您好,欢迎访问仪器信息网
注册
光焱科技股份有限公司

关注

已关注

金牌2年 金牌

已认证

粉丝量 0

400-860-5168转6033

仪器信息网认证电话,请放心拨打

当前位置: 光焱科技 > 解决方案 > SCI. 新型空穴传输层材料,强化钙钛矿太阳能电池长期稳定性

SCI. 新型空穴传输层材料,强化钙钛矿太阳能电池长期稳定性

2024/06/20 11:30

阅读:7

分享:
应用领域:
能源/新能源
发布时间:
2024/06/20
检测样品:
太阳能
检测项目:
光电效应​
浏览次数:
7
下载次数:
参考标准:
IEC60904-9​

方案摘要:

钙钛矿太阳能电池 (PSCs) 凭借其高效率、低成本和可印刷性等优势,成为最有希望取代传统硅基太阳能电池的下一代光伏技术。然而,PSCs 在实际户外应用中面临着紫外线 (UV) 辐射带来的严峻挑战。 为了解决这一问题,美国北卡罗来纳大学教堂山分校的 Jinsong Huang 教授团队在 Science 期刊发表了最新研究成果,他们通过开发一种新型的强键合空穴传输层 (HTL) 材料,有效地抑制了 钙钛矿太阳能电池 (PSCs) 的紫外线降解,并显著提高了器件的长期稳定性。

产品配置单:

分析仪器

光焱科技AAA级SS-X太阳光模拟器

型号: SS-X

产地: 上海

品牌: 光焱科技

面议

参考报价

联系电话

方案详情:

1.png


钙钛矿太阳能电池 (PSCs) 凭借其高效率、低成本和可印刷性等优势,成为最有希望取代传统硅基太阳能电池的下一代光伏技术。然而,PSCs 在实际户外应用中面临着紫外线 (UV) 辐射带来的严峻挑战。

为了解决这一问题,美国北卡罗来纳大学教堂山分校的 Jinsong Huang 教授团队在 Science 期刊发表了最新研究成果,他们通过开发一种新型的强键合空穴传输层 (HTL) 材料,有效地抑制了 钙钛矿太阳能电池 (PSCs) 的紫外线降解,并显著提高了器件的长期稳定性。

紫外线辐射的影响效率
钙钛矿太阳能电池 (PSCs) 的效率近年来不断攀升,突破了 25% 的瓶颈,但其长期稳定性问题仍然是阻碍其商业化应用的关键因素。在实际应用中,PSCs 暴露在阳光照射下,会受到紫外线辐射的影响,导致器件性能下降。紫外线辐射会导致 PSCs 的多种降解问题,例如:

l  钙钛矿材料的分解: 紫外线辐射可以导致钙钛矿材料分解,形成缺陷,降低器件效率。

l  空穴传输层 (HTL) 的降解: 紫外线辐射可以加速 HTL 的降解,降低器件的空穴提取效率,影响器件性能。

l  界面处的化学反应: 紫外线辐射会导致钙钛矿和 HTL 之间发生化学反应,改变器件的界面性质,降低器件的稳定性。

为了解决这些问题,研究人员一直在探索各种策略,例如开发新型的 HTL 材料和界面工程技术。空穴传输层 (HTL) 的研究手法自光伏技术兴起以来经历了多個阶段。以下是 HTL 研究的主要历史发展:

早期研究 (2000 年代初期):

l  有机材料早期 HTL 研究主要集中在有机材料上,如 PEDOT,因其良好的导电性和与有机光伏材料的相容性。然而,这些材料在稳定性和制造成本上存在挑战。

l  金屬氧化物同时,也有一些研究开始探索无机金属氧化物,如 NiO  CuI,这些材料具有更高的稳定性和更好的能级匹配特性。

中期研究 (2010 年代):

l  混合材料为了兼顾有机和无机材料的优势,研究者开始探索有机-无机混合材料的 HTL,例如氧化石墨烯掺杂的 PEDOT

l  新型有机材料同时,新的有机材料如 PTAA (聚三苯胺被引入,展示出更好的性能和稳定性。

近年研究 (2020 年至今):

l  工程化表面处理近年来,研究者更多地关注于通过工程化手段改进 HTL 的界面特性,例如表面修饰和分子工程。

l  新型无机材料研究者持续探索新型无机材料,如掺杂金属氧化物和二维材料,以提高 HTL 的性能和稳定性。

l  多功能层设计最新的研究开始考虑 HTL 的多功能设计,不仅是空穴传输,还包括阻隔水氧、增强界面粘附等功能。

解决紫外线降解成果简介:

该研究团队开发了一种新型的强键合 HTL 材料,即 [2-(9-乙基-9H-咔唑-3-yl) 乙基膦酸 (EtCz3EPA)EtCz3EPA 具有以下特点:

l  强键合能力: EtCz3EPA 的膦酸基团可以与透明导电氧化物 (TCO) 表面形成强烈的化学键,而其氮原子可以与钙钛矿中的铅原子形成配位键,从而在钙钛矿/HTL/TCO 界面形成牢固的化学连接,有效抑制界面缺陷的形成。

l  良好的空穴提取性能: EtCz3EPA 具有良好的空穴提取性能,可以有效地将空穴从钙钛矿层中提取出来,并传输到正极,提高器件的效率。

研究人员将 EtCz3EPA 与传统的 HTL 材料 (例如 PTAA) 结合,制备了新型的混合 HTL 材料,并对其在 PSCs 中的性能进行了测试。

研究结果

l  提高器件效率: 与传统的 HTL 材料 (例如 PTAA) 相比,使用 EtCz3EPA  EtCz3EPA/PTAA 混合 HTL 的器件展现出更高的效率,且在紫外线照射下依然保持着较高的性能。

l  增强器件稳定性: EtCz3EPA  EtCz3EPA/PTAA 混合 HTL 可以有效地抑制紫外线引起的钙钛矿分解和 HTL 降解,提高器件的稳定性。经过 29 周的户外测试,基于 EtCz3EPA/PTAA 混合 HTL  PSCs 模块仍然能保持超过 16% 的效率,展现出优异的稳定性。

研究人员利用各种表征手段,例如 SEMXPSAFMTRPLGIXRDTAS  DLCP 等,对器件的结构、形貌、光电特性、稳定性和缺陷进行了分析。实验结果表明,EtCz3EPA 能够有效地钝化界面缺陷,降低非辐射复合,并抑制钙钛矿中 A 位阳离子的迁移。此外,EtCz3EPA 还能够增强钙钛矿薄膜的结晶质量,提高器件的效率和稳定性。

结论与展望

该研究团队通过开发强键合空穴传输层材料 EtCz3EPA,有效地抑制了 PSCs 的紫外线降解,并显著提高了器件的长期稳定性。该研究结果为制备高效稳定的 PSCs 提供了新的思路,并为 PSCs 的实际应用,尤其是户外应用开辟了新的道路。

未来,可以通过进一步优化 HTL 材料的设计,以及结合其他界面工程策略,进一步提升 PSCs 的性能,例如:

l  探索其他强键合 HTL 材料,以进一步提升器件的效率和稳定性。

l  研究不同材料组合和界面修饰策略,以实现更高效的电荷传输和更稳定的器件。

l  开发具有更高透明度和更低成本的 HTL 材料,以满足大规模产业化应用的需求。

相信随着研究的深入,PSCs 的效率和稳定性将会得到进一步提升,并进而向未来产业化应用迈进,为全球能源转型贡献力量。




SCI. 新型空穴传输层材料,强化钙钛矿太阳能电池长期稳定性 SCI. 新型空穴传输层材料,强化钙钛矿太阳能电池长期稳定性

SCI. 新型空穴传输层材料,强化钙钛矿太阳能电池长期稳定性
SCI. 新型空穴传输层材料,强化钙钛矿太阳能电池长期稳定性

SCI. 新型空穴传输层材料,强化钙钛矿太阳能电池长期稳定性






参考文献Strong-bonding hole-transport layers reduce ultraviolet degradation of perovskite solar cells Nat. Energy (2024). sCIENCE_ DOI: 10.1126/science.adi4531





推薦設備_

1.      SS-X系列集成式解决方案 _AM1.5G 标准光谱太阳光模拟器软件: IVS-KA6000 + IVS-KA-Viewer

AM1.5G 标准光谱太阳光模拟器

l  A+ 光谱:接近 AM1.5G 标准光谱

l  A+ 辐照度的时间不稳定性

l  SS-IRIS:自主研发技术自动光强操控

l  适合与手套箱集成的输出光束方向

IVS-KA6000IV测量软件 所有 SS-X 系列太阳光模拟器都可以通过 IVS-KA6000 软件进行控制,该软件是 IV 测量软件,可用于准确的 PV 表征。不仅是光闸,输出光辐照度也可以通过 IVS-KA6000 IV 软件进行操控,帮助用户轻松完成不同光强下复杂的 IV 测试或 Sun- Voc测试。来自 IVS-KA6000 的所有 IV 数据都可以通过 IVS-KA-Viewer 读取和分析,这是另一款多功能分析软件。

KA-Viewer IV 分析软件 可以大幅缩短用户的数据处理时间,并可加快整体工艺改进研发的时程。



下载本篇解决方案:

资料文件名:
资料大小
下载
SS-X.pdf
767KB
相关方案

浙江大学叶志镇团队突破钙钛矿发光二极管响应速度瓶颈,实现微秒级响应!

钙钛矿发光二极管(PeLEDs)以其高效率、低成本、可调色等优点,近年来在显示领域备受关注,被认为是下一代显示技术的潜力之星。然而,钙钛矿材料的离子迁移问题,导致 PeLEDs 的电致发光上升时间通常在毫秒级别,这对于高刷新率显示来说是一个巨大的挑战。 浙江大学叶志镇教授团队近期取得重大突破,他们通过采用单颗粒钝化策略,成功将 PeLEDs 的电致发光上升时间缩短至微秒级,为高刷新率显示技术的发展提供了新的可能性。 这一研究成果发表在国际顶尖期刊《Nature Electronics》上。

能源/新能源

2024/06/26

香港理工大学李刚突破有机太阳能电池厚度限制

有机光伏电池(OSCs)以其轻薄、柔性、可印刷等优势,在过去几年中吸引了广泛的关注,被认为是下一代光伏技术的理想选择。然而,OPVs 的效率和稳定性仍然落后于传统硅太阳能电池。 实现低成本和印刷友好的 OSCs 制备,需要采用具有简单结构的光活性分子的厚膜器件。因此,对于非稠合环受体材料,如何在较厚的器件中实现高能量转换效率 (PCE),具有重大意义。 香港理工大学李刚教授团队近期取得重大突破,他们利用顺序沉积 (SD) 方法,成功将 D18:A4T-16 有机活性层的效率从传统的混合浇注方法的 8.02% 提升至 14.75%,该器件厚度达到 300 纳米。 这一研究成果发表在国际顶尖期刊《Advanced Energy Materials》上。

能源/新能源

2024/06/25

南昌大学姚凯团队 全纹理叠層太阳能电池30.89%轉換效率

近年来,钙钛矿/晶硅叠層太阳能电池 (tandem solar cells) 凭借其高效率和低成本等优势,成为光伏领域的研究热点。为了实现大规模的串联太阳能电池模块化生产,使用工业化 Czochralski 硅晶片制造的全纹理结构串联器件,将成为未来发展趋势。然而,传统用于调节钙钛矿界面性质的表面工程策略并不适用于微米级的纹理表面。 南昌大学的姚凯教授团队在 Angewandte Chemie International Edition 期刊上发表了一项最新研究成果,他们开发了一种全新的表面钝化策略,利用动态喷涂 (DSC) 技术将氟化噻吩乙胺配体均匀地涂覆在纹理硅表面,有效地抑制了钙钛矿的相变,并提高了器件的效率和稳定性。

能源/新能源

2024/06/21

南京大学谭海仁团队钙钛矿/晶硅叠层太阳能电池实现大规模制备

钙钛矿太阳能电池(PSCs)自2009年报导以来,由于其高效能、低成本和简单制备工艺迅速引起了学术界和工业界的广泛关注。其核心材料钙钛矿具有优异的光电特性,如高吸光係数、长载流子扩散长度和高载流子迁移率,使其成为下一代光伏技术的潜力选手。在过去十年间引发了广泛的研究热潮,并被认为是最有潜力替代传统硅太阳能电池的下一代光伏技术之一。 近年来,钙钛矿太阳能电池(PSCs) 的效率不断提升,并在 NREL 的效率认证数据中屡创新高。 叠层结构的出现自2017开始,在過去三年中,钙钛矿/晶硅叠层太阳能电池的效率取得显着的突破。 钙钛矿/晶硅叠层太阳能电池,更是被认为是未来实现更高效率和更低成本的理想方案。然而,在空气环境下实现宽带隙钙钛矿 (~1.68 eV) 的可扩展制备一直是一个巨大的挑战,因为水分会加速钙钛矿薄膜的降解。 南京大学谭海仁教授团队近期取得重大突破,他们在研究中发现,溶剂的性质对水分干扰的影响程度至关重要。通过深入研究,他们发现正丁醇 (nBA) 由于其低极性和中等挥发速率,不仅可以有效缓解空气环境中水分对钙钛矿薄膜的负面影响,還可以提高钙钛矿薄膜的均勻性,进而实现可扩展制备。

能源/新能源

2024/06/20

推荐产品
供应产品

光焱科技股份有限公司

查看电话

沟通底价

提交后,商家将派代表为您专人服务

获取验证码

{{maxedution}}s后重新发送

获取多家报价,选型效率提升30%
提交留言
点击提交代表您同意 《用户服务协议》 《隐私政策》 且同意关注厂商展位

仪器信息网APP

展位手机站