可溶性表面活性剂

仪器信息网可溶性表面活性剂专题为您整合可溶性表面活性剂相关的最新文章,在可溶性表面活性剂专题,您不仅可以免费浏览可溶性表面活性剂的资讯, 同时您还可以浏览可溶性表面活性剂的相关资料、解决方案,参与社区可溶性表面活性剂话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

可溶性表面活性剂相关的耗材

  • 纳谱分析表面活性剂专用色谱柱 ChromCore SAA表面活性剂专用色谱柱
    ChromCore SAA是一款以先进的单分散、高纯、多孔硅胶为基质, 采用独特的表面键合和修饰技术,经优化装填而成的高性能色谱柱,采用混合机理模式,专用于生物制药领域中性表面活性剂含量分析。纳谱分析 表面活性剂专用柱 ChromCore SAA表面活性剂专用色谱柱 参数:纳谱分析 表面活性剂专用柱 ChromCore SAA表面活性剂专用色谱柱 特点:单分散硅胶微球,机械强度高对中性表面活性剂表现出良好选择性,柱效高,峰形好 柱流失低,兼容通用型检测器 柱间重现性一致纳谱分析表面活性剂专用柱 ChromCore SAA表面活性剂专用色谱柱 货号信息:Product NameParticle Size(µ m)Length(mm)ID (mm)4.6ChromCore SAA5250S014-050018-04625S150S014-050018-04615S
  • 表面活性剂离子选择电极
    简介:表面活性剂 离子选择性电极是测量样品中表面活性剂 离子含量的一种有效方法。美国Van London-pHoenix公司出品的表面活性剂 离子选择性电极,具有测量简单,响应快速准确的优点,可以和电位滴定仪配套使用。应用案例:表面活性剂 测定(离子选择电极法);离子选择性电极法测定地表水,废水中的表面活性剂 ;表面活性剂 离子选择性电极法测定饮料、食品中的表面活性剂。表面活性剂离子选择性电极用于清洁工程的监测。规格与特点:· 斜率 〉200mv在滴定中· 重复性 +/- 2%· 干扰 类似的表面活性剂· 温度范围 0-40度· 压力范围 0-30psi· 响应速度 30秒达到95%响应· 储存 长期保存:干燥;短期:稀释的季铵盐阳离子标准溶液· 测量范围 1ppm &ndash 12,000ppm· PH值范围 2-12PH· 输出阻抗 1-100兆欧· 维护和清洗 去离子水和稀释的季铵盐阳离子标准溶液· 温度补偿 无,取决于滴定仪器· 在线工作 无应用: 废水;地表水;海水、饮料,清洁工程表面活性剂 检测。生产商:美国Van London-pHoenix公司是由美国美国Van London公司和美国pHoenix公司合并而成,继承了Van London电极和pHoenix(凤凰)电极的优点。
  • 9342BN表面活性剂电极
    9342BN表面活性剂电极9342BN表面活性剂电极(滴定用)9342BN表面活性剂电极(滴定用)9342BN表面活性剂电极(滴定用)

可溶性表面活性剂相关的仪器

  • 非离子表面活性剂大多为液态和浆状态,它在水中的溶解度随温度升高而降低。非离子表面活性剂具有良好的洗涤、分散、乳化、起泡、润湿、增溶、抗静电、匀染、防腐蚀、杀菌和保护胶体等多种性能,广泛地用于纺织、造纸、食品、塑料、皮革、毛皮、玻璃、石油、化纤、医药、农药、涂料、染料、化肥、胶片、照相、金属加工、选矿、建材、环保、化妆品、消防和农业等各方面。铸就实验室反应釜主流影响力,助力中国科研事业发展。非离子表面活性剂溶于水时不发生解离,其分子中的亲油基团与离子型表面活性剂的非离子表面活性剂亲油基团大致相同,其亲水基团主要是由具有一定数量的含氧基团(如羟基和聚氧乙烯链)构成。近20多年来,非离子表面活性剂发展极为迅速,应用越来越广泛,今后数年仍会保持这一势头。由于非离子表面活性剂在溶液中不是以离子状态存在,所以它的稳定性高,不易受强电解质存在的影响,也不易受酸、碱的影响,与其他类型表面活性剂能混合使用,相容性好,在各种溶剂中均有良好的溶解性,在固体表面上不发生强烈吸附。
    留言咨询
  • 特性 非离子氟碳表面活性剂是高度相容性的有机氟非离子表面活性剂, 能明显降低液体的表面张力,具有优越的界面湿润性能,在用乙二醇单丁醚作溶剂,稀释到50%浓度时,在苯类、酮类、酯类能完全溶解,产生的泡沫能迅速自动消失,在用于水性体系时,用自来水稀释到10%的浓度,可直接溶解在水性涂料中。本品可起到分散、流平作用,应用于溶剂型和水性体系中,用量少,操作简便。 外观:无色透明液体PH值:1粘度(cst/25℃) 200~300密度(p20,g/cm3):1.15±0.05非离子氟碳表面活性剂应用涂料领域:改善溶剂型和水性涂料的流平性,颜料的分散润湿性,解决涂料中出现的鱼眼针孔 涂布干燥后出现的边角缺漆、橘皮、颜料分层、漂浮等问题,与有机硅表面活性剂混合后,提高UV涂料的滑爽性 助焊性:将本品加入水性助焊剂中,能提高焊接点的合格率,节省焊药 是一支通用性极强的有机氟硅表面活性剂,被广泛应用于阻焊剂、涂料、油墨、地板蜡、农药、电子清洗、电镀处理剂等产品。 非离子氟碳表面活性剂使用方法水性涂料中:可直接加入用纯净水稀释表面活性剂到10%的浓度,用量为1-2% 溶剂型涂料中,可用乙二醇单丁醚稀释表面活性剂到10%浓度后,加入涂料中,用量为2%左右。
    留言咨询
  • 阴离子氟碳表面活性剂 特性 阴离子氟碳表面活性剂具有耐酸、耐高温性能的阴离子表面活性剂,有优异的界面湿润性能,具有迅速分散、铺展的能力,与水可以任意比例混溶。本品为高度相容性的有机氟阴离子表面活性剂,能明显降低液体的表面张力,具有优越的界面湿润性能和中等的起泡沫性 能应用于强酸、强氧化剂介质250摄氏度高温体系。本品可起到湿润、分散、流平作用,应用于水性体系和溶剂体系中,有用量少,操作简便、高效、长效、稳定等优点。外观棕褐色透明液体(胺盐)PH值3~4粘度(cst/25℃)200~400密度(p20,g/cm3)1.15±0.05溶解性能与水可以任意比例混溶用于皮革方面:阴离子氟碳表面活性剂作为表面处理剂将皮革进行防油防水处理,使皮革表面光滑,使之具有良好的防污能力,从而提高产品质量 阴离子氟碳表面活性剂在皮革浸浴时加入本品,有助于加速皮革的湿润渗透,减少操作时间,促进生产效率,同时提高产品质量。阴离子氟碳表面活性剂用于徐料及染料方面: 改善涂布质量。涂布干燥后会出现边角缺漆,橘皮,颜料分层、漂浮。加入本品增加涂料的流平性,湿润性,改善涂层光泽,颜料均匀分布,防止涂料起泡 可以防止细菌附着,抑制细菌生长,消除细菌引起的秽臭及污物 应用在大面积电泳涂层,不但使涂层表面更均匀更光滑,而且有更强的耐酸碱和水的性能以优异的界面湿润性、迅速分散性、耐强酸性,一般用作酸性染料的分散,稳定,防止染料漂浮,分离。用于油墨方面:减少油墨的表面张力,使油墨有更好的适应性,在塑料薄膜及一些不易为油墨接受的物质上打印有良好的效果和精确度,提高油墨印刷质量 增强油墨在储藏的过程中的稳定性,防止油墨在一定时间后褪色沉淀。 使用方法阴离子氟碳表面活性剂可用纯净水作为稀释剂,可稀释十倍数使用。建议使用最为0.1~0.5%。
    留言咨询

可溶性表面活性剂相关的试剂

可溶性表面活性剂相关的方案

可溶性表面活性剂相关的论坛

  • 新型环保表面活性剂—烷基糖苷!

    烷基糖苷,简称APG,是由可再生资源天然脂肪醇和葡萄糖合成的,是一种性能较全面的新型非离子表面活性剂,兼具普通非离子和阴离子表面活性剂的特性,具有高表面活性、良好的生态安全性和相溶性,是国际公认的首选“绿色”功能性表面活性剂。

  • 【转帖】高分子表面活性剂在铝封闭液中的应用

    高分子表面活性剂在铝封闭液中的应用 -------------------------------------------------------------------------------- 发布时间: 2007-10-15 12:12:09 浏览次数: 13 1 前言  各种铝材制品在加工生产中,为了达到防腐装饰的目的,常常需要进行阳极氧化和封闭后处理。经过封闭的氧化膜,才能大大提高耐蚀性和其它性能。目前国内外铝材生产使用的封闭方法较多,如沸水法、铬酸盐法、Ni-Co系法、低温Ni-F系法等。传统的沸水法以其无污染的优点一直被广泛使用。但该法很容易出现封闭氧化膜起粉霜现象,影响氧化膜的外观质量和漆层与基材结合力。批量生产时,常采用无机酸浸洗或在封闭液中直接加入防粉剂这2种防粉措施。添加防粉剂方法省工省时,不破坏氧化膜的质量,防粉效果好,已在多种封闭液中使用。防粉剂一般是高分子表面活性剂。  本文针对铝材氧化膜封闭起粉霜现象进行试验,选出性能适宜的表面活性剂作防粉剂,确定去离子水沸水法防粉封闭工艺,并用于生产。  2 封闭与防粉机理  2.1 封闭机理  多孔层的阳极氧化膜具有较高的化学活性,容易被环境污染引起基体腐蚀。沸水法封闭氧化膜时,发生热封孔反应为:  Al2O3+H2O→2AlOOH(Al2O3H2O)氧化膜发生水化作用,即氧化铝与水反应生成稳定的晶型水合化合物,体积膨胀,封闭了膜孔,使氧化膜失去活性,提高了氧化膜的耐蚀性[1]。起粉是封闭过程中产生的一种副反应。通常水越纯净,封闭质量越优,越易产生粉霜。自来水中含有大量的Ca2+,Mg2+等离子,使封闭氧化膜耐蚀性较差。去离子水封闭氧化膜耐蚀性提高,起粉现象却较为严重。关于粉霜的形成有几方面的原因:①去离子水较纯净,在氧化膜表面的润湿性较差,而且温度较高,容易造成在氧化膜表面生成大量的水合物。②封闭液中带进了有害杂质离子。③膜孔中溶解出的Al3+扩散到膜表面发生水化反应,形成网状粉霜[2]。总之,粉霜主要是由于氧化膜表面的氧化铝水合物所致。因此,要想除去粉霜必须阻止或减缓膜表面的水化反应。  2.2 表面活性剂的性质及作用  表面活性剂也称界面活性剂,是在低浓度下大幅度降低溶液界面张力的有机化合物。分子中同时含有亲水的极性基团(如羟基、羧基、硫酸基、氨基和醚键等)和憎水的非极性基团(如各种C-H链等),按其结构分为阴离子型、阳离子型、非离子型和两性型4种。溶液中的表面活性剂通过极性基和非极性基在界面的吸附,定向排列形成界面膜,降低了溶液的表面张力,表现出较强的界面活性。随着表面活性剂浓度的增加,所形成的胶束界面膜更加致密,表面张力逐渐达到最小值,此时表面活性剂的浓度为胶束临界浓度。胶束的形成增大了难溶物在溶液中的溶解度,从这方面来说表面活性剂也具有增溶性。  由于表面活性剂具有的界面活性,胶束化及增溶性,在溶液中常表现出润湿、乳化、发泡、分散和渗透等作用。在封闭液中作防粉剂主要是利用其易在氧化膜表面上吸附,并形成界面吸附膜,有效地阻止或减缓了氧化膜表面的水化反应,防止了粉霜的形成。其次利用表面活性剂的润湿渗透性,促进封闭液向膜孔内部的渗透,加速孔内的水化反应,增强封闭效果。此外表面活性剂还兼有抑雾、絮凝和去污的作用。  2.3 表面活性剂的选择  表面活性剂的使用首先应遵循一般的选择原则:①吸附强度要适当,即亲疏平衡值HLB和非极性烃基分子量适中。②加入量适当。③稳定性好,寿命长。④毒性小、COD、BOD值要小。生产中多采用阴离子型表面活性剂(YS)和非离子型表面活性剂(FS),二者的性质比较见表1[3]:表1 非离子型、阴离子型表面活性剂性能比较 ────────────────────────── 润湿性 发泡性 水洗性 CMC 可溶性 与金属反应 ────────────────────────── YS  好   大   差  大   小    有 FS  差   小   好  小   大    无 ──────────────────────────   YS性能较适宜,价格便宜,过去使用较多。FS的亲水基团在水溶液中不发生离解,呈分子状,所以稳定性高,不易受强电解质、无机盐、酸、碱的影响。FS还在多方面优于YS,且随着表面活性剂工业的迅速发展,新型、多功能、低成本的FS应用越来越普遍[4]。去离子水热封闭无有害物污染,所以防粉剂也必须具有无毒、稳定的基本性能,以保证该法的优点。首先选出亲水性良好的阴离子型和非离子型的表面活性剂:YS1和FS1进行试验。发现二者均有一定的防粉效果。根据以上选择原则、性能对比,确定选用FS1作为防粉剂,它是含醚键的非离子型表面活性剂,HLB值在14以上,界面活性高,润湿性好,稳定性高,低泡,无毒,CMC值小,在低浓度下具有很好的表面活性,既能使封闭氧化膜达到优质水平,又能保证封闭液无有害物污染。  2.4 FS1浓度的确定  以12号硬铝型材为试样,采用生产线上常规预处理后,进行硫酸阳极氧化,膜厚10 ~20μm。然后在去离子水封闭试验槽中封闭,温度93℃,时间25min,封闭液中加入不同浓度的FS1,封闭氧化膜外观见表2:  表2 FS1浓度与氧化膜外观  当FS1浓度低于0.04ml/L时,仍有起粉现象,防粉效果不明显;当浓度大于0.25ml/L时,虽然防粉效果较好,但封闭液中出现大量泡沫,造成氧化膜表面产生斑痕,难以洗掉。表面活性剂的浓度为CMC时,界面张力最低,所以用量多在CMC的附近范围[5]。  2.5 去离子水防粉热封闭工艺:  去离子水中加入:  FS1:0.06~0.18ml/L PH:5~6(HAC或稀H2SO4调整) 温度:90~96℃ 时间:20 ~28min  3 封闭质量检验  3.1 目视检查  氧化膜外观要求无粉霜、无斑痕。  3.2 耐蚀性检验  点滴溶液:HCl25ml,K2Cr2O7 3g,蒸馏水75ml。点滴实验在氧化膜封闭处理3小时内进行。从点滴液滴在氧化膜表面开始到滴液中的Cr6+被还原成Cr3+,液滴颜色由橙变为绿色止,所需时间为耐蚀时间。16℃时,板材耐蚀时间超过22min。盐雾试验按规定经336 小时连续盐雾腐蚀,氧化膜未出现白色或灰黑色腐蚀点。两相检验均符合航标要求。  4 结论 本试验选出的FS1作防粉剂及防粉热封闭工艺,经过生产实践证明:封闭氧化膜耐蚀性好,防粉效果好,槽液稳定,无有害物污染。 资讯来源: 高分子表面活性剂在铝封闭液中的应用 发布人: 全球电镀网

可溶性表面活性剂相关的资料

可溶性表面活性剂相关的资讯

  • 难溶性药物的溶出度测试系列一:表面活性剂(上)
    前言:溶出是药物吸收和暴露的限速步骤,因此,难溶性药物的体外测试尤其具有挑战性和重要性,需要明确此方法必须能够利用这一特征,通过提供有意义的释放速率的解释,或在某些情况下,解释实际的释放机制,从而提供重要的临床相关信息。 难溶性药物在制剂处方和制造工艺中需要特别注意,如减小颗粒大小的方法以及更复杂的制剂操作和工程技术领域,以提高药物的有效性、增加体内浓度和吸收。有一些新兴课题正在进行深入的探索和理解,特别是诸如溶出方法中的漏槽与非漏槽方面的条件、固态性质的贡献、表面活性剂的化学性质、计算机模拟、剂量倾泻和胶囊属性。 目前,正在开发的口服剂型在水性介质中具有不同水平的溶解度,为了促进具有较低水溶性的药物的溶出测试,管理机构允许使用低浓度的表面活性剂,以提高溶解度。1添加主要目的是提高药物在测试介质中的溶解度以实现漏槽条件,由于正在开发的药物中有很多是难溶性的(统称BCSII类和IV类),尤其要注意在溶出介质中加入表面活性剂,并不是方法开发中增加溶解度的唯一选择。 01表面活性剂“表面活性剂”是“表面活性物质”的一组化学物质的通用术语。表面活性剂分子中存在疏水基团(尾部)和亲水基团(头部),决定了表面活性剂是具有两亲属性(亲水性和疏水性环境的亲和性)的有机化合物。因此,表面活性剂分子同时含有水不溶性(油溶性)和水溶性成分。表面活性剂分子将迁移到水表面,其中不溶性疏水基团可以延伸出大部分水相,或者如果水与油混合,则进入油相,而水溶性头部组保持在水相中。表面活性剂分子的这种排列和聚集起着改变水/空气或水/油界面处水的表面性质的作用(图1)。 02在溶出方法开发中的表面活性剂类型 在溶出方法的开发中,表面活性剂可以通过其离子电荷分为四大类用于筛选目的:• 阴离子:例如十二烷基硫酸钠/月桂基硫酸钠(SLS / SDS)• 阳离子:例如十六烷基三甲基溴化铵(CTAB)• 非离子型:如聚山梨酯20和80,泊洛沙姆• 两性/两性离子:例如卵磷脂,椰油酰胺丙基甜菜碱此外,为了体外评估GIT的性能,可以考虑更复杂的“生物相关的”表面活性剂介质体系。这些制剂模拟人GIT中的禁食(FaSSIF)和进食状态(FeSSIF)环境。2FaSSIF和FeSSIF介质配方可商购。 03溶出介质中的表面活性剂浓度 如上所述,基于表面活性剂的介质的溶解度增加是浓度依赖性的,而较高浓度的表面活性剂会溶解更多的药物,3必须优化表面活性剂浓度以平衡溶解度和漏槽条件与检测制造或稳定性变化方法的区分能力。通常,设定表面活性剂浓度的目标是在溶出介质中使用尽可能少的表面活性剂,以实现所需的漏槽条件和方法的稳健性,同时实现并保持对药品关键质量属性的区分。 在早期的开发过程中可以评估溶解性和漏槽条件,但是在开发的后期阶段,例如在验证方法可靠性以检测配方/工艺中的有意变化的过程中,该方法的区分特征往往被揭示出来。另外,对于基于表面活性剂的溶出介质,应该考虑两个因素:(i)应提供表面活性剂介质系统以确保方法可转移性。表面活性剂的各种来源有时在制备时导致可变的pH。SDS介质尤其如此,因为这种表面活性剂典型地来自乙氧基化中和过程。(ii)在表面活性剂介质中使用的填充剂的pH值需要在添加表面活性剂之前进行调整。当表面活性剂改变电极的表面环境时,所得到的溶液应被认为是表观pH值。 04表面活性剂在溶出介质开发中的应用 当表面活性剂被添加到溶出介质时,亲水端将与水性介质结合,疏水尾部遇到排斥力,有效地寻找与之相联系的替代相。相之间的“推拉”降低了水相内的分子间作用力,由此降低了表面和界面张力。事实上,界面张力的降低是表面活性剂增溶的关键驱动力。想象一下一种药物由于高疏水性而不溶于水或溶出介质的情况。添加表面活性剂并将其溶解在介质中,它作为延伸/线性单体或自缔合球形存在,分布在介质中。表面活性剂浓度的进一步增加将最终产生胶束,多个表面活性剂分子的自缔合产生表面活性剂尾部的疏水核心的新胶体相。发生这种相变的浓度称为临界胶束浓度(CMC)。 在纯水相存在下,溶剂与任何疏水表面的相互作用不是在能量上有利的,导致润湿差和低溶解度。疏水性固体(不溶性药物)与溶解的表面活性剂的疏水性尾部之间的相互作用,降低了润湿和溶解固体所需的能量,从而增加了药物的溶解度。通过随后将溶解的物质分配到表面活性剂胶束的疏水核心中可以进一步提高溶解度。在方法开发中选择最佳的表面活性剂浓度必须考虑胶束的存在与否对体外释放的基本机制的影响。 05表面活性剂对溶解气体的影响 如前所述,溶出介质中表面活性剂的存在改变了介质的表面和界面张力。这导致溶解氧在介质中的溶解度的变化。Fliszar等人4评估了含有表面活性剂的溶出介质中溶解氧的作用。使用含有0.5%SLS,2.0%SLS和0.5%吐温80的含水(不含表面活性剂)介质和溶出介质,研究了几种标准制剂对氧溶解的作用。 在这项研究中,含有表面活性剂的介质的氧含量由于表面张力的降低而被发现为7.5-8.5mg/mL。然而,不含表面活性剂的水性介质更低,为5.5mg/mL。不管所用的脱气方法(在真空下搅拌,加热,超声处理,氦气喷射和膜过滤),一旦脱气完成,所有介质准备重新获得或重新生成。初始氧含量和通气达到平衡的持续时间取决于用于脱气的方法(图2-4)。评估氧含量的增加对其溶解的影响。研究证实,含有表面活性剂的介质在初始时间点没有发现任何结果值(误差范围内)(图5和6)。 此外,已知对溶解氧敏感的化合物(泼尼松)在通气和脱气(换句话说,含氧量)反应中的溶出曲线显示出显著的变化,如图7所示。从这项工作可以得出结论,含表面活性剂的介质迅速恢复其平衡氧含量,并且变化具有最小误差。该研究证实,在实验开始之前,介质中的溶解气体达到平衡是很重要的。 LOGAN将持续分享难溶性药物的溶出度测试系列的相关文献! 参考文献:1. Noory, C., Tran, N., Ouderkirk, L., Shah, V. Steps for development of a dissolution test for sparingly water-soluble drug products. Dissolut.Technol., 2000, 7(1), 16–18. 2. Bhagat, N. B., Yadav, A. B., Mail, S. S., Khutale, R. A., Hajare, A. A., Salunkhe,S. S., Nadaf, S. J. A review on development of biorelevant dissolution medium. J. Drug Deliv. Ther., 2014, 4(2), 140–148. 3. Shah, V. P., Konecny, J. J., Everett, R. L., Mc Cullough, B., Noorizadeh,A. C., Skelly, J. P. In vitro dissolution profile of water-insoluble drug dosage forms in the presence of surfactant. Pharm. Res., 1989, 6(7), 612–618. 4. Fliszar, K. A., Forsyth, R. J., Zhong, L., Martin, G. P. Effects of dissolved gases in surfactant dissolution media. Dissolut. Technol., 2005, 12(3), 6–10.
  • 新型非离子表面活性剂在自上而下蛋白质组学中的应用
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的Letter,Nonionic, Cleavable Surfactant for Top-Down Proteomics [1],文章的通讯作者是威斯康星大学麦迪逊分校的葛瑛教授和Kyle A. Brown博士。非离子表面活性剂是从细胞中溶解和纯化蛋白质的通用工具,是结构生物学中使用的关键试剂。N-dodecyl-β-D-maltoside(DDM)是最受欢迎的非离子表面活性剂之一,用于从非变性环境中提取蛋白质进行下游生物学实验。然而,表面活性剂的存在,即使是像DDM这样温和的表面活性剂,依然会对自上而下蛋白质组学分析产生不利影响。与表面活性剂相关的信号抑制一般是由低分子量物质较高的电离效率和信噪比引起的。此外,表面活性剂的存在会对常见的前端蛋白质分离技术产生负面影响,例如对于反相液相色谱(RPLC)而言,可能会导致再现性和稳健性方面的潜在问题。克服表面活性剂在下游蛋白质组学分析中的不兼容性问题的一种方法是插入一个可裂解键(例如酸或光不稳定键),能够在质谱分析之前降解为无害的副产物。然而通常用于蛋白质组学的可裂解表面活性剂含有变性阴离子基团,如硫酸盐,不能用于需要非变性条件的应用。因此,急需开发一种可以在非变性条件下辅助传统的蛋白质制备方法的可裂解表面活性剂,并能适用于下游蛋白质组学分析。本文中,作者首次使用了一种非离子型可裂解的表面活性剂N-decyl-disulfide-β-D-maltoside(DSSM),用于自上而下的蛋白质组学。(图1)  图1. DSSM在蛋白质组学中的应用  首先,作者在变性条件下,用碳酸酐酶(29.1 kDa)评价了DSSM与ESI-MS分析的相容性。表面活性剂通过TCEP在4℃条件下降解2 h,在DSSM降解和离心后,没有观察到不溶性降解产物。    图2. DSSM与完整蛋白ESI-MS分析的相容性。  作者进一步评估了DSSM与RPLC-MS的兼容性,以研究膜蛋白。膜蛋白是一类重要的药物靶点,由于其固有的低溶解性和低丰度,通常难以使用自上而下蛋白质组学进行研究。作者对一种模型离子通道蛋白KcsA进行了DSSM辅助膜蛋白组学分析。使用氯仿:甲醇:水沉淀法去除不相容的缓冲组分(盐、洗涤剂等)后,在DSSM (2× CMC)中溶解KcsA。表面活性剂用TCEP(在水中或50%异丙醇中)降解,用CID进行RPLC-MS/MS破碎。结果显示,作者成功地表征了防止通道失活的突变(E71A)。(图3)    图3.DSSM溶解膜蛋白的自上而下蛋白质组学  最后,作者利用DSSM提取哺乳动物细胞内源性蛋白,表面活性剂降解后直接用RPLC MS/MS进行分析。在采用TopPIC对数据进行分析之后,作者通过四次LC-MS/MS实验从206个蛋白质组中鉴定出276种proteoform。作者证明了DSSM是一种有价值的用于细胞裂解的表面活性剂,并可以用于RPLC-MS/MS分析进行proteoform鉴定。  图4. 使用DSSM从细胞裂解液中提取的内源性蛋白质的自上而下蛋白质组学总的来说,作者证明DSSM可以促进膜蛋白的自上而下蛋白质组学表征,以确定序列变异和翻译后修饰(PTMs)。未来在蛋白质组学实验和结构生物学研究中,DSSM可以作为DDM的一般替代品。  撰稿:张颖编辑:李惠琳文章引用:Brown KA, Gugger MK, Yu Z, Moreno D, Jin S, Ge Y. Nonionic, Cleavable Surfactant for Top-Down Proteomics. Anal Chem. 2023 Jan 6.  李惠琳课题组网址 www.x-mol.com/groups/li_huilin  参考文献  Brown KA, Gugger MK, Yu Z, Moreno D, Jin S, Ge Y. Nonionic, Cleavable Surfactant for Top-Down Proteomics. Anal Chem. 2023 Jan 6.
  • 光度滴定法滴定阴离子表面活性剂
    2010年元月下旬,我公司受武汉俄美达公司的委托,用阳离子表面活性剂滴定该产品中的阴离子表面活性剂,从而测定乳化液产品的浓度.我们用移液器吸取样品溶液放入 烧杯中,加适量体裁衣 蒸馏水,不加滴定任可指示剂,选用黄色FJA-1 型光度滴定传感器(南京传滴仪器设备有限公司),用阳离子表面活性滴定剂(俄美达提供的海明试剂),在FJA-2 微机控制自动滴定系统上对一个已知的标样和二个未知样品进行光度自动滴定。测量结果光度滴定曲线清晰,且有较好的重现性,详见www.kew.cn.
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制