。 展望FluidFM BOT技术为单细胞基因工程领域带来了全新的突破,有潜力解决科学家目前面临的一些艰巨的挑战,尤其是在他们需要快速和有效地开发单克隆细胞系时。传统的方法完全适用于常见的细胞系和基因工程策略,但当处理不常见的、罕见的或脆弱的、和已知难以转染的原代细胞类型,或者需要复杂的实验设计——例如CRISPR多基因编辑时,传统的方案就非常受限制。在这些特殊情况下,FluidFM BOT技术可能是可用的解决方案。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制