您好,欢迎访问仪器信息网
注册
光焱科技股份有限公司

关注

已关注

金牌2年 金牌

已认证

粉丝量 0

400-860-5168转6033

仪器信息网认证电话,请放心拨打

当前位置: 光焱科技 > 解决方案 > EES 25.29%效率突破-陕西师范大学刘生忠团队

EES 25.29%效率突破-陕西师范大学刘生忠团队

2024/06/13 17:41

阅读:17

分享:
应用领域:
能源/新能源
发布时间:
2024/06/13
检测样品:
太阳能
检测项目:
量子效率
浏览次数:
17
下载次数:
参考标准:
符合 ATSM E 1021-15/ ASTM E948/ IEC 60904-8/ IEC 60904-7/ IEC 60904-1

方案摘要:

钙钛矿太阳能电池(PSCs)因其优异的光电转换效率和低成本制备,在过去十年间引发了广泛的研究热潮,并被认为是最有潜力替代传统硅太阳能电池的下一代光伏技术之一。近年来,PSCs 的效率不断提升,并不断刷新着世界纪录。 陕西师范大学刘生忠教授团队近期取得重大突破,他们通过一种新颖的异质种子辅助策略,成功地控制了 FAPbI3 的结晶过程,并制备出高质量的钙钛矿薄膜,最终实现了 25.29% 的能量转换效率 (PCE),为该领域的发展注入了新的活力。该研究成果发表在国际期刊《Energy & Environmental Science》上。

产品配置单:

分析仪器

光焱科技QE-R量子效率系统

型号: QE-R

产地: 台湾

品牌: 光焱科技

面议

参考报价

联系电话

方案详情:

1.png


钙钛矿太阳能电池(PSCs)因其优异的光电转换效率和低成本制备,在过去十年间引发了广泛的研究热潮,并被认为是最有潜力替代传统硅太阳能电池的下一代光伏技术之一。近年来,PSCs 的效率不断提升,并不断刷新着世界纪录。

陕西师范大学刘生忠教授团队近期取得重大突破,他们通过一种新颖的异质种子辅助策略,成功地控制了 FAPbI3 的结晶过程,并制备出高质量的钙钛矿薄膜,最终实现了 25.29% 的能量转换效率 (PCE),为该领域的发展注入了新的活力。该研究成果发表在国际期刊《Energy & Environmental Science》上。

异质种子辅助策略:控制结晶的关键

钙钛矿材料的结晶过程对器件的性能至关重要。传统的钙钛矿薄膜制备方法,通常采用溶液法,但这种方法容易导致薄膜质量不均匀,存在大量缺陷,影响器件的效率和稳定性。

刘生忠教授团队创新性地提出了异质种子辅助策略,利用 2,4-二氨基嘧啶 (DAP) 与钙钛矿前驱体之间的强相互作用,抑制溶剂主导的中间相形成,并促进 DAP-FA+[PbI3]- (δ) 异质种子的生成。这些异质种子在薄膜的初始形成阶段快速转变为所需的 α 相,引导后续的结晶过程,最终获得高结晶性的 α-FAPbI3 薄膜。
该团队首先使用化学气相沉积 (CVD) 方法在铜箔上生长出单层石墨烯 (SLG),并将其转移到光纤上,然后将光纤绕转石墨烯层,形成导电的光纤。再通过原子层沉积 (ALD) 技术沉积一层 Al2O3 薄膜作为介电层,并通过相同方法将另一层石墨烯卷绕在上面,形成器件的通道。最后,在通道层上沉积一层钙钛矿,作为器件的光敏元件。

异质种子辅助策略优势

l  控制结晶过程: 异质种子辅助策略可以有效控制钙钛矿的结晶过程,抑制不必要的中间相的形成,从而提高钙钛矿薄膜的质量。

l  促进 α 相形成: 异质种子可以引导钙钛矿薄膜向所需的 α 相转变,减少其他相的出现,从而提高器件的稳定性。

l  降低陷阱密度: 高结晶性的 α-FAPbI3 薄膜具有更低的陷阱密度,有利于电荷传输,减少电荷重组,提高器件的效率。

l  提高载流子寿命: 高结晶性的 α-FAPbI3 薄膜具有更长的载流子寿命,进一步提高了器件的效率和稳定性。

FAPbI3甲脒碘化铅有机无机混合钙钛矿材料

特性

1.      高光吸收係数光电特性,直接能隙约为1.48电子伏特(eV),在可见光范围内有良好的吸收性能,适合用于光伏应用。

2.      具有钙钛矿结构结晶特性,高品质的FAPbI3薄膜可以提供平滑的表面和较少的缺陷,于提高光电转换效率非常重要。

3.      环境稳定性上,对湿度和温度较为敏感,高湿度环境下易分解。通常需要添加稳定剂或者进行封装来保护材料。

4.      製备方法上可以通过溶液製程(如旋转涂佈法)来製备,简便且成本低,有利于大规模生产。过程中通常需要进行退火处理,以促进晶体生长并提高薄膜的结晶品质。

5.      光伏应用前景,其优异的光电特性和潜在的高效率,被认为是下一代高效太阳能电池的潜力材料。还具有应用于LED和光检测器等光电子器件的潜力。


突破性的成果

使用异质种子辅助策略制备的倒置钙钛矿太阳能电池,能量转换效率 (PCE) 达到 25.29%

器件表现出非凡的长期稳定性,表明该策略可以有效提高器件的稳定性,为钙钛矿太阳能电池的实际应用提供了新的可能性。

未来展望

刘生忠教授团队的突破性研究成果,为钙钛矿太阳能电池的发展提供了新的思路。未来,研究人员将继续探索更有效的结晶控制方法,并结合先进的表征手段和模拟计算,进一步提高钙钛矿太阳能电池的效率和稳定性,推动该技术走向商业化应用。




2.png

3.png

4.png 5.png






原文出处Energy & Environmental Science








推薦設備_

1.      QE-R_流行和值得信赖的 QE / IPCE 系统
6.png

具有以下特色優勢:

l  高精度: QE-R 系統采用高精度光谱仪和校准光源,确保 EQE 测量的准确性和可靠性。

l  宽光谱范围: QE-R 系統的光谱范围覆盖紫外到近红外区域,适用于各種光伏材料和器件的 EQE 测量。

l  快速测量: QE-R 系統具有快速扫描和数据采集功能,能够高效地进行 EQE 光谱测量。

l  易于操作: QE-R 系統软件界面友好,操作简单方便,即使是初学者也能轻松上手。

l  多功能: QE-R 系統不僅可以进行 EQE 测量,还可以进行反射率、透射率等光学特性的测量,具有多功能性。



2. LQ-100X-PL 
光致发光与发光量子产率测试系统

7.png  8.png


具有以下特色優勢:

l  以紧凑的设计,尺寸大小 502.4mm(L) x 322.5mm(W) x 352mm(H),搭配 4 吋外径 PTFE 材质的积分球,并且整合 NIST 追溯的校准,让手套箱整合 PL  PLQY 成为可能。

l  利用先进的仪表控制程序,可以进行原位时间 PL 光谱解析,并且可产生 2D  3D 图表,说明用户可以更快地表征材料在原位时间的变化。

l  系统光学设计可容易的做红外扩展,波长由1000 nm  1700 nm。粉末、溶液、薄膜样品都可兼容测试。



下载本篇解决方案:

资料文件名:
资料大小
下载
QERIntro21.pdf
822KB
相关方案

自动设备加速平台搭载量子效率表徵设备精准操控工艺参数,常温常压下实现超23%

太阳能电池是实现可持续发展的重要途径, 但传统的硅基太阳能电池在效率提升方面面临挑战,难以充分利用全部光谱。 近年来,钙钛矿太阳能电池因其高效率、低成本和制备工艺简单等优点,备受关注。 但是, 钙钛矿材料的稳定性问题以及复杂的环境因素, 一直是阻碍其大规模应用的关键问题。 为了突破这些限制, 科研人员不断探索新的方法, 以提高钙钛矿太阳能电池的效率和稳定性。 然而,传统的制备方法通常依赖人工操作, 无法精确控制所有关键参数,导致重复性差、效率不稳定。 近期,德国埃尔朗根-纽伦堡大学材料科学系 Christoph J. Brabec 教授团队在Energy & Environmental Science 杂志发表了一篇突破性研究成果, 他们使用全新的 “自动设备加速平台" (DAP), 精确地操控了钙钛矿太阳能电池制备的关键参数, 并在常温常压的环境下成功地将电池效率提升至23% 以上。

能源/新能源

2024/07/12

跨校合作使用量子效率量测发表钙钛矿太阳能电池大面积模块化生产

钙钛矿太阳能电池(PSC)凭借其高效率、低成本、易制备等优势, 成为近年来光伏领域具潜力的下一代光伏技术之一。 但目前, 钙钛矿太阳能电池的小尺寸器件已取得重大突破, 但在向大面积模块化生产发展过程中仍存在不少挑战。 制备大面积模块需要更长的时间, 这对薄膜的沉积和制备工艺提出了更高要求, 同时也对材料的稳定性和加工窗口提出了挑战。 近三年来,钙钛矿太阳能电池大面积模块化的研究进程主要集中在提高效率、稳定性和可制造性方面。 近日,由西安电子科技大学常晶晶教授,联合洛桑理工学院 Mohammad Khaja Nazeeruddin 教授团队和西北工业大学李祯教授团队在Energy & Environmental Science 杂志发表了突破性研究成果。 该团队通过巧妙地将 N-甲基-2-吡咯烷酮溶剂与冷却策略相结合, 在两步沉积法中获得了更稳定的基于 FA 的钙钛矿中间相, 从而实现了更长的退火窗口。

能源/新能源

2024/07/12

AM1.5G A+级太阳光模拟器及量子效率量测提升全聚合物太阳能电池效率

全聚合物太阳能电池(all-PSCs)凭借其出色的稳定性和机械耐用性,被认为是未来太阳能电池应用的重要方向。全聚合物太阳能电池主要由供体和受体两种有机聚合物材料组成,其基本结构包括以下: l 透明导电电极: 通常由氧化铟锡(ITO)制成,用于光的透射和电子的导电。 l 电子传输层: 提高电子从活性层向电极的传输效率。 l 活性层: 由供体和受体材料组成,是光生电荷的主要产生区域。供体材料吸收光子产生激子(电子-空穴对),激子在受体材料处分离成自由电子和空穴。 l 空穴传输层: 提高空穴从活性层向电极的传输效率。 l 金属电极: 通常由银或铝制成,用于收集和导出电荷。 近年来,全聚合物太阳能电池的研究发展迅速: l 材料发展: 随着非富勒烯受体材料的快速发展,APSCs的光/热稳定性和柔韧拉伸性能显着提高。 l 转换效率: 研究显示,聚合物太阳能电池的转换效率已突破10%,这使其成为一种有竞争力的替代传统硅基太阳能电池的技术。 l 机械灵活性: APSCs表现出优异的透明性、溶液加工性和机械灵活性,使其在柔性电源系统中有广泛应用前景。 然而,由于其效率长期落后于小分子受体基太阳能电池,限制了其进一步发展。如何有效平衡并提升开路电压(Voc)和短路电流密度(Jsc)成为全聚合物太阳能电池领域的一大难题。 近期,香港科技大学颜河教授团队在国际顶级期刊 Energy & Environmental Science 上发表了突破性研究成果, 成功开发了一种名为PYO-V的新型聚合物受体, 它可以通过调节分子结构, 实现更宽的光谱吸收和更高的能量级, 从而有效提升了全聚合物太阳能电池的性能, 并实现了高效的多功能光伏应用。 颜河教授是香港科技大学化学系教授,长期致力于有机光伏材料与器件方面的研究, 在国际著名期刊发表了200余篇高质量学术论文。 他的团队致力于突破现有全聚合物太阳能电池的技术瓶颈, 为下一代高效稳定的光伏器件的开发提供新的思路和方向。

能源/新能源

2024/07/12

北卡教堂山分校黄劲松研发出强化屏障有效提高稳定性

钙钛矿太阳能电池(PSC)作为下一代光伏技术的重要候选者,近年来取得了飞速的发展, 其光电转换效率已经接近甚至超越了传统晶硅太阳能电池。 然而,钙钛矿太阳能电池的稳定性问题依然是制约其商业化应用的关键难题。 反向偏压(reverse bias)对钙钛矿太阳能电池的稳定性有着重要影响, 它可能导致钙钛矿材料分解, 进而影响电池的长期稳定性。 因此,理解反向偏压对钙钛矿结构和性能的影响是提高电池稳定性的重要研究方向。 研究人员需要深入了解反向偏压条件下钙钛矿材料的降解机制, 以找到提高其稳定性的解决方案。 研究反向偏压下的降解机理能帮助科学家找出钙钛矿太阳能电池的弱点。 这些研究有助于设计更加耐用的材料和结构, 以防止电池在反向偏压条件下快速降解。 同时,反向偏压会导致效率损失,这主要是由于电荷载流子的再结合速率增加以及可能的渗透电流增大。 了解和克服这些问题对于保持高效率运行的钙钛矿太阳能电池至关重要。 研究反向偏压对电池的影响还有助于改进封装技术, 防止环境因素(如湿气和氧气)在反向偏压条件下对钙钛矿材料造成的影响。 近期,北卡罗来纳大学教堂山分校黄劲松教授团队在国际顶尖期刊《Nature Energy》上发表了一项重要研究成果, 揭示了钙钛矿太阳能电池在反向偏压下失效的机理, 并通过构建强化屏障, 显着提高了钙钛矿太阳能电池在反向偏压下的稳定性。

能源/新能源

2024/07/11

推荐产品
供应产品

光焱科技股份有限公司

查看电话

沟通底价

提交后,商家将派代表为您专人服务

获取验证码

{{maxedution}}s后重新发送

获取多家报价,选型效率提升30%
提交留言
点击提交代表您同意 《用户服务协议》 《隐私政策》 且同意关注厂商展位

仪器信息网APP

展位手机站