观察方法

仪器信息网观察方法专题为您整合观察方法相关的最新文章,在观察方法专题,您不仅可以免费浏览观察方法的资讯, 同时您还可以浏览观察方法的相关资料、解决方案,参与社区观察方法话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

观察方法相关的耗材

  • 培养皿观察台(观察支架)
    培养皿定位观察台Petri Orienter and Stand是经常培养皿观察计数者的福音!原始的以点数记忆法计数培养皿中的细菌菌落数,既不准确,又增加菌落重复数的可能性,造成误差的机会较大。我们推出这款简介方便的培养皿定位观察台,可减少菌落重复数造成的误差。 l 针对固体培养基l 防疲劳设计:30度倾角l 抽拉槽设计:定位板随意更换l 准确l 清晰可见订购信息:货号产品描述规格70498-01PetriDish Stand, 88mm diameter,观察台个70498-02PetriDish Stand, 100mm diameter,观察台个70498-03PetriOrienter, 32-square grid,定位片片70498-04PetriOrienter, 50-square grid,定位片片70498-07PetriOrienter, 6-sector pie,定位片片70498-08PetriOrienter, 8-sector pie,定位片片70498-09PetriOrienter, 12-sector pie,定位片片70498-10PetriOrienter, 16-sector pie,定位片片
  • THGA仪器观察镜
    THGA仪器观察镜用于优化干燥温度和时间。THGA仪器观察镜产品描述部件编号THGA仪器观察镜B0851900
  • 底片观察灯
    主要用于观察TEM底片。底片在均匀柔和的灯箱背景下,图片清晰,衬度适宜。同时,对视力保护也有很好的作用,是从事电镜工作者的必备工具。

观察方法相关的仪器

  • TU-II型暗箱式紫外观察仪屏蔽杂散光与紫外线照射,便于更好观察薄层色谱板;1、便携式设计,坚固耐用,便于移动;2、可以当作拍摄暗箱,加相机即可成为摄影仪;3、加装图像分析软件,即可成为薄层成像系统;紫外254 nm 与365nm;最大可放置200×200mm的层析板便携式观察暗箱,紫外灯; 由于技术不断进步,本公司保留设计更改之权利,更改恕不通知敬请谅解。
    留言咨询
  • 紫外观察箱;紫外线老化观察箱;UV紫外观察箱技术参数:1、温度范围:RT常温~+70℃2、湿度范围:大于或等于90%RH3、温度均匀度:±1℃4、温度波动度:±0.5℃5、灯管内中心距离:70mm6、测试品与灯管的中心距离:50mm±3mm7、辐照度:1.0W/m2内可调8、光照、冷凝、喷淋试验周期可调9、灯管:L=1200/40W, 8支(UVA/UVB使用寿命1600h以上)10、控制仪:彩色触摸屏韩国(TEMI880)或RKC智能控制仪。 11、控温方式:PID自整SSR控制12、标准试件尺寸:75X290mm(特殊规格需说明)13、水槽水深:25mm自动控制14、有效辐照区域:900210mm15、紫外线波长:UVA范围为315~400nm UVB范围为280~15nm16、试验时间:0~999H(可调) 17、辐照黑板温度:+50℃~+70℃℃18、标准样品架:24组19、机组具有自动喷淋功能紫外观察箱;紫外线老化观察箱;UV紫外观察箱可以模拟由阳光、雨水和露水造成的危害,AP-UV利用荧光紫外(UV)灯模拟阳光照射的效果,利用冷凝气模拟雨水和露水,被测试材料放至一定温度下的光照和潮气交替的循环程序中进行测试。AP-UV用数天或数周的时间即可重现户外数月至数年出的危害。危害类型包含:褪色、失光、粉光、开裂、浑浊、气泡、脆变、强度、衰退和氧化。AP-UV试验数据可以帮助您选择新材料,以及评估配方的变化如何影响新产品的耐久性。在材料置于户外时的变化趋势上,AP-UV可以给出极佳的相关预测结果。国产紫外线老化试验箱有哪些? 紫外线老化试验箱深圳权威机构直销光源:光源采用8支额定功率为40W的进口亚太拉斯品牌紫外线荧光灯作发光源。紫外线荧光灯管,分布在机器的上侧,共8支或6支可选。有UVA-340和UVB-313光源供用户选择配置。
    留言咨询
  • 产品优势徕科光学研发的LK-XZTS-71型斑马鱼观察体视生物显微镜,其具备紧凑舒适的全新设计,清晰锐利的立体图像,超宽视野、大变倍化,超长工作距离;拥有卓越先进的光学性能,平坦清晰的显微图像,即使是外围视场也能保持优质明亮的像质。采用新型视度可调目镜,连续变倍比物镜,灵活多样的辅助物镜组合,使显微镜图像更加清晰明亮,通过全新的人机工程学设计,能够达到长时间使用不感到疲劳的效果,确保使用者操作的舒适性。LK-XZTS-71型斑马鱼观察体视生物显微镜现已广泛应用干现代生物、医学、科研、现代电子工业在线检测和其他科技工业领域等高精度方面的要求。在国货崛起的今天,这款产品已经成为越来越多的高校、研究所、科研单位、医疗机构、企业等单位的首选产品,其性能稳定优越,价格务实接地,服务团队专业可靠,在同等级产品中属于“相当能打”的TOP产品。依靠着科技感和创新感双强的研发力量,可以根据不同客户的需求定制出高性价比的产品方案;作为业内唯一的质保期两年的服务保障团队,具备内核稳定的售后方案,7*24小时响应,提供安装培训 一体化互动,更加直接且高效地为客户做好售前、售中、售后服务保障。经过十余年的研发服务,已积累千万客户,并在多地区投建服务部方便与客户的沟通互动。下图为LK-XZTS-71型斑马鱼观察体视生物显微镜产品实景图:下图为现场安装、培训实景图:下图为合作伙伴情况:下图为服务站分布图:产品介绍观察方法:明场明场图例1:明场图例2:光源:采用新型高亮度LED照明和镜架一体化设计,上下光源带有独立调节开关,在任何倍率下能够确保像面亮度的均匀、长效、稳定。另可选择卤素灯和荧光灯,帮您实现更多透、反射光照下的观察、研究。图例1:图例2图例3:图例4:图例5:图例6图像测量功能产品参数产品结构立体显微镜/解剖显微镜品牌徕科光学型号LK-XZTS-71产地中国大陆总体放大倍数0.67X-4.5X观察筒三目观察头,45°倾斜,0.67X-4.5X连续变倍物镜,超长的工作距离110mm,瞳距调节范围52-76mm,带内置联锁机构,固定式目镜筒,带定格定倍机构及最高最低倍调节锁定机构观察方法明场目镜高眼点大视野平场目镜 PL10X/22mm,视度可调工作距离工作距离110mm调焦机构精密导轨调焦机构,确保调焦的灵活性和精准性。调焦手轮采用双边设置水平变倍手轮调焦手轮的松紧度可调节,确保操作的舒适度和灵敏度。底座立柱式小扇形平板底座(与ST70A1配合使用)灯源长寿命LED环形光源
    留言咨询

观察方法相关的方案

观察方法相关的论坛

  • 【分享】想知道显微镜的七大暗场观察方法吗?

    显微镜观察可以有明场、暗场、偏光、相差等观察方式,不同功能显微镜分别用不同的观察方式,而且方法也不同。下面介绍一下暗场的观察方法。1.取下明场聚光镜U-AAC,或U-SC3,将暗场聚光镜U-DFA安装在聚光镜支架上;2.使物镜进入光路;3.打开孔径光阑;4.把样品放在载物台上聚焦;5.从目镜筒中取下目镜,从观察观察筒中观察物镜边缘,同时调节聚光镜两侧的旋钮,使暗场环对中;6.把目镜插入目镜筒中并观察获得的暗场图象;7.上下移动聚光镜直到达到均匀的暗场照明。以上7点为显微镜暗场观察的七大方法,这是从广州明美网站转载过来的

观察方法相关的资料

观察方法相关的资讯

  • 光学显微镜的主要观察方法之荧光观察
    应用专家 易海英 荧光现象荧光是指荧光物质在特定波长光照射下,几乎同时发射出波长更长光的过程(图1)。当特定波长(激发波长)的光照射一个分子(如荧光团中的分子)时,光子能量被该分子的电子吸收。接着,电子从基态(S0)跃迁至较高的能级,即激发态(S1’)。这个过程称为激发①。电子在激发态停留10-9–10-8秒,在此过程中电子损失一些能量②。电子离开激发态(S1)并回到基态的过程中③,会释放出激发过程中吸收的剩余能量。荧光分子在激发态驻留的时间为荧光寿命,一般为纳秒级别,是荧光分子本身固有的特性。利用荧光寿命进行成像的技术叫荧光寿命成像(Fluorescence Lifetime Imaging,FLIM),可以在荧光强度成像之外,更加深入地进行功能性精准测量,获取分子构象、分子间相互作用、分子所处微环境等常规光学成像难以获得的信息。荧光的另一个重要特性是Stokes位移,即激发峰和发射峰之间的波长差异(图2)。通常发射光波长比激发光波长更长。这是由于荧光物质被激发之后、释放光子之前,电子经过弛豫过程会损耗一部分能量。具有较大Stokes位移的荧光物质更易于在荧光显微镜下进行观察。图2:Stokes位移荧光显微镜及荧光滤块荧光显微镜是利用荧光特性进行观察、成像的光学显微镜,广泛应用于细胞生物学、神经生物学、植物学、微生物学、病理学、遗传学等各领域。荧光成像具有高灵敏度和高特异性的优点,非常适合进行特定蛋白、细胞器等在组织及细胞中的分布的观察,共定位和相互作用的研究,离子浓度变化等生命动态过程的追踪等等。细胞中大部分分子不发荧光,想要观察它们,必须进行荧光标记。荧光标记的方法非常多,可以直接标记(比如使用DAPI标记DNA),或利用抗体抗原结合特性进行免疫染色,也可以用荧光蛋白(如GFP,绿色荧光蛋白)标记目标蛋白,还可以用可逆结合的合成染料(如Fura-2)等。图3:Leica DMi8倒置荧光显微镜及滤片转轮目前荧光显微镜已成为各个实验室及成像平台的标配成像设备,是我们日常实验的好帮手。荧光显微镜主要分为三大类:正置荧光显微镜(适合切片)、倒置荧光显微镜(适合活细胞,兼顾切片)、荧光体视镜(适合较大标本,如植物、斑马鱼(成体/胚胎)、青鳉、小鼠/大鼠器官等)。荧光滤块是显微镜荧光成像的核心部件,由激发滤片、发射滤片和二向分光镜三部分组成,安装在滤片转轮里,如Leica DMi8配有6位滤片转轮(图3)。不同的显微镜转轮位数会有区别,也有些显微镜使用滤块滑板。滤块在荧光成像中起着重要作用:激发滤片选择激发光来激发样品,阻挡其他波长的光;通过激发滤片的光经过二向分光镜(其作用是反射激发光和透射荧光),反射后通过物镜聚焦,照射到样品,激发出对应的荧光即发射光,发射光被物镜收集,透过二向分光镜,到达发射滤片。如图4中:激发波长为450-490nm,二向分光镜反射短于510nm的光、透过长于510nm的光,发射光接收范围为520-560nm。图4:荧光显微镜光路图荧光显微镜常用荧光滤块可分为长通(long pass,简称LP)和带通(band pass,简称BP)两种类型。带通通常由中心波长和区间宽度确定,如480/40表示可通过460-500nm的光。长通滤色片如515 LP,表示可以通过波长长于515nm的光(图5)。图5:FITC光谱曲线及滤片荧光物质具有其特征性激发(吸收)曲线和发射曲线,激发峰为最佳激发波长(激发效率最高,从而可以降低激发光能量,保护细胞和染料),发射曲线为发射荧光波长范围。因此,在实验中,我们会尽可能选择与激发峰最接近的波长进行激发,而接收范围需包括发射峰。如Alexa Fluor 488的激发峰为500nm,在荧光显微镜中可以选择480/40的激发滤片。图6:Alexa Fluor 488光谱曲线滤块的详细信息可以在显微镜成像软件里看到。了解染料并找到最匹配样品的滤块对于荧光成像有着至关重要的作用。荧光染料和荧光蛋白的光谱信息一般在说明书中会注明,也可在网上查阅(如https://www.leica-microsystems.com/science-lab/fluorescent-dyes/、https://www.leica-microsystems.com/science-lab/fluorescent-proteins-introduction-and-photo-spectral-characteristics/)。滤块的选择除考虑荧光探针的激发、发射波长,对于多色标记样品还需考虑是否有非特异激发、是否串色。此外还需考虑所使用的荧光光源,目前常用的荧光光源有汞灯、金属卤素灯,以及近年来飞速发展的LED光源。荧光光源的光谱有连续的和非连续的,在不同波段能量也会不同。LED光源因为其相对较窄的光谱带、更稳定的能量输出、超长的寿命、更安全环保等诸多优点,正逐步成为荧光显微镜的主要光源。除了显微镜内置的滤块,还有外置快速转轮(图7),徕卡的外置快速转轮相邻位置滤片转换速度为27ms,可实现高速多色实验,如FRET及Fura2比例钙成像(图8)等。图7:徕卡外置快速转轮EFW图8:钙成像,Fura2, Cultured hippocampal astrocytes from 18-day-old embryos of Sprague-Dawley rats. Courtesy of: Drs. Kazunori Kanemaru and Masamitsu Iino, Department of Pharmacology, Graduate School of Medicine, The University of Tokyo 丰富多样的荧光显微成像技术为了满足不同的荧光成像需求,除荧光显微镜外,还发展出了各种荧光显微成像解决方案:? 宽场高清成像系统,如Leica THUNDER Imager,采用Leica创新的Clearing专利技术,在成像时高效去除非焦平面干扰信号,呈现清晰图像,同时兼有高速成像的优点;? 共聚焦激光扫描显微镜,利用针孔排除非焦平面干扰,实现光学切片,得到高清图像及三维立体图像;? 突破衍射极限的超高分辨率显微镜及纳米显微镜,可对小于200nm的精细结构进行观察;? 利用多光子激发原理进行厚组织及活体深层成像的多光子成像系统;? 具有高时空分辨率的光片成像技术,成像速度快、分辨率高、光毒性低,特别适合进行发育、活体动态观察等研究;? 荧光寿命成像(FLIM),不受荧光物质浓度、光漂白、激发光强度等因素的影响,能更加深入地进行功能性精准测量;? 荧光相关光谱(FCS)及荧光互相关光谱(FCCS),测量荧光分子的分子数、扩散系数,从而分析分子浓度、分子大小、粘性、分子运动、分子结合/解离、分子的光学特性等;? 全内反射荧光显微镜(TIRF),极高的z轴分辨率,非常适合细胞膜表面的分子结构和动力学研究。 荧光显微成像技术应用广泛,种类丰富,而且新技术还在不断涌现,大家可以选择最适合的技术去完成自己的研究。
  • 光子反冲成像:观察分子内部的新方法
    p   近日,德国和瑞典科学家利用欧洲X射线自由电子激光装置(XFEL),通过创新的“光子反冲成像”(Photon-recoil imaging)技术,研究X射线与原子之间相互作用的基本过程。该方法可以使人们更好地了解原子级的化学反应,将成为探索非线性X射线物理学的有力工具。 br/ /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/5f55c4a7-b32f-412f-9416-323e599f35f6.jpg" title=" 50177d68ee524f13991d9fe7ea5286d6.jpg" alt=" 50177d68ee524f13991d9fe7ea5286d6.jpg" / /p p style=" text-align: center " span style=" font-family: 楷体, 楷体_GB2312, SimKai "   a)自发x射线拉曼散射的受激原子分布。 /span /p p style=" text-align: center " span style=" font-family: 楷体, 楷体_GB2312, SimKai "   b)受激x射线拉曼散射的增激发态原子分布(窄线)。? /span /p p style=" text-align: center " span style=" font-family: 楷体, 楷体_GB2312, SimKai "   图片来源:网络(mbi-berlin.de) /span /p p   观察X射线与原子之间相互作用 /p p   1921年,爱因斯坦因发现光的量化,即光子作为光粒子流与物质相互作用,获得了诺贝尔物理学奖。从量子力学的早期开始,人们就知道光子具有动量。原子对光子的吸收和发射是光与物质相互作用的基本过程。自1960年代以来,强激光束的出现推动了所谓的“非线性光学”的发展。于是科学家们进一步研究,用X射线代替可见光来操作非线性光学系统,即将非线性光学扩展到X射线光谱域。但由于非线性效应难以捉摸的性质,尽管理论概念数十年前就已提出,迄今科学家们仍在努力实现这一目标。随着2017年位于汉堡的XFEL的投入使用,科学界朝着这一目标更近了一步。 /p p   最近,德国柏林马克斯· 波恩非线性光学和超快光谱研究所(MBI)、瑞典乌普萨拉大学和位于汉堡的欧洲X射线自由电子激光装置(XFEL)的研究人员合作开发出“光子反冲成像”技术,用来观察X射线与原子之间相互作用的基本过程。该技术可以区分X射线范围内的自发和受激拉曼散射(SRS),使得人们几乎可以对单个原子上受激拉曼散射进行自由地研究。相关的理论分析和实验结果发表在《科学》杂志上。 /p p   为了测量实验中激发原子的散射,研究人员将准直的氖原子超声束与XFEL光束成直角相交。当X射线光子的能量与氖的俄歇跃迁能量发生共振时,瞬态激发原子会受到自发拉曼散射的影响。优化X射线的强度和光子能量,则瞬态激发原子在自发衰减之前会与另一个具有适当光子能量的XFEL光子相互作用,产生受激拉曼散射,并沿入射光子的方向发射光子。此过程需要来自X射线的两个光子,因此是非线性的。由受激拉曼散射引起的激发原子基本上不会发生偏转,在检测器上显示为一条锐利的直线。 /p p   有望更好地了解原子级化学反应 /p p   论文第一作者,柏林马克斯· 波恩研究所的乌利· 艾希曼教授解释说,在受激拉曼散射过程中,两个光子沿与两个入射光子完全相同的方向离开原子,原子不改变其动量,也不改变其飞行方向。这与更频繁的线性过程截然不同。在线性过程中,首先吸收一个光子,然后发射另一个光子。由于发射的光子通常以不同的方向发送,因此原子发生偏转。通过观察原子的飞行方向,研究人员能够清楚地将X射线激发的拉曼过程与其他过程区分开。 /p p   XFEL的迈克尔· 迈耶博士解释说:“如果将来我们将新方法与不同波长的X射线脉冲一起使用,就会带来特殊的可能性。”具有不同波长的X射线脉冲可以专门处理分子中的单个原子,因此可以详细了解分子中电子的波函数随时间变化的方式。这为研究非线性X射线过程建立了非常有前途的分析技术。 /p p   长远来看,科学家们还希望借助定制的激光脉冲对其产生影响。乌普萨拉大学的贾恩-埃里克· 鲁本森教授说:“我们的方法有望使人们更好地了解原子级的化学反应,将来甚至可能影响它们。” /p p br/ /p
  • 日本开发出一种用扫描电子显微镜观察活体器官的结构和“运动”的方法
    日本中部大学7月4日宣布,已开发出一种用扫描电子显微镜观察湿器官等水下样品的结构和“运动”的技术。克服“只测量固定样本静止图像”的困难日本中部大学7月4日宣布,已开发出一种用扫描电子显微镜观察湿器官等水下样品的结构和“运动”的技术。这项研究是由同一大学生命与健康科学学院生物医学科学系的新谷正敏教授、山口诚司副教授和高玉广雄副教授的研究小组进行的。研究成果刊登在《Microscopy》上。由于电子显微镜具有最大约0.5nm的高分辨率,因此适用于小规模的观察。然而,由于观察是在真空下进行的,因此需要固定要观察的样品以使水不蒸发。因此,存在传统的电子显微镜观察基本上只能测量固定样本的静止图像的缺点。作为能够对液体中的试样进行电子显微镜观察的方法,已经存在使用氮化硅等平面膜的观察方法。但是,对于观察来说,它是一个薄的观察样品,它适合非常靠近膜的可观察区域,样品与膜之间的位置关系可以设置为不损坏膜,样品不会移动,因此至于破坏平面膜,费了很多功夫,也有很多限制。另外,作为可以测定试样的运动的方法,可以举出用含有甘油或糖等非挥发性成分的溶液覆盖试样,在电子束照射下成为保护膜的方法,观察样品穿过保护膜。但这种方法中,保护膜的外面是真空,观察时保护膜也是不含水的固体膜,所以无法观察到样品在液体中的结构和运动,只能观察到样品在液体中的结构和运动。样品即使在真空中也能进行的运动是可能的。这是一种可以观察到的方法。打造具有优异电子束透过性和变形能力的“DET薄膜”此次,课题组开发了一种新的“DET膜法”。首先,我们创造了一种薄膜(DET film:Deformable and Electron Transmissive Film),它可以承受真空和大气压之间的压力差而不会破裂,并且具有优异的电子束渗透性和变形性。利用DET薄膜的电子束透过性和可变形性,DET薄膜模仿观察样品的形状,使得通过DET薄膜既可以观察宏观样品形状,也可以观察细微样品形状。...DET膜抑制和保护直接击中观察样品的电子束的量,这也是测量观察样品运动的有用特性。另外,由于DET膜可以大幅度变形,因此在同等倍率下,可以在比光学显微镜深数十倍的焦深处观察三维样品,并进行测量。成功测量小鼠提取心脏的精细结构和“运动/变形”此外,使用DET膜法,我们成功地测量了作为观察样品的小鼠切除心脏的精细结构和“运动/变形”。此外,我们还成功地测量了沉淀晶体和在液体中漂浮和移动的晶体的纳米级结构和运动。有望实现光学显微镜无法观察到的纳米级动力学的观察和测量光学显微镜的空间分辨率约为200 nm,高分辨率测量的焦深约为300 nm,因此只能观察平面。另一方面,开发的DET膜法具有很大的优势,即可以以纳米级分辨率测量观察到的样品的三维结构及其运动。此外,当将 DET膜法与固定样品的电子显微镜观察进行比较时,存在由于DET膜的存在而降低空间分辨率的缺点,但有一个很大的优点是动力学可以测量。研究小组说,用DET膜法测量的运动,不仅是观察样品自己产生的运动,也可以是对我方施加的拉扯等动作的变形。正如只看动物标本对加深对动物的理解是有限的,我们期待DET膜法的动态测量能够实现各种各样的纳米尺度动态测量。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制