您好,欢迎访问仪器信息网
注册
光焱科技股份有限公司

关注

已关注

金牌2年 金牌

已认证

粉丝量 0

400-860-5168转6033

仪器信息网认证电话,请放心拨打

当前位置: 光焱科技 > 解决方案 > 中国科学院胡劲松团队精准调控钙钛矿/聚合物界面

中国科学院胡劲松团队精准调控钙钛矿/聚合物界面

2024/07/09 17:21

阅读:8

分享:
应用领域:
能源/新能源
发布时间:
2024/07/09
检测样品:
太阳能
检测项目:
光电效应​
浏览次数:
8
下载次数:
参考标准:
IEC60904-9​

方案摘要:

太阳能电池是实现清洁能源的重要途径,但传统硅基太阳能电池的效率受材料特性限制,无法充分利用所有光谱。 近年来,钙钛矿太阳能电池凭借其高效、低成本和制备工艺简单等优点,成为具潜力的下一代光伏技术之一。然而,钙钛矿材料的稳定性问题一直是制约其大规模应用的瓶颈。 近期,中国科学院化学研究所胡劲松研究员领导的研究团队在Energy & Environmental Science 期刊上发表了一篇重要研究成果。 他们巧妙地利用可调节的膦配体对钙钛矿/聚合物界面进行分子调控,成功地提高了钙钛矿太阳能电池的效率和稳定性,突破了此前纪录,将器件效率提升至25.08%! 胡劲松研究员,现任中国科学院化学研究所研究员,博士生导师。 他长期致力于有机光电材料和器件、钙钛矿太阳能电池等方面的研究,在国际重要学术期刊上发表SCI论文300余篇,被引用20000多次,获授权发明40余项。 他的研究团队在钙钛矿太阳能电池领域做出了突出贡献,曾获国家自然科学奖二等奖等重要奖项。

产品配置单:

分析仪器

光焱科技QE-R量子效率系统

型号: QE-R

产地: 台湾

品牌: 光焱科技

面议

参考报价

联系电话

方案详情:

1.jpg


太阳能电池是实现清洁能源的重要途径,但传统硅基太阳能电池的效率受材料特性限制,无法充分利用所有光谱。 近年来,钙钛矿太阳能电池凭借其高效、低成本和制备工艺简单等优点,成为具潜力的下一代光伏技术之一。然而,钙钛矿材料的稳定性问题一直是制约其大规模应用的瓶颈。

近期,中国科学院化学研究所胡劲松研究员领导的研究团队在Energy & Environmental Science 期刊上发表了一篇重要研究成果。 他们巧妙地利用可调节的膦配体对钙钛矿/聚合物界面进行分子调控,成功地提高了钙钛矿太阳能电池的效率和稳定性,突破了此前纪录,将器件效率提升至25.08%

胡劲松研究员,现任中国科学院化学研究所研究员,博士生导师。 他长期致力于有机光电材料和器件、钙钛矿太阳能电池等方面的研究,在国际重要学术期刊上发表SCI论文300余篇,被引用20000多次,获授权发明40余项。 他的研究团队在钙钛矿太阳能电池领域做出了突出贡献,曾获国家自然科学奖二等奖等重要奖项。


【分子调控技术:破解钙钛矿太阳能电池性能瓶颈的关键】

该团队的研究主要针对钙钛矿/聚合物界面处的严重复合损失问题。 聚(3-己基噻吩)(P3HT)是一种无掺杂的空穴传输材料,因其对钙钛矿太阳能电池稳定性提升的显着潜力而备受关注。 但是,钙钛矿/P3HT 界面的严重复合损失,一直是阻碍器件效率提升的重要瓶颈。

该研究团队创新性地开发了一种利用可调节的膦配体来修饰钙钛矿/P3HT 界面的分子工程策略。 他们发现,具有平衡电子性质和空间结构的膦配体可以与钙钛矿形成强烈的结合作用, 不仅能钝化钙钛矿深能级反位缺陷,抑制能量损失,还能优化能级排列,促进载流子转移,从而显着提升太阳能电池的开路电压和效率。

分子调控的显着优势:

有效抑制能量损失通过与钙钛矿材料的特定作用, 膦配体可以精准地钝化深能级反位缺陷,从而抑制电子-空穴复合过程,降低能量损失, 提升电池的开路电压和转换效率。

优化能级排列膦配体可以优化钙钛矿和 P3HT 之间的能级匹配, 促进载流子的转移和收集,进而提升电池效率。

广泛适用性该方法适用于各种带隙的钙钛矿材料,包括 1.53 eVCsFAPbI3)、1.7 eVCsPbI3)和 1.9 eVCsPbI2Br)等。

提升稳定性通过改进的界面和无掺杂的空穴传输材料, 该研究制备的太阳能电池表现出稳定性, 在加速老化条件下也展现了优异的性能。


【突破效率新纪录】

利用这种新颖的分子调控策略, 研究团队成功制备了各种带隙的钙钛矿太阳能电池, 并实现了显着的效率提升: 25.08%(认证值为 24.54%) 、21.42% 和 18.39%。

研究团队还使用 光焱科技的 QE-R PV/太阳能电池量子效率光学仪 进行量子效率测试, 以精确地测量器件在不同光谱范围内的外量子效率 (EQE)。 QE-R 可以有效地揭示材料在不同光谱范围下的光电转化效率, 并为进一步提升器件性能提供理论依据。

胡劲松研究员带领的团队, 通过分子调控技术成功突破了钙钛矿太阳能电池的效率瓶颈, 为钙钛矿太阳能电池走向产业化进程奠定了基础。 这一研究成果为推动太阳能光伏技术的发展和应用做出了重要贡献, 也将促进光伏材料与器件的进一步研究,为清洁能源的发展做出更大的贡献。


总结:

这项研究利用巧妙的分子调控策略,精确地调节钙钛矿与聚合物界面, 显着提高了钙钛矿太阳能电池的效率和稳定性, 达到了新的世界纪录。 这一创新性的成果为推动钙钛矿太阳能电池技术走向产业化进程提供了新的解决方案。


重要技术参数:

钙钛矿太阳能电池效率: 25.08% (认证值为 24.54%)

关键技术: 分子调控策略,膦配体界面调控

关键设备: 光焱科技的 QE-R PV/太阳能电池量子效率光学仪


参考文献

Molecularly tailored perovskite/poly(3-hexylthiophene) interfaces for high-performance solar cells_Energy & Environmental Science 2024


【本研究参数图】

2.png

Fig S2d.   . Simulated interaction model between phosphine ligands and Pb

3.png

Fig S5. Photovoltaic parameters analysis of reported high-efficiency PSCs


4.png

Fig S11. Tauc plots of (A) CsPbI2Br and (B) CsPbI2Br/PP3 films

5.png

Fig S16. J-V curves of CsPbI2Br PSCs with different PP3 concentrations。


6.png

Fig. S17. J-V curves of the CsPbI2Br PSC measured at different scan directions.


7.png

8.png

9.png


上述研究数据来自光焱科技 _ QE-R 光伏/太阳能电池 EQE 完整解决方案



推荐设备

QE-R 光伏 / 太阳能电池量子效率测量解决方案



文献参考自Energy & Environmental Science 2024, DIO: 10.1039/D4EE02251C

本文章为Enlitech光焱科技改写 用于科研学术分享 如有任何侵权  请来信告知


下载本篇解决方案:

资料文件名:
资料大小
下载
QERIntro21.pdf
822KB
相关方案

自动设备加速平台精准操控工艺参数,常温常压下实现超23%

太阳能电池是实现可持续发展的重要途径, 但传统的硅基太阳能电池在效率提升方面面临挑战,难以充分利用全部光谱。 近年来,钙钛矿太阳能电池因其高效率、低成本和制备工艺简单等优点,备受关注。 但是, 钙钛矿材料的稳定性问题以及复杂的环境因素, 一直是阻碍其大规模应用的关键问题。 为了突破这些限制, 科研人员不断探索新的方法, 以提高钙钛矿太阳能电池的效率和稳定性。 然而,传统的制备方法通常依赖人工操作, 无法精确控制所有关键参数,导致重复性差、效率不稳定。 近期,德国埃尔朗根-纽伦堡大学材料科学系 Christoph J. Brabec 教授团队在Energy & Environmental Science 杂志发表了一篇突破性研究成果, 他们使用全新的 “自动设备加速平台" (DAP), 精确地操控了钙钛矿太阳能电池制备的关键参数, 并在常温常压的环境下成功地将电池效率提升至23% 以上。

能源/新能源

2024/07/12

跨校合作发表突破22%钙钛矿太阳能电池大面积模块化生产

钙钛矿太阳能电池(PSC)凭借其高效率、低成本、易制备等优势, 成为近年来光伏领域具潜力的下一代光伏技术之一。 但目前, 钙钛矿太阳能电池的小尺寸器件已取得重大突破, 但在向大面积模块化生产发展过程中仍存在不少挑战。 制备大面积模块需要更长的时间, 这对薄膜的沉积和制备工艺提出了更高要求, 同时也对材料的稳定性和加工窗口提出了挑战。 近三年来,钙钛矿太阳能电池大面积模块化的研究进程主要集中在提高效率、稳定性和可制造性方面。 近日,由西安电子科技大学常晶晶教授,联合洛桑理工学院 Mohammad Khaja Nazeeruddin 教授团队和西北工业大学李祯教授团队在Energy & Environmental Science 杂志发表了突破性研究成果。 该团队通过巧妙地将 N-甲基-2-吡咯烷酮溶剂与冷却策略相结合, 在两步沉积法中获得了更稳定的基于 FA 的钙钛矿中间相, 从而实现了更长的退火窗口。

能源/新能源

2024/07/12

PYO-V的新型聚合物改善 全聚合物太阳能电池效率再创新高

全聚合物太阳能电池(all-PSCs)凭借其出色的稳定性和机械耐用性,被认为是未来太阳能电池应用的重要方向。全聚合物太阳能电池主要由供体和受体两种有机聚合物材料组成,其基本结构包括以下: l 透明导电电极: 通常由氧化铟锡(ITO)制成,用于光的透射和电子的导电。 l 电子传输层: 提高电子从活性层向电极的传输效率。 l 活性层: 由供体和受体材料组成,是光生电荷的主要产生区域。供体材料吸收光子产生激子(电子-空穴对),激子在受体材料处分离成自由电子和空穴。 l 空穴传输层: 提高空穴从活性层向电极的传输效率。 l 金属电极: 通常由银或铝制成,用于收集和导出电荷。 近年来,全聚合物太阳能电池的研究发展迅速: l 材料发展: 随着非富勒烯受体材料的快速发展,APSCs的光/热稳定性和柔韧拉伸性能显着提高。 l 转换效率: 研究显示,聚合物太阳能电池的转换效率已突破10%,这使其成为一种有竞争力的替代传统硅基太阳能电池的技术。 l 机械灵活性: APSCs表现出优异的透明性、溶液加工性和机械灵活性,使其在柔性电源系统中有广泛应用前景。 然而,由于其效率长期落后于小分子受体基太阳能电池,限制了其进一步发展。如何有效平衡并提升开路电压(Voc)和短路电流密度(Jsc)成为全聚合物太阳能电池领域的一大难题。 近期,香港科技大学颜河教授团队在国际顶级期刊 Energy & Environmental Science 上发表了突破性研究成果, 成功开发了一种名为PYO-V的新型聚合物受体, 它可以通过调节分子结构, 实现更宽的光谱吸收和更高的能量级, 从而有效提升了全聚合物太阳能电池的性能, 并实现了高效的多功能光伏应用。 颜河教授是香港科技大学化学系教授,长期致力于有机光伏材料与器件方面的研究, 在国际著名期刊发表了200余篇高质量学术论文。 他的团队致力于突破现有全聚合物太阳能电池的技术瓶颈, 为下一代高效稳定的光伏器件的开发提供新的思路和方向。

能源/新能源

2024/07/12

北卡教堂山分校黄劲松研发出强化屏障有效提高稳定性

钙钛矿太阳能电池(PSC)作为下一代光伏技术的重要候选者,近年来取得了飞速的发展, 其光电转换效率已经接近甚至超越了传统晶硅太阳能电池。 然而,钙钛矿太阳能电池的稳定性问题依然是制约其商业化应用的关键难题。 反向偏压(reverse bias)对钙钛矿太阳能电池的稳定性有着重要影响, 它可能导致钙钛矿材料分解, 进而影响电池的长期稳定性。 因此,理解反向偏压对钙钛矿结构和性能的影响是提高电池稳定性的重要研究方向。 研究人员需要深入了解反向偏压条件下钙钛矿材料的降解机制, 以找到提高其稳定性的解决方案。 研究反向偏压下的降解机理能帮助科学家找出钙钛矿太阳能电池的弱点。 这些研究有助于设计更加耐用的材料和结构, 以防止电池在反向偏压条件下快速降解。 同时,反向偏压会导致效率损失,这主要是由于电荷载流子的再结合速率增加以及可能的渗透电流增大。 了解和克服这些问题对于保持高效率运行的钙钛矿太阳能电池至关重要。 研究反向偏压对电池的影响还有助于改进封装技术, 防止环境因素(如湿气和氧气)在反向偏压条件下对钙钛矿材料造成的影响。 近期,北卡罗来纳大学教堂山分校黄劲松教授团队在国际顶尖期刊《Nature Energy》上发表了一项重要研究成果, 揭示了钙钛矿太阳能电池在反向偏压下失效的机理, 并通过构建强化屏障, 显着提高了钙钛矿太阳能电池在反向偏压下的稳定性。

能源/新能源

2024/07/11

推荐产品
供应产品

光焱科技股份有限公司

查看电话

沟通底价

提交后,商家将派代表为您专人服务

获取验证码

{{maxedution}}s后重新发送

获取多家报价,选型效率提升30%
提交留言
点击提交代表您同意 《用户服务协议》 《隐私政策》 且同意关注厂商展位

仪器信息网APP

展位手机站