您好,欢迎访问仪器信息网
注册
光焱科技股份有限公司

关注

已关注

金牌2年 金牌

已认证

粉丝量 0

400-860-5168转6033

仪器信息网认证电话,请放心拨打

当前位置: 光焱科技 > 解决方案 > “水活化动力钝化技术” 打造高效稳定钙钛矿太阳能电池

“水活化动力钝化技术” 打造高效稳定钙钛矿太阳能电池

2024/07/05 17:33

阅读:13

分享:
应用领域:
能源/新能源
发布时间:
2024/07/05
检测样品:
太阳能
检测项目:
发光效率检测 ​
浏览次数:
13
下载次数:
参考标准:
IEC60904-9​

方案摘要:

钙钛矿太阳能电池(PSC)近年来发展迅猛,已成为最有潜力的下一代光伏技术之一。然而,钙钛矿材料的稳定性和制备工艺仍存在一些挑战,阻碍着 PSC 的大规模应用。提高钙钛矿电池效率和稳定性的一个重要方法是缺陷钝化,以减少缺陷态和陷阱态,提高电荷载流子传输效率。 在最近发表在《Nature》期刊的一项重要研究中,由香港城市大学冯宪平教授和英国牛津大学 Henry J. Snaith 教授共同领导的团队,发展出了一种具有突破性的水活化动力钝化策略,为高效且稳定性的钙钛矿太阳能电池技术的实现铺平了道路。

产品配置单:

分析仪器

光焱科技光致发光与发光量子产率测试系统LQ-100X-PL

型号: LQ-100X-PL

产地: 上海

品牌: 光焱科技

面议

参考报价

联系电话

方案详情:

‍SCbanner (2).jpg


钙钛矿太阳能电池(PSC)近年来发展迅猛,已成为最有潜力的下一代光伏技术之一。然而,钙钛矿材料的稳定性和制备工艺仍存在一些挑战,阻碍着 PSC 的大规模应用。提高钙钛矿电池效率和稳定性的一个重要方法是缺陷钝化,以减少缺陷态和陷阱态,提高电荷载流子传输效率。

在最近发表在《Nature》期刊的一项重要研究中,由香港城市大学冯宪平教授和英国牛津大学 Henry J. Snaith 教授共同领导的团队,发展出了一种具有突破性的水活化动力钝化策略,为高效且稳定性的钙钛矿太阳能电池技术的实现铺平了道路。


【水活化动力钝化技术:突破性新策略!】

这项研究的关键是开发了一种新的钝化材料——阻碍脲/硫代氨基甲酸酯键 Lewis 酸碱材料(HUBLA)。这种材料利用水活化动力键合,能够在钙钛矿材料中动态形成新的钝化剂,以修复材料中的缺陷,进而提高器件效率和稳定性。

传统的钝化材料通常只能在制备过程中被施加,而在装置运作后其效果就会减弱或消失。HUBLA 突破了传统技术的限制,它能够在环境中的水分和热量的作用下动态地进行修复,类似于自我修复"功能。

HUBLA 的工作机制

HUBLA 在水存在的情况下会产生新的钝化剂,以封堵材料的缺陷。这些钝化剂可以与钙钛矿中的碘空位、无机阳离子等缺陷进行作用,抑制电荷复合,进而提高器件的效率和稳定性。 更值得关注的是,HUBLA 材料还能根据周围环境中的热量进行自我调整,在加热条件下生成新的钝化剂。这种热活化"特性为HUBLA 钝化材料带来了更高的应用弹性,在多种环境条件下都可以发挥有效的钝化作用。


HUBLA 钝化技术:实现高效和稳定性!】

研究团队以 HUBLA 钝化材料制备了高效且稳定的钙钛矿太阳能电池。阻碍脲/硫代氨基甲酸酯键 Lewis 酸碱材料(HUBLA)能优化钙钛矿太阳能电池的原因主要包括以下几点:

l   钝化缺陷: 钙钛矿材料中常存在缺陷,这些缺陷会成为电子-空穴复合中心,降低电池的效率。HUBLA材料可以通过与钙钛矿表面的未配位金属离子或缺陷位点发生反应,钝化这些缺陷,减少复合过程,提高电池的光电转换效率。

l   改善接口质量: 在钙钛矿太阳能电池中,钙钛矿层与电极之间的接口质量对于电池性能至关重要。HUBLA材料能改善这些接口的质量,提高接口处的电荷传输效率,减少电荷复合,从而提升电池性能。

l   稳定性增强: 钙钛矿材料本身容易受环境因素(如湿度、氧气、光照等)的影响而降解。HUBLA材料可以提供一种保护层,防止环境因素对钙钛矿材料的侵蚀,显著增强电池的稳定性和寿命。

l   能级匹配优化: HUBLA材料具有Lewis酸碱性质,可以调整钙钛矿材料与电极之间的能级匹配,从而优化电荷注入和提取过程,减少能量损失,提高电池的开路电压和填充因子。

实验结果显示,采用 HUBLA 钝化的钙钛矿太阳能电池,转换效率可达 25.1%。此外,该器件在 85℃ 下氮气气氛中老化 1500 小时后,仍能保持初始效率的 94%,而在此温度下以及 30% 相对湿度(RH)空气中老化 1000 小时后,其效率仍能维持初始效率的 88%


研究结果:重大的科学突破和应用前景

这项研究的成功不仅证明了水活化动力钝化策略的可行性,而且展现了HUBLA 在提高钙钛矿太阳能电池性能和稳定性方面具有巨大潜力。该研究团队认为,这项技术突破有望为未来钙钛矿太阳能电池的发展提供新思路,加速其商业化应用。

未来,该研究团队将继续优化HUBLA 材料,探索更多水活化动力钝化策略,开发更加稳定高效的钙钛矿太阳能电池,为实现低成本、高效清洁能源目标而努力。

总结

香港城市大学 Feng Shien-Ping 教授领导的研究团队,利用新颖的水活化动力钝化策略,显著提高了钙钛矿太阳能电池的效率和稳定性。HUBLA 材料能够在环境水分和热量作用下,动态修复钙钛矿材料缺陷,使器件在不同环境下都具有良好的性能表现。 这一研究成果标志着钙钛矿太阳能电池技术发展的一个重大突破,将为未来推动光伏技术发展具有深远的影响。

重要技术参数:

钙钛矿太阳能电池转换效率: 25.1%

热稳定性: 在 85℃ 下氮气气氛中老化 1500 小时后,仍能保持初始效率的 94%

湿稳定性: 在 85℃  30% 相对湿度(RH)空气中老化 1000 小时后,其效率仍能维持初始效率的 88%

关键材料阻碍脲/硫代氨基甲酸酯键 Lewis 酸碱材料(HUBLA

关键技术水活化动力钝化策略


参考文献

Water- and heat-activated dynamic passivation for perovskite photovoltaics

Nature 2024


【本研究参数图】

Nature焦点.   英国牛津Henry J. Snaith 与港城大 “水活化动力钝化技术

Fig S6. HUBLA 的交联机制。两个过氧化物晶体 一般不能结合在一起,因为在接口上没有相互作用或结合。交联机制 相反,如果在包晶表面涂上 HUBLAHUBLA 就能在接口上解离和结合,部分 HUBLA 就能与包晶结合在一起。HUB 可以在接口上解离和结合,部分 HUB 可以在两个晶体的接口上诱导交联(白色球代表 -N+H3


Nature焦点.   英国牛津Henry J. Snaith 与港城大 “水活化动力钝化技术

Nature焦点.   英国牛津Henry J. Snaith 与港城大 “水活化动力钝化技术



推荐设备:


LQ-100X_PL_ 光致发光及发光量子产率测试系统


Nature焦点.   英国牛津Henry J. Snaith 与港城大 “水活化动力钝化技术

以下几点优势,可应对材料测试面临的挑战:

     l以紧凑的设计,尺寸大小 502.4mm(L) x 322.5mm(W) x 352mm(H),搭配4吋外径PTFE材质的积分球,并且整合NIST追溯的校准,让手套箱整合PL与PLQY成为可能。

     l 利用先进的仪表控制程序,可以进行原位时间PL光谱解析,并且可产生2D3D图表,说明使用者可以更快地表征材料在原位时间的变化。

     l 系统光学设计可容易的做红外扩展,波长由700-1100nm, 可展延至1700nm。粉末、溶液、薄膜样品都可相容测试。




文献参考自 Nature 2024  DIO: 10.1038/s41586-024-07705-5

本文章为Enlitech光焱科技改写 用于科研学术分享 如有任何侵权  请来信告知



SCbanner (2).jpg

下载本篇解决方案:

资料文件名:
资料大小
下载
LQ-100.pdf
652KB
相关方案

全纹理钙钛矿-晶硅叠层太阳能电池与全聚合物太阳能电池改善制程提升效率

近年来, 钙钛矿太阳能电池(PSC)因其高效、 低成本、 易制备等特点, 成为下一代光伏技术。 为了推动钙钛矿太阳能电池的进一步发展, 来自中国香港的科研团队持续发力, 在国际顶尖期刊 Joule 上接连发表两篇重要研究成果。 这两篇研究展现了钙钛矿太阳能电池技术的未来潜力, 并为解决目前面临的挑战提供了新的思路。

能源/新能源

2024/07/22

自动设备加速平台搭载量子效率表徵设备精准操控工艺参数,常温常压下实现超23%

太阳能电池是实现可持续发展的重要途径, 但传统的硅基太阳能电池在效率提升方面面临挑战,难以充分利用全部光谱。 近年来,钙钛矿太阳能电池因其高效率、低成本和制备工艺简单等优点,备受关注。 但是, 钙钛矿材料的稳定性问题以及复杂的环境因素, 一直是阻碍其大规模应用的关键问题。 为了突破这些限制, 科研人员不断探索新的方法, 以提高钙钛矿太阳能电池的效率和稳定性。 然而,传统的制备方法通常依赖人工操作, 无法精确控制所有关键参数,导致重复性差、效率不稳定。 近期,德国埃尔朗根-纽伦堡大学材料科学系 Christoph J. Brabec 教授团队在Energy & Environmental Science 杂志发表了一篇突破性研究成果, 他们使用全新的 “自动设备加速平台" (DAP), 精确地操控了钙钛矿太阳能电池制备的关键参数, 并在常温常压的环境下成功地将电池效率提升至23% 以上。

能源/新能源

2024/07/12

跨校合作使用量子效率量测发表钙钛矿太阳能电池大面积模块化生产

钙钛矿太阳能电池(PSC)凭借其高效率、低成本、易制备等优势, 成为近年来光伏领域具潜力的下一代光伏技术之一。 但目前, 钙钛矿太阳能电池的小尺寸器件已取得重大突破, 但在向大面积模块化生产发展过程中仍存在不少挑战。 制备大面积模块需要更长的时间, 这对薄膜的沉积和制备工艺提出了更高要求, 同时也对材料的稳定性和加工窗口提出了挑战。 近三年来,钙钛矿太阳能电池大面积模块化的研究进程主要集中在提高效率、稳定性和可制造性方面。 近日,由西安电子科技大学常晶晶教授,联合洛桑理工学院 Mohammad Khaja Nazeeruddin 教授团队和西北工业大学李祯教授团队在Energy & Environmental Science 杂志发表了突破性研究成果。 该团队通过巧妙地将 N-甲基-2-吡咯烷酮溶剂与冷却策略相结合, 在两步沉积法中获得了更稳定的基于 FA 的钙钛矿中间相, 从而实现了更长的退火窗口。

能源/新能源

2024/07/12

AM1.5G A+级太阳光模拟器及量子效率量测提升全聚合物太阳能电池效率

全聚合物太阳能电池(all-PSCs)凭借其出色的稳定性和机械耐用性,被认为是未来太阳能电池应用的重要方向。全聚合物太阳能电池主要由供体和受体两种有机聚合物材料组成,其基本结构包括以下: l 透明导电电极: 通常由氧化铟锡(ITO)制成,用于光的透射和电子的导电。 l 电子传输层: 提高电子从活性层向电极的传输效率。 l 活性层: 由供体和受体材料组成,是光生电荷的主要产生区域。供体材料吸收光子产生激子(电子-空穴对),激子在受体材料处分离成自由电子和空穴。 l 空穴传输层: 提高空穴从活性层向电极的传输效率。 l 金属电极: 通常由银或铝制成,用于收集和导出电荷。 近年来,全聚合物太阳能电池的研究发展迅速: l 材料发展: 随着非富勒烯受体材料的快速发展,APSCs的光/热稳定性和柔韧拉伸性能显着提高。 l 转换效率: 研究显示,聚合物太阳能电池的转换效率已突破10%,这使其成为一种有竞争力的替代传统硅基太阳能电池的技术。 l 机械灵活性: APSCs表现出优异的透明性、溶液加工性和机械灵活性,使其在柔性电源系统中有广泛应用前景。 然而,由于其效率长期落后于小分子受体基太阳能电池,限制了其进一步发展。如何有效平衡并提升开路电压(Voc)和短路电流密度(Jsc)成为全聚合物太阳能电池领域的一大难题。 近期,香港科技大学颜河教授团队在国际顶级期刊 Energy & Environmental Science 上发表了突破性研究成果, 成功开发了一种名为PYO-V的新型聚合物受体, 它可以通过调节分子结构, 实现更宽的光谱吸收和更高的能量级, 从而有效提升了全聚合物太阳能电池的性能, 并实现了高效的多功能光伏应用。 颜河教授是香港科技大学化学系教授,长期致力于有机光伏材料与器件方面的研究, 在国际著名期刊发表了200余篇高质量学术论文。 他的团队致力于突破现有全聚合物太阳能电池的技术瓶颈, 为下一代高效稳定的光伏器件的开发提供新的思路和方向。

能源/新能源

2024/07/12

推荐产品
供应产品

光焱科技股份有限公司

查看电话

沟通底价

提交后,商家将派代表为您专人服务

获取验证码

{{maxedution}}s后重新发送

获取多家报价,选型效率提升30%
提交留言
点击提交代表您同意 《用户服务协议》 《隐私政策》 且同意关注厂商展位

仪器信息网APP

展位手机站