您好,欢迎访问仪器信息网
注册
光焱科技股份有限公司

关注

已关注

金牌2年 金牌

已认证

粉丝量 0

400-860-5168转6033

仪器信息网认证电话,请放心拨打

当前位置: 光焱科技 > 解决方案
解决方案

OSCs结合宽带隙全无机钙钛矿Voc达2.116 volt

应用领域

能源/新能源

检测样品

太阳能

检测项目

Voc損耗分析​
有机太阳能电池(OSCs)的发展已见成效,采用非富勒烯受体(NFAs)的小分子材料,使其能量转换效率(PCE)超过了19%。然而,有机材料在吸收光谱上存在局限,尤其是NIR和NUV区域的吸收不佳。为了提升光吸收能力,研究人员提出了低带隙NFAs和多组分策略,虽然提高了JSC,但在单一结OSCs中无法最小化高能量光子的能量损失。 串联太阳能电池(TSCs)结合了宽带隙(WBG)和低带隙(LBG)半导体,可以扩展吸收光谱,减少能量损失,从而提升光伏性能。研究人员探索了2T和4T两种结构,其中2T架构因其较低的寄生吸收和易于模块整合而受到青睐。然而,高性能WBG有机材料的开发相对落后,而全无机钙钛矿(如CsPbI2Br)因其可调的宽带隙和热稳定性,成为前子电池的理想材料。 南方科技大學 Aung Ko Ko KYAW 團隊於Advanced Science (DOI: 10.1002/advs.202200445 )中發表,使用CsPbI2Br作为前子电池的吸收层,通过ZnO/SnO2双层电子传输材料提高了电子提取效率和Voc。同时,采用窄带隙PM6体异质结(BHJ)膜作为后电池吸收层,以扩展吸收至900nm以上。透过热退火(TA)-自由制程改善了后子电池的性能,降低了界面电阻,抑制了非辐射复合,从而提高了Voc。最终,单片式2T-TSCs达到了20.6%的PCE和2.116V的Voc,创下了基于钙钛矿/有机吸收层太阳能电池的新纪录,并超越了单一结和叠层有机太阳能电池的最高报告PCE。这表明,结合WBG全无机钙钛矿的叠层策略是有效且创新的,能够充分利用太阳光谱,提升OSCs的效率。

1

光焱科技REPS新型太阳能电池Voc损耗分析仪

REPS

面议

查看更多配置单>>

中科院杨德仁光伏器件效率26.27%採2Pbl2防钙钛矿解构

应用领域

能源/新能源

检测样品

太阳能

检测项目

光电效应​
近日,由中科院院士杨德仁团队、浙江大学王勇 及苏州大学宁为华 共同發表于Nature Communications 2024年第15期一突破性研究为高效钙钛矿太阳能电池的发展开辟了新路径。研究人员成功开发出一种新型无定形(赖氨酸)2PbI2钝化层,通过固相反应在钙钛矿薄膜表面和晶界处形成。这种无定形结构具有更少的悬挂键,能有效中和表面/界面缺陷,显着提高了电池效率。 与传统的晶态钝化材料相比,这种新型无定形层不仅降低了晶格应力,还作为屏障阻止有机成分的分解,抑制了钙钛矿的结构破坏,大幅提升了太阳能电池的稳定性。研究团队报告称,采用这种技术的钙钛矿太阳能电池效率高达26.27%(经认证为25.94%)。

1

光焱科技QE-R量子效率系统

QE-R

面议

查看更多配置单>>

钙钛矿开路电压推至理论极限的95%,25.11%的高转换效率

应用领域

能源/新能源

检测样品

太阳能

检测项目

Voc損耗分析​
华中科技大学王鸣魁团队于 Advanced Energy Materials 第30期发表了一项创新的方法,通过使用具有推拉电子结构配置的π共轭分子来调节埋藏界面,从而提高三阳离子钙钛矿太阳能电池的开路电压(Voc)。研究人员在钙钛矿太阳能电池中使用了氧化锡纳米晶作为电子传输层,并发现新型化学材料能够显著降低界面能障并钝化埋藏界面的缺陷。这种方法将Cs0.05(FA 0.85 MA0.15)0.95Pb(I 0.85 Br 0.15)3(带隙约为1.60 eV)钙钛矿太阳能电池的开路电压提高到1.241 V,并且在标准测试条件下的转换效率达到24.16%。当使用Cs 0.05 MA0.05 FA0.9 PbI 3(带隙约为1.54 eV)钙钛矿太阳能电池时,甚至可以达到更高的效率25.11%。这个开路电压是三阳离子钙钛矿太阳能电池中最高的,达到了肖克利-奎瑟极限的95%。此外,研究人员还制作了能量转换装置,通过将两个钙钛矿微模块串联起来驱动二氧化碳电解槽,实现了11.76%的太阳能到CO的转换效率,这在整合钙钛矿光伏进行太阳能驱动的CO2转换方面树立了一个新的基准。

1

光焱科技REPS新型太阳能电池Voc损耗分析仪

REPS

面议

查看更多配置单>>

北京理工陈棋晶体成核技术稳定钙钛矿/晶硅叠层电池均匀卤素分布

应用领域

能源/新能源

检测样品

太阳能

检测项目

光电效应
混合卤化物钙钛矿太阳能电池,尤其是钙钛矿/晶硅叠层太阳能电池 (PSTs),展现出巨大的潜力,但其长期稳定性,尤其是宽带隙 (WBG) 钙钛矿吸收体的稳定性,仍然是一个挑战。WBG 吸收体薄膜的晶体质量差和多晶取向导致离子迁移和相分离,从而降低器件寿命。 来自北京理工大学的陈棋团队于Science 2024年8月1日第6708期中发表研究中,着重于成核工程,通过促进 3C 相成核并控制前体组成,以获得具有优异晶体质量和纹理的 WBG 吸收体。这种方法有效减少了非辐射复合,增强了对热降解、离子迁移和相分离的稳定性。基于此,团队实现了在 1 cm2 和 25 cm2 活性区域中分别为 32.5% 和 29.4% 的高效率 钙钛矿/晶硅叠层电池,并在长期稳定性方面取得了显着突破。

1

光焱科技QE-R量子效率系统

QE-R

面议

查看更多配置单>>

Sci.经J-V、EQE确认气相氟化物处理法可稳定大面积钙

应用领域

能源/新能源

检测样品

太阳能

检测项目

光电效应
钙钛矿太阳能电池因其高转换效率而备受关注,但长期稳定性问题一直制约着其商业化应用。南京航空航天大学纳米科学研究所郭万林团队于Science 七月号发表 利用气相氟化物处理实现的规模化稳定方法,成功制备了效率为18.1%的大面积(228平方厘米)钙钛矿太阳能模块,加速老化测试显示其T80寿命(效率保持80%的时间)高达 43,000 ± 9000小时,相当于近6年的连续运行时间。这种方法通过在钙钛矿表面形成均匀的氟化物钝化层,有效抑制了缺陷形成和离子扩散,显着提高了模块的稳定性和性能。

1

光焱科技QE-R量子效率系统

QE-R

面议

查看更多配置单>>

巧用绝缘聚合物矩阵, 全小分子有机太阳能电池的稳定性

应用领域

能源/新能源

检测样品

太阳能

检测项目

光电效应
有机太阳能电池(OPV) 凭借其轻薄、 柔性可弯曲和成本低廉等优势, 成为新一代光伏技术的重要发展方向。 而近年来, 全小分子有机太阳能电池(ASM OPV) 因其更易于合成、 更高的材料可重复性、 以及更易于精确调控材料特性等优点, 受到科研人员的广泛关注。 与聚合物太阳能电池相比, 全小分子有机太阳能电池ASM OPV 具有以下显著的优势和劣势: 优点: 1. 高纯度和可控性: 小分子材料可以通过精确的化学合成获得高纯度, 这使得材料特性更易于控制和重现, 从而提高电池性能的一致性和稳定性。 2. 电子迁移率高: 小分子材料通常具有较高的电子迁移率, 这有助于提高电池的光电转换效率。 3. 溶液加工性: 小分子材料通常易溶于有机溶剂, 适合溶液加工技术, 例如旋涂、 刮涂和印刷, 这些技术具有低成本和大面积制备的潜力。 4. 结构灵活性: 小分子材料的化学结构可以通过分子设计灵活调整, 以优化光吸收、 电荷传输和能级匹配。 5. 热稳定性: 小分子材料的结构稳定性较高, 一般具有更好的热稳定性, 这有助于提高电池的使用寿命。 缺点: 1. 薄膜形成难度: 小分子材料在成膜过程中容易出现结晶和相分离现象, 这会影响薄膜的均匀性和电池性能。 2. 溶剂选择有限: 虽然小分子材料可以溶解在有机溶剂中, 但合适的溶剂选择有限, 这可能会影响制程的灵活性。 3. 机械柔韧性较差: 小分子材料的机械柔韧性一般不如聚合物材料, 这可能会影响电池在柔性基板上的应用。 4. 成本相对较高: 由于小分子材料的合成过程较为复杂, 纯度要求高, 其成本通常高于聚合物材料。 5. 能级匹配挑战: 小分子材料的能级匹配需要精确设计, 这对材料设计和制备提出了更高的要求。 另外, ASM OPV 系统也存在着一些问题, 例如 其分子堆积和聚集结构通常比聚合物系统更加脆弱, 导致其在实际应用中更容易发生性能衰退。 近期, 香港理工大学李刚教授团队 在 Advanced Materials 期刊上发表了重要研究成果, 为提升全小分子有机太阳能电池的稳定性指明了新方向。

1

光焱科技QE-R量子效率系统

QE-R

面议

查看更多配置单>>

开拓全新“微表面工程” , 提升钙钛矿太阳能电池稳定性

应用领域

能源/新能源

检测样品

太阳能

检测项目

发光效率检测 ​
钙钛矿太阳能电池(PSC) 凭借其高效率和低成本的优势, 被认为是下一代光伏技术的主力军。 但是, 钙钛矿材料本身的稳定性和可控性问题, 是限制其大规模应用的关键因素。 近年来, 科学家们一直致力于开发更稳定高效的钙钛矿太阳能电池, 并在材料、 结构、 制备工艺等方面取得了显着的进展。 近期, 香港科技大学周圆圆教授团队 在Nature Energy 期刊发表了重磅研究成果。 他们的研究揭示了钙钛矿薄膜单个晶粒表面的微观特征, 并提出了一种全新的 “微表面工程" 策略, 以提升钙钛矿太阳能电池的性能。

1

光焱科技光致发光与发光量子产率测试系统LQ-100X-PL

LQ-100X-PL

面议

查看更多配置单>>

全纹理钙钛矿-晶硅叠层太阳能电池与全聚合物太阳能电池改善制程提升效率

应用领域

能源/新能源

检测样品

太阳能

检测项目

光电效应​
近年来, 钙钛矿太阳能电池(PSC)因其高效、 低成本、 易制备等特点, 成为下一代光伏技术。 为了推动钙钛矿太阳能电池的进一步发展, 来自中国香港的科研团队持续发力, 在国际顶尖期刊 Joule 上接连发表两篇重要研究成果。 这两篇研究展现了钙钛矿太阳能电池技术的未来潜力, 并为解决目前面临的挑战提供了新的思路。

2

光焱科技QE-R量子效率系统

QE-R

面议

查看更多配置单>>

自动设备加速平台搭载量子效率表徵设备精准操控工艺参数,常温常压下实现超23%

应用领域

能源/新能源

检测样品

太阳能

检测项目

光电效应​
太阳能电池是实现可持续发展的重要途径, 但传统的硅基太阳能电池在效率提升方面面临挑战,难以充分利用全部光谱。 近年来,钙钛矿太阳能电池因其高效率、低成本和制备工艺简单等优点,备受关注。 但是, 钙钛矿材料的稳定性问题以及复杂的环境因素, 一直是阻碍其大规模应用的关键问题。 为了突破这些限制, 科研人员不断探索新的方法, 以提高钙钛矿太阳能电池的效率和稳定性。 然而,传统的制备方法通常依赖人工操作, 无法精确控制所有关键参数,导致重复性差、效率不稳定。 近期,德国埃尔朗根-纽伦堡大学材料科学系 Christoph J. Brabec 教授团队在Energy & Environmental Science 杂志发表了一篇突破性研究成果, 他们使用全新的 “自动设备加速平台" (DAP), 精确地操控了钙钛矿太阳能电池制备的关键参数, 并在常温常压的环境下成功地将电池效率提升至23% 以上。

1

光焱科技QE-R量子效率系统

QE-R

面议

查看更多配置单>>

跨校合作使用量子效率量测发表钙钛矿太阳能电池大面积模块化生产

应用领域

能源/新能源

检测样品

太阳能

检测项目

光电效应​
钙钛矿太阳能电池(PSC)凭借其高效率、低成本、易制备等优势, 成为近年来光伏领域具潜力的下一代光伏技术之一。 但目前, 钙钛矿太阳能电池的小尺寸器件已取得重大突破, 但在向大面积模块化生产发展过程中仍存在不少挑战。 制备大面积模块需要更长的时间, 这对薄膜的沉积和制备工艺提出了更高要求, 同时也对材料的稳定性和加工窗口提出了挑战。 近三年来,钙钛矿太阳能电池大面积模块化的研究进程主要集中在提高效率、稳定性和可制造性方面。 近日,由西安电子科技大学常晶晶教授,联合洛桑理工学院 Mohammad Khaja Nazeeruddin 教授团队和西北工业大学李祯教授团队在Energy & Environmental Science 杂志发表了突破性研究成果。 该团队通过巧妙地将 N-甲基-2-吡咯烷酮溶剂与冷却策略相结合, 在两步沉积法中获得了更稳定的基于 FA 的钙钛矿中间相, 从而实现了更长的退火窗口。

1

光焱科技QE-R量子效率系统

QE-R

面议

查看更多配置单>>

AM1.5G A+级太阳光模拟器及量子效率量测提升全聚合物太阳能电池效率

应用领域

能源/新能源

检测样品

太阳能

检测项目

光电效应​
全聚合物太阳能电池(all-PSCs)凭借其出色的稳定性和机械耐用性,被认为是未来太阳能电池应用的重要方向。全聚合物太阳能电池主要由供体和受体两种有机聚合物材料组成,其基本结构包括以下: l 透明导电电极: 通常由氧化铟锡(ITO)制成,用于光的透射和电子的导电。 l 电子传输层: 提高电子从活性层向电极的传输效率。 l 活性层: 由供体和受体材料组成,是光生电荷的主要产生区域。供体材料吸收光子产生激子(电子-空穴对),激子在受体材料处分离成自由电子和空穴。 l 空穴传输层: 提高空穴从活性层向电极的传输效率。 l 金属电极: 通常由银或铝制成,用于收集和导出电荷。 近年来,全聚合物太阳能电池的研究发展迅速: l 材料发展: 随着非富勒烯受体材料的快速发展,APSCs的光/热稳定性和柔韧拉伸性能显着提高。 l 转换效率: 研究显示,聚合物太阳能电池的转换效率已突破10%,这使其成为一种有竞争力的替代传统硅基太阳能电池的技术。 l 机械灵活性: APSCs表现出优异的透明性、溶液加工性和机械灵活性,使其在柔性电源系统中有广泛应用前景。 然而,由于其效率长期落后于小分子受体基太阳能电池,限制了其进一步发展。如何有效平衡并提升开路电压(Voc)和短路电流密度(Jsc)成为全聚合物太阳能电池领域的一大难题。 近期,香港科技大学颜河教授团队在国际顶级期刊 Energy & Environmental Science 上发表了突破性研究成果, 成功开发了一种名为PYO-V的新型聚合物受体, 它可以通过调节分子结构, 实现更宽的光谱吸收和更高的能量级, 从而有效提升了全聚合物太阳能电池的性能, 并实现了高效的多功能光伏应用。 颜河教授是香港科技大学化学系教授,长期致力于有机光伏材料与器件方面的研究, 在国际著名期刊发表了200余篇高质量学术论文。 他的团队致力于突破现有全聚合物太阳能电池的技术瓶颈, 为下一代高效稳定的光伏器件的开发提供新的思路和方向。

1

光焱科技QE-R量子效率系统

QE-R

面议

查看更多配置单>>

北卡教堂山分校黄劲松研发出强化屏障有效提高稳定性

应用领域

能源/新能源

检测样品

太阳能

检测项目

光电效应​
钙钛矿太阳能电池(PSC)作为下一代光伏技术的重要候选者,近年来取得了飞速的发展, 其光电转换效率已经接近甚至超越了传统晶硅太阳能电池。 然而,钙钛矿太阳能电池的稳定性问题依然是制约其商业化应用的关键难题。 反向偏压(reverse bias)对钙钛矿太阳能电池的稳定性有着重要影响, 它可能导致钙钛矿材料分解, 进而影响电池的长期稳定性。 因此,理解反向偏压对钙钛矿结构和性能的影响是提高电池稳定性的重要研究方向。 研究人员需要深入了解反向偏压条件下钙钛矿材料的降解机制, 以找到提高其稳定性的解决方案。 研究反向偏压下的降解机理能帮助科学家找出钙钛矿太阳能电池的弱点。 这些研究有助于设计更加耐用的材料和结构, 以防止电池在反向偏压条件下快速降解。 同时,反向偏压会导致效率损失,这主要是由于电荷载流子的再结合速率增加以及可能的渗透电流增大。 了解和克服这些问题对于保持高效率运行的钙钛矿太阳能电池至关重要。 研究反向偏压对电池的影响还有助于改进封装技术, 防止环境因素(如湿气和氧气)在反向偏压条件下对钙钛矿材料造成的影响。 近期,北卡罗来纳大学教堂山分校黄劲松教授团队在国际顶尖期刊《Nature Energy》上发表了一项重要研究成果, 揭示了钙钛矿太阳能电池在反向偏压下失效的机理, 并通过构建强化屏障, 显着提高了钙钛矿太阳能电池在反向偏压下的稳定性。

1

光焱科技QE-R量子效率系统

QE-R

面议

查看更多配置单>>

中国科学院胡劲松团队精准调控钙钛矿/聚合物界面

应用领域

能源/新能源

检测样品

太阳能

检测项目

光电效应​
太阳能电池是实现清洁能源的重要途径,但传统硅基太阳能电池的效率受材料特性限制,无法充分利用所有光谱。 近年来,钙钛矿太阳能电池凭借其高效、低成本和制备工艺简单等优点,成为具潜力的下一代光伏技术之一。然而,钙钛矿材料的稳定性问题一直是制约其大规模应用的瓶颈。 近期,中国科学院化学研究所胡劲松研究员领导的研究团队在Energy & Environmental Science 期刊上发表了一篇重要研究成果。 他们巧妙地利用可调节的膦配体对钙钛矿/聚合物界面进行分子调控,成功地提高了钙钛矿太阳能电池的效率和稳定性,突破了此前纪录,将器件效率提升至25.08%! 胡劲松研究员,现任中国科学院化学研究所研究员,博士生导师。 他长期致力于有机光电材料和器件、钙钛矿太阳能电池等方面的研究,在国际重要学术期刊上发表SCI论文300余篇,被引用20000多次,获授权发明40余项。 他的研究团队在钙钛矿太阳能电池领域做出了突出贡献,曾获国家自然科学奖二等奖等重要奖项。

1

光焱科技QE-R量子效率系统

QE-R

面议

查看更多配置单>>

深圳职业技术大学胡汉林教授多酚阴极界面层技术

应用领域

能源/新能源

检测样品

太阳能

检测项目

光电效应​
有机太阳能电池(OSCs)近年来在光伏领域备受关注,其低成本、轻薄柔性和可大面积制备的优势,使其在建筑一体化、柔性电子等领域具有巨大的应用潜力。然而,有机太阳能电池的效率和稳定性仍然面临挑战,其中一个关键问题是阴极界面层(CIL)的性能限制。 在最近发表在《先进能源材料》期刊上的重要研究中,由深圳职业技术大学胡汉林教授、香港理工大学李刚教授以及河南科技学院张万庆教授等共同领导的团队,揭示了一种利用多酚化合物改善有机太阳能电池阴极界面层的突破性策略,成功提升了有机太阳能电池的效率和稳定性,为推动有机太阳能电池的应用发展迈出了重要一步。

1

光焱科技QE-R量子效率系统

QE-R

面议

查看更多配置单>>

“水活化动力钝化技术” 打造高效稳定钙钛矿太阳能电池

应用领域

能源/新能源

检测样品

太阳能

检测项目

发光效率检测 ​
钙钛矿太阳能电池(PSC)近年来发展迅猛,已成为最有潜力的下一代光伏技术之一。然而,钙钛矿材料的稳定性和制备工艺仍存在一些挑战,阻碍着 PSC 的大规模应用。提高钙钛矿电池效率和稳定性的一个重要方法是缺陷钝化,以减少缺陷态和陷阱态,提高电荷载流子传输效率。 在最近发表在《Nature》期刊的一项重要研究中,由香港城市大学冯宪平教授和英国牛津大学 Henry J. Snaith 教授共同领导的团队,发展出了一种具有突破性的水活化动力钝化策略,为高效且稳定性的钙钛矿太阳能电池技术的实现铺平了道路。

1

光焱科技光致发光与发光量子产率测试系统LQ-100X-PL

LQ-100X-PL

面议

查看更多配置单>>

高效有机太阳能电池成功非稠环电子受体材料与溶解度控制策略

应用领域

能源/新能源

检测样品

太阳能

检测项目

光电效应
有机太阳能电池(OSCs)作为一种新型光伏技术,因其成本低廉、可柔性化、可印刷等优势,近年来备受关注。为了进一步提升 OSCs 的效率,研究人员不断探索新型的电子受体材料,其中非稠环电子受体 (NFREAs) 因其合成成本低于稠环受体而备受青睐。然而,NFREAs 的分子结构特点,如低骨架平面性和庞大的取代基,会导致其结晶度较差,进而阻碍电荷传输和形成有利于电荷分离的双连续结构,影响器件的效率。

1

光焱科技QE-R量子效率系统

QE-R

面议

查看更多配置单>>

挥发性油墨助力全印刷钙钛矿太阳能电池模块化制备:开辟规模化应用新路径

应用领域

能源/新能源

检测样品

太阳能

检测项目

发光效率检测 ​
钙钛矿太阳能电池(PSCs)因其效率高、成本低、可制备成柔性器件等优势,近年来在光伏领域异军突起,成为下一代太阳能电池技术的重要候选者。然而,钙钛矿薄膜的制备工艺仍面临诸多挑战,特别是大面积器件的制备和模块化生产。传统方法通常需要使用反溶剂,这不仅会增加制备成本,还会影响器件的稳定性。因此,开发无需反溶剂的印刷技术,以及适用于大面积制备的钙钛矿油墨,是实现钙钛矿太阳能电池规模化应用的关键。

1

光焱科技光致发光与发光量子产率测试系统LQ-100X-PL

LQ-100X-PL

面议

查看更多配置单>>

港城市Alex Jen团队反式钙钛矿太阳能电池缺陷钝化策略:从材料到器件模块化

应用领域

能源/新能源

检测样品

太阳能

检测项目

发光效率检测
反式钙钛矿太阳能电池(PSCs)其(p-i-n结构)是一种特殊结构的钙钛矿太阳能电池,其结构通常包含以下几层:基底:通常为导电玻璃,如FTO或ITO; 电子传输层(ETL),常用材料如二氧化钛(TiO2)或PCBM,作用是传输电子; 钙钛矿活性层,光吸收和电子-空穴对生成的主要区域,通过优化钙钛矿材料,可以提高电池的效率; 空穴传输层(HTL);及顶电极:通常为金属,如金或银,用于收集电流。 因其低滞后效应、成本效益和适合串联应用等优势而备受关注。然而,钙钛矿材料的溶液制备过程和较低的形成能使得在钙钛矿层体相和界面处不可避免地形成大量缺陷。这些缺陷会作为非辐射复合中心,严重阻碍载流子传输,对器件的稳定性和功率转换效率(PCE)提升构成巨大障碍。本文将深入探讨缺陷的本质和起源,以及缺陷识别技术,并系统总结反式 PSCs 中钙钛矿薄膜界面和体相缺陷的检测方法和钝化策略,最后展望缺陷钝化工程在钙钛矿模块化制备中的应用前景。

1

光焱科技光致发光与发光量子产率测试系统LQ-100X-PL

LQ-100X-PL

面议

查看更多配置单>>

港理工大李刚教授团队与UCLA二元有机太阳能电池突破性研究

应用领域

能源/新能源

检测样品

太阳能

检测项目

量子效率
二元有机太阳能电池 (Binary Organic Solar Cell, BOSC) 是一种利用两种有机材料组成的太阳能电池。这两种材料通常是供体和受体材料,它们共同形成一个异质结构,以提高光电转换效率。 然而,二元有机太阳能电池的发展仍然面临着一些挑战,其中最主要的是非辐射复合损耗问题。非辐射复合是指光生电子和空穴在未参与电荷收集的情况下直接复合,导致能量损失,降低效率。因此,如何降低二元有机太阳能电池中的非辐射复合损耗,是提升其性能的关键。

2

光焱科技QE-R量子效率系统

QE-R

面议

查看更多配置单>>

浙江大学叶志镇团队突破钙钛矿发光二极管响应速度瓶颈

应用领域

能源/新能源

检测样品

太阳能

检测项目

发光效率检测
钙钛矿发光二极管(PeLEDs)以其高效率、低成本、可调色等优点,近年来在显示领域备受关注,被认为是下一代显示技术的潜力之星。然而,钙钛矿材料的离子迁移问题,导致 PeLEDs 的电致发光上升时间通常在毫秒级别,这对于高刷新率显示来说是一个巨大的挑战。 浙江大学叶志镇教授团队近期取得重大突破,他们通过采用单颗粒钝化策略,成功将 PeLEDs 的电致发光上升时间缩短至微秒级,为高刷新率显示技术的发展提供了新的可能性。 这一研究成果发表在国际顶尖期刊《Nature Electronics》上。

1

光焱科技光致发光与发光量子产率测试系统LQ-100X-PL

LQ-100X-PL

面议

查看更多配置单>>

香港理工大学李刚突破有机太阳能电池厚度限制

应用领域

能源/新能源

检测样品

太阳能

检测项目

量子效率
有机光伏电池(OSCs)以其轻薄、柔性、可印刷等优势,在过去几年中吸引了广泛的关注,被认为是下一代光伏技术的理想选择。然而,OPVs 的效率和稳定性仍然落后于传统硅太阳能电池。 实现低成本和印刷友好的 OSCs 制备,需要采用具有简单结构的光活性分子的厚膜器件。因此,对于非稠合环受体材料,如何在较厚的器件中实现高能量转换效率 (PCE),具有重大意义。 香港理工大学李刚教授团队近期取得重大突破,他们利用顺序沉积 (SD) 方法,成功将 D18:A4T-16 有机活性层的效率从传统的混合浇注方法的 8.02% 提升至 14.75%,该器件厚度达到 300 纳米。 这一研究成果发表在国际顶尖期刊《Advanced Energy Materials》上。

1

光焱科技QE-R量子效率系统

QE-R

面议

查看更多配置单>>

南昌大学姚凯团队 全纹理叠層太阳能电池30.89%轉換效率

应用领域

能源/新能源

检测样品

太阳能

检测项目

量子效率
近年来,钙钛矿/晶硅叠層太阳能电池 (tandem solar cells) 凭借其高效率和低成本等优势,成为光伏领域的研究热点。为了实现大规模的串联太阳能电池模块化生产,使用工业化 Czochralski 硅晶片制造的全纹理结构串联器件,将成为未来发展趋势。然而,传统用于调节钙钛矿界面性质的表面工程策略并不适用于微米级的纹理表面。 南昌大学的姚凯教授团队在 Angewandte Chemie International Edition 期刊上发表了一项最新研究成果,他们开发了一种全新的表面钝化策略,利用动态喷涂 (DSC) 技术将氟化噻吩乙胺配体均匀地涂覆在纹理硅表面,有效地抑制了钙钛矿的相变,并提高了器件的效率和稳定性。

1

光焱科技QE-R量子效率系统

QE-R

面议

查看更多配置单>>

南京大学谭海仁团队钙钛矿/晶硅叠层太阳能电池实现大规模制备

应用领域

能源/新能源

检测样品

太阳能

检测项目

光电效应
钙钛矿太阳能电池(PSCs)自2009年报导以来,由于其高效能、低成本和简单制备工艺迅速引起了学术界和工业界的广泛关注。其核心材料钙钛矿具有优异的光电特性,如高吸光係数、长载流子扩散长度和高载流子迁移率,使其成为下一代光伏技术的潜力选手。在过去十年间引发了广泛的研究热潮,并被认为是最有潜力替代传统硅太阳能电池的下一代光伏技术之一。 近年来,钙钛矿太阳能电池(PSCs) 的效率不断提升,并在 NREL 的效率认证数据中屡创新高。 叠层结构的出现自2017开始,在過去三年中,钙钛矿/晶硅叠层太阳能电池的效率取得显着的突破。 钙钛矿/晶硅叠层太阳能电池,更是被认为是未来实现更高效率和更低成本的理想方案。然而,在空气环境下实现宽带隙钙钛矿 (~1.68 eV) 的可扩展制备一直是一个巨大的挑战,因为水分会加速钙钛矿薄膜的降解。 南京大学谭海仁教授团队近期取得重大突破,他们在研究中发现,溶剂的性质对水分干扰的影响程度至关重要。通过深入研究,他们发现正丁醇 (nBA) 由于其低极性和中等挥发速率,不仅可以有效缓解空气环境中水分对钙钛矿薄膜的负面影响,還可以提高钙钛矿薄膜的均勻性,进而实现可扩展制备。

1

光焱科技QE-R量子效率系统

QE-R

面议

查看更多配置单>>

SCI. 新型空穴传输层材料,强化钙钛矿太阳能电池长期稳定性

应用领域

能源/新能源

检测样品

太阳能

检测项目

光电效应​
钙钛矿太阳能电池 (PSCs) 凭借其高效率、低成本和可印刷性等优势,成为最有希望取代传统硅基太阳能电池的下一代光伏技术。然而,PSCs 在实际户外应用中面临着紫外线 (UV) 辐射带来的严峻挑战。 为了解决这一问题,美国北卡罗来纳大学教堂山分校的 Jinsong Huang 教授团队在 Science 期刊发表了最新研究成果,他们通过开发一种新型的强键合空穴传输层 (HTL) 材料,有效地抑制了 钙钛矿太阳能电池 (PSCs) 的紫外线降解,并显著提高了器件的长期稳定性。

1

光焱科技AAA级SS-X太阳光模拟器

SS-X

面议

查看更多配置单>>

强强联手三校联合-大面积器件效率提升至 20.01%!

应用领域

能源/新能源

检测样品

太阳能

检测项目

量子效率
钙钛矿太阳能电池(PSCs)因其优异的光电转换效率和低成本制备,在过去十年间引发了广泛的研究热潮,并被认为是最有潜力替代传统硅太阳能电池的下一代光伏技术之一。 近年来,PSCs 的效率不断提升,并在 NREL 的效率认证数据中屡创新高。 嘉兴大学李在房教授团队联合杭州电子科技大学严文生教授和瑞典林雪平大学高锋教授,近期取得重大突破,成功开发了一种新的表面后处理策略,采用乙基硫代乙酸酯(ET)作为配体分子,有效调控了钙钛矿薄膜的性质,提高了器件的效率和稳定性。 这项研究成果发表在国际著名期刊《Advanced Functional Materials》上。

1

光焱科技QE-R量子效率系统

QE-R

面议

查看更多配置单>>

突破16.1%!侯剑辉团队突破非稠合受体材料效率瓶颈

应用领域

能源/新能源

检测样品

太阳能

检测项目

量子效率
有机光伏电池(OPVs)以其轻薄、柔性、可印刷等优势,在过去几年中吸引了广泛的关注,被认为是下一代光伏技术的理想选择。然而,OPVs 的效率和稳定性仍然落后于传统硅太阳能电池。非稠合受体材料因其结构简单、成本低廉,备受研究人员关注,但基于非稠合受体材料的器件效率一直难以突破。 中国科学院化学研究所侯建辉教授团队近期取得重大突破,通过巧妙设计合成新型非稠合受体材料,成功将基于全非稠合受体材料的器件效率提升至 16.1%,创下了该领域的新纪录。这一研究成果发表在国际顶尖期刊《Journal of the American Chemical Society》上。

1

光焱科技QE-R量子效率系统

QE-R

面议

查看更多配置单>>

EES 25.29%效率突破-陕西师范大学刘生忠团队

应用领域

能源/新能源

检测样品

太阳能

检测项目

量子效率
钙钛矿太阳能电池(PSCs)因其优异的光电转换效率和低成本制备,在过去十年间引发了广泛的研究热潮,并被认为是最有潜力替代传统硅太阳能电池的下一代光伏技术之一。近年来,PSCs 的效率不断提升,并不断刷新着世界纪录。 陕西师范大学刘生忠教授团队近期取得重大突破,他们通过一种新颖的异质种子辅助策略,成功地控制了 FAPbI3 的结晶过程,并制备出高质量的钙钛矿薄膜,最终实现了 25.29% 的能量转换效率 (PCE),为该领域的发展注入了新的活力。该研究成果发表在国际期刊《Energy & Environmental Science》上。

1

光焱科技QE-R量子效率系统

QE-R

面议

查看更多配置单>>

“织”就未来:石墨烯-钙钛矿光纤光电探测器,让可穿戴科技更进一步

应用领域

能源/新能源

检测样品

太阳能

检测项目

光电传感器特性分析仪
想象一下,未来我们穿的衣服不再仅仅是蔽体的工具,而是能够感知周围环境,监测身体状况,甚至实现人机交互的智能系统。这正是可穿戴科技的魅力所在!而将光电器件,如晶体管和光电探测器(PDs),集成到可穿戴设备和纺织品中,是实现这一愿景的关键。 然而,可穿戴科技的发展面临着巨大的挑战,其中一个关键问题是如何让器件在弯曲、拉伸等机械形变下保持稳定性能。传统的器件大多依赖于硅基材料,难以满足柔性可穿戴的需求。 石墨烯-钙钛矿开启可穿戴科技新纪元 为了突破这一技术瓶颈,来自剑桥大学的 Andrea C. Ferrari 教授团队在 Advanced Materials 期刊上发表了一项突破性研究,他们巧妙地将石墨烯和钙钛矿结合起来,制备出具有优异性能的可穿戴光纤光电探测器。

1

半导体器件新型光电传感器特性分析仪PD-QE

PD-QE

面议

查看更多配置单>>

Joule 26.17%效率突破_港城大Alex Jen & 南科大许宗祥团队

应用领域

能源/新能源

检测样品

太阳能

检测项目

量子效率
钙钛矿太阳能电池(PSCs)因其优异的光电转换效率和低成本制备,在过去十年间引发了广泛的研究热潮,并被认为是最有潜力替代传统硅太阳能电池的下一代光伏技术之一。近年来,PSCs 的效率不断提升,并不断刷新着世界纪录。 南方科技大学许宗祥教授团队与香港城市大學Alex K.-Y Jen教授团队合作,近期取得重大突破,成功研发出一种新型自组装单分子层 (SAM) 材料,并将其应用于倒置钙钛矿太阳能电池,实现了惊人的 26.17% 的能量转换效率 (PCE),创下了新的世界纪录。 这一研究成果发表在国际顶尖期刊《Joule》上。

1

光焱科技QE-R量子效率系统

QE-R

面议

查看更多配置单>>

AEM.侯剑辉团队改善 VOC 耗损突破有机光伏电池效率

应用领域

能源/新能源

检测样品

太阳能

检测项目

量子效率
有机光伏电池(OPVs)以其轻薄、柔性、可印刷等优势,在过去几年中吸引了广泛的关注。然而,OPVs 的效率和稳定性仍然落后于传统硅太阳能电池。提高受体材料的电致发光效率,可以有效降低非辐射能量损失,进一步提升有机光伏电池的性能。 中国科学院化学研究所侯建辉教授团队近期取得重大突破,通过在受体材料中引入吡咯环,成功合成出具有高电致发光性能的两种中等带隙受体材料:FICC-EH 和 FICC-BO。 该研究成果发表在国际顶尖期刊《Advanced Energy Materials》上。

2

光焱科技QE-R量子效率系统

QE-R

面议

查看更多配置单>>

< 1 2 > 前往 GO

光焱科技股份有限公司

查看电话

沟通底价

提交后,商家将派代表为您专人服务

获取验证码

{{maxedution}}s后重新发送

获取多家报价,选型效率提升30%
提交留言
点击提交代表您同意 《用户服务协议》 《隐私政策》 且同意关注厂商展位

仪器信息网APP

展位手机站