流动能量

仪器信息网流动能量专题为您整合流动能量相关的最新文章,在流动能量专题,您不仅可以免费浏览流动能量的资讯, 同时您还可以浏览流动能量的相关资料、解决方案,参与社区流动能量话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

流动能量相关的耗材

  • THZ功率能量计_英国 Thomas KeatingTHz 功率/能量计
    TK公司的THz功率/能量计是一款最新的带USB接口的绝对功率/能量计,具有噪声的连续FFT显示和功率级的动态数字显示功能。该系统包括两部分:功率计探头和支持单元 特点: 2测量自由空间光束功率2可在计算机上显示率2软件控制下,使用电子薄膜加热实现全自动绝对校准2频率相关窗口降低纠错率2准确性高于10%2NEP典型值为:5μW/Hz1/22能量测量,典型的NEJ约为1μJ2宽带光谱:30GHz到3THz以上2感应区域大约Φ30mm 支持单元:2支持单元基于NationalInstrumentsUSB-6211数据采集模块。2附带的电子器件可增加校准时的薄膜加热功能和放大从探头的扩音压力传感器输出的信号。2写入LabVIEW的软件应用了锁定放大器,可以显示微波功率。
  • 多功能量子效率测量系统配件
    超级多功能量子效率测量系统配件成功问世,一套量子效率测试系统可以测量:薄膜厚度, 折射率,透过率,光学常数, 光谱响应,外量子效率和内量子效率。多功能量子效率测量系统配件是特别为太阳能光伏电池(器件)的测量而设计开发的新一代量子效率测试系统。它可以测量光伏器件的光谱响应(Spectral Response, SR, A/W),外量子效率(External Quantum Efficiency, EQE/IPCE,%) 和内量子效率(Internal Quantum Efficiency, IQE,%)多功能量子效率测量系统配件特色×光路全部采用光纤传导替代自由空间光系统(Free-Space Optics), 从而可以保证用户长时间使用而不需要准直或调节光路,也不需要日常频繁地移动光学器件或维护,×光路传导系统也规避了周围环境光线对测量的影响。×快速测量EQE/IQE测量(5分钟内就可测量串联光伏电池的全部特性);×真正全部匹配各种光伏技术(C-Si,多晶硅,硅薄膜电池, CIS/CIGS,有机光谱电池等);×根据用户的需求提供订制化服务;×集成其它光学测量功能,如”薄膜厚度测量“功能。内量子效率测量系统测量方法多功能量子效率测量系统配件由300-1100nm的光源和1/4m的单色仪构成。内部还配置电动的6位滤波片轮实现高精度地测量。而光电流(Photocurrent)测量是通过锁相放大器和数字控制的chopper实现的。 外量子效率测量系统的软件控制光源(LED),使用高性能光电二极管作为参考,可对串联电池进行偏置测量(Biasing Measurement)。多功能量子效率测量系统配件对于内量子效率(IQE)的测量是通过使用两个积分球与一个微型光谱仪联合实现的。其中微型光谱仪用于确定反射率和透过率,标定(校准)单色仪的输出光谱带宽。对于我们还有重要的配件供用户选择:安装样品的温度控制基座和外部电压偏倚源共选择。多功能量子效率测量系统配件的软件全天候控制这个套系统。该软件基于LABVIEW构建,不仅可以控制系统工作,处理电子和光谱测量,还具有极其广泛的拓展性。软件采用”指导提示性”界面设计,指导用户一步步完成实验操作,从而大大方便用户的使用。即使没有使用经验的人员也能在软件的提示下工作。量子效率测试系统软件提供如下两个工作模块:1) EQE-模块用于测量外部量子效率,控制所有二级模块如温度和偏置测量等》2) IQE-模块用于反射率和透过率,计算内量子效率,定义单色仪的输出带宽,不要激光和特殊校准配件和程序。
  • 超高能量脉冲Nd:YAG激光器
    LPY10J 超高能量脉冲Nd:YAG激光器特点:坚固的工业化结构能量可达10J@1064nm能量可达5J@532nm望远镜谐振腔或高斯谐振腔可选种子注入源3倍频和4倍频可选完整的RS232软件控制应用:激光冲级强化LIBS系统全息等离子体物理LPY10J激光系统提供10J Q开关能量输出。坚固稳定的自承重殷钢结构可以应用于工业和科研领域。模块化设计使标准激光器配置使用相同的基本激光组件。可选注入种子光提供窄线宽输出。2倍频,3倍频,4倍频发生器可选。其他选件包括选择不同输出波长的自动移动反射镜,能量监控和自动输出峰值。

流动能量相关的仪器

  • 安捷伦Seahorse XFe24 细胞能量代谢分析仪简介:安捷伦Seahorse XFe24 分析仪在 24 孔板中检测活细胞的 OCR 和 ECAR。这些数值是线粒体呼吸和糖酵解的关键指标,可在系统水平了解培养细胞,胰岛和体外样品的细胞代谢功能。相关资料下载请点击:http://www.instrument.com.cn/netshow/SH104076/download.htm安捷伦Seahorse XFe24 细胞能量代谢分析仪特性:1、实时结果 — 该整合系统可在几分钟内报告代谢率,而无需样品提取或标记。Wave 软件可控制仪器,并实时执行速率测定以当日内提供测试结果。2、活细胞响应 — 实时检测底物,抑制剂和其他化合物的响应,其通过 4 加药口系统实现加药并自动混合,同时保持生理温度 (37 oC)。3、高灵敏度 — 可分析自定义 24 孔板中每孔仅 10000 个细胞。细胞数目需求根据细胞类型所不同;请参考细胞参考数据库了解详细信息。相比 96 孔系统,24 孔微孔板和系统可容纳更大和/或更多的代谢活性样品。4、拥有精密控温加热托盘,可维持 16-42 oC(室温以上 12-20 oC),因此兼容多种样品。5、采用 Seahorse XF24 胰岛捕获板可分析胰岛功能或其它流动样品6、采用 Seahorse XF 细胞线粒体压力测试检测线粒体功能7、采用 Seahorse XF 细胞能量表型测试可在一小时内生成一种代谢表型8、利用 Seahorse XF 糖酵解速率测试分析活细胞内的糖酵解速率9、采用 Seahorse XF 线粒体底物分析测试,快速检测细胞能量生成对线粒体底物的依赖性10、使用 Seahorse Wave 软件可轻松创建分析实验方案和分析数据仅限研究使用。不可用于诊断目的。
    留言咨询
  • ▌ 产品特点● 检测项目模块独立化设计,反应过程全程密闭,支持多个项目同时检测● 采用国际先进的空气间隔流动技术,样品反应完全,减少样品残留,避免样品相互干扰● 全稳态检测,灵敏度高,稳定性好● 内径为2mm的石英反应混合圈,具有良好的通过性和化学惰性,记忆效应小,不易堵塞● 采用吹脱蒸馏技术,效率高、寿命长,尤其适用于基体复杂的污水检测● 样品和试剂无需过滤和脱气,减少工作量● 在线试样前处理系统包含在线加样、混合、加热、消解、蒸馏、透析、萃取等● 在线自动加液、混匀、稀释、前处理、脱气、检测、清洗、数据处理和开关机,完成批量试样的全自动检测● 采用低功耗LED光源,光源能量强,稳定时间短,使用寿命长● 采用全谱直读CCD检测器或高灵敏度硅光检测器,CCD检测器可实现多波长同时检测,扣除各种背景干扰,双光束硅光检测器动态范围宽,灵敏度高,稳定性好● 可选择多种规格检测池(10mm~200mm),满足不同灵敏度测试项目的检测需求● 可配备多种型号自动进样器,均可实现采样针自动清洗且清洗液自动更换和碳纤维和玻璃两种进样针可选 ▌ 适用标准方法符合GB、HJ、EPA与ISO等标准HJ 665-2013水质 氨氮的测定 连续流动-水杨酸分光光度法HJ 670-2013水质 磷酸盐和总磷的测定 连续流动-钼酸铵分光光度法HJ 667-2013水质 总氮的测定 连续流动-盐酸萘乙二胺分光光度法CJT 141-2018城镇供水水质标准检验方法(氰化物、硫化物、挥发酚、阴离子合成洗涤剂)SL/T 788-2019水质总氮、挥发酚、硫化物、阴离子表面活性剂和六价铬的测定连续流动分析—分光光度法NYT1121.7-2014土壤中有效磷的测定NYT1228-2015森林土壤中全氮的测定ISO14403-2012Water quality-Determination of tatol cyanide and free using flow analysis(水质-总氰化物-游离氰化物的测定 流动分析法)ISO14402:1999Water quality- Determination of phenol index by flow analysis(水质 挥发酚的测定 流动分析法)ISO23913:2016Water quality-Determination of chromium(Ⅵ)--Method using flow analysis (水质 六价铬的测定 流动分析法)ISO15681-2:2003Water quality-Determination of orthophosphate and total phosphorus contents by flow analysis(水质 磷酸盐和总磷的测定 流动分析法) ▌ 应用领域● 适用于地表水、地下水、饮用水、海水、污水、土壤、烟草、肥料、食品、牛奶及制品等行业 ▌ 测试项目● 用于总氰化物、氰化物、挥发酚、阴离子洗涤剂、氨氮、磷酸盐、总磷、总氮、硫化物、六价铬、硝酸盐、亚硝酸盐、高锰酸盐指数、尿素等多种项目的全自动分析
    留言咨询
  • ▌ 产品特点● 检测项目模块独立化设计,反应过程全程密闭,支持多个项目同时检测● 采用国际先进的空气间隔流动技术,样品反应完全,减少样品残留,避免样品相互干扰● 全稳态检测,灵敏度高,稳定性好● 内径为2mm的石英反应混合圈,具有良好的通过性和化学惰性,记忆效应小,不易堵塞● 采用吹脱蒸馏技术,效率高、寿命长,尤其适用于基体复杂的污水检测● 样品和试剂无需过滤和脱气,减少工作量● 在线试样前处理系统包含在线加样、混合、加热、消解、蒸馏、透析、萃取等● 在线自动加液、混匀、稀释、前处理、脱气、检测、清洗、数据处理和开关机,完成批量试样的全自动检测● 采用低功耗LED光源,光源能量强,稳定时间短,使用寿命长● 采用全谱直读CCD检测器或高灵敏度硅光检测器,CCD检测器可实现多波长同时检测,扣除各种背景干扰,双光束硅光检测器动态范围宽,灵敏度高,稳定性好● 可选择多种规格检测池(10mm~200mm),满足不同灵敏度测试项目的检测需求● 可配备多种型号自动进样器,均可实现采样针自动清洗且清洗液自动更换和碳纤维和玻璃两种进样针可选 ▌ 适用标准方法符合GB、HJ、EPA与ISO等标准HJ 665-2013水质 氨氮的测定 连续流动-水杨酸分光光度法HJ 670-2013水质 磷酸盐和总磷的测定 连续流动-钼酸铵分光光度法HJ 667-2013水质 总氮的测定 连续流动-盐酸萘乙二胺分光光度法CJT 141-2018城镇供水水质标准检验方法(氰化物、硫化物、挥发酚、阴离子合成洗涤剂)SL/T 788-2019水质总氮、挥发酚、硫化物、阴离子表面活性剂和六价铬的测定连续流动分析—分光光度法NYT1121.7-2014土壤中有效磷的测定NYT1228-2015森林土壤中全氮的测定ISO14403-2012Water quality-Determination of tatol cyanide and free using flow analysis(水质-总氰化物-游离氰化物的测定 流动分析法)ISO14402:1999Water quality- Determination of phenol index by flow analysis(水质 挥发酚的测定 流动分析法)ISO23913:2016Water quality-Determination of chromium(Ⅵ)--Method using flow analysis (水质 六价铬的测定 流动分析法)ISO15681-2:2003Water quality-Determination of orthophosphate and total phosphorus contents by flow analysis(水质 磷酸盐和总磷的测定 流动分析法) ▌ 应用领域● 适用于地表水、地下水、饮用水、海水、污水、土壤、烟草、肥料、食品、牛奶及制品等行业 ▌ 测试项目● 用于总氰化物、氰化物、挥发酚、阴离子洗涤剂、氨氮、磷酸盐、总磷、总氮、硫化物、六价铬、硝酸盐、亚硝酸盐、高锰酸盐指数、尿素等多种项目的全自动分析
    留言咨询

流动能量相关的试剂

流动能量相关的方案

流动能量相关的论坛

  • 需要每次“自动能量平衡”吗?

    最近老师让做石墨炉,让调到最佳参数,我用的是北京普析 的TAS990仪器。 测钴元素。调节能量平衡时,用氘灯扣背景,很不好调,要进入高级调试。 红线和绿线必须要同时达到100%左右。要改变工作灯电流的时候,能量是不是每次需要“自动能量平衡”??知道的师兄师姐们帮个忙哦~!谢了!!!

  • 自动能量平衡

    灯预热30分钟后,能量为99.7点火后达到热平衡能量一直跳什么原因?而且我发现光斑不在燃烧头缝中间而是偏里,是什么原因呢,

  • 自动能量平衡

    是不是点火后,能量不在95以上都要能量平衡?普析 TAS-990FPS:Z版主说一下您的仪器和型号,这样讨论更有意义,仪器不一样能量平衡要求不一样

流动能量相关的资料

流动能量相关的资讯

  • 工业和信息化部等六部门发布关于推动能源电子产业发展的指导意见
    1月17日,工业和信息化部等六部门发布了关于推动能源电子产业发展的指导意见。意见提出:到2025年,产业技术创新取得突破,产业基础高级化、产业链现代化水平明显提高,产业生态体系基本建立。高端产品供给能力大幅提升,技术融合应用加快推进。能源电子产业有效支撑新能源大规模应用,成为推动能源革命的重要力量。到2030年,能源电子产业综合实力持续提升,形成与国内外新能源需求相适应的产业规模。产业集群和生态体系不断完善,5G/6G、先进计算、人工智能、工业互联网等新一代信息技术在能源领域广泛应用,培育形成若干具有国际领先水平的能源电子企业,学科建设和人才培养体系健全。能源电子产业成为推动实现碳达峰碳中和的关键力量。附全文:工业和信息化部等六部门关于推动能源电子产业发展的指导意见工信部联电子〔2022〕181号各省、自治区、直辖市人民政府,国务院各部委、各直属机构:能源电子产业是电子信息技术和新能源需求融合创新产生并快速发展的新兴产业,是生产能源、服务能源、应用能源的电子信息技术及产品的总称,主要包括太阳能光伏、新型储能电池、重点终端应用、关键信息技术及产品(以下统称光储端信)等领域。随着全球加快应对气候变化,“能源消费电力化、电力生产低碳化、生产消费信息化”正加速演进。能源电子既是实施制造强国和网络强国战略的重要内容,也是新能源生产、存储和利用的物质基础,更是实现碳达峰碳中和目标的中坚力量。为推动能源电子产业发展,从供给侧入手、在制造端发力、以硬科技为导向、以产业化为目标,助力实现碳达峰碳中和,经国务院同意,现提出以下意见:一、总体要求(一)指导思想以习近平新时代中国特色社会主义思想为指导,深入贯彻落实党的二十大精神,立足新发展阶段,完整、准确、全面贯彻新发展理念,构建新发展格局,以深化供给侧结构性改革为主线,以改革创新为根本动力,以构建产业生态体系为目标,以做优做强产业基础和稳固产业链供应链为根本保障,抓住新一轮科技革命和产业变革的机遇,推动能源电子产业发展,狠抓关键核心技术攻关,创新人才培养模式,推进能源生产和消费革命,加快生态文明建设,确保碳达峰碳中和目标实现。(二)基本原则市场主导、政策支持。发挥市场在资源配置中的决定性作用,强化企业市场主体地位,营造良好的市场环境。更好发挥政府作用,完善政策机制,加强政策引领。统筹规划、融合发展。优化顶层设计,坚持系统观念,协调供需关系。加强产业链上下游协同,促进“光储端信”全链条融合创新,统筹推进产业集聚发展。创新驱动、开放合作。营造开放包容的创新环境,鼓励技术、机制及模式创新。建立国际开放合作体系,打造具有全球竞争力的能源电子产业链。安全高效、持续发展。加强安全技术攻关和产品提质增效,健全技术标准和检测认证体系。全面推行绿色制造和智能制造,促进能源电子产业绿色低碳可持续发展。(三)发展目标到2025年,产业技术创新取得突破,产业基础高级化、产业链现代化水平明显提高,产业生态体系基本建立。高端产品供给能力大幅提升,技术融合应用加快推进。能源电子产业有效支撑新能源大规模应用,成为推动能源革命的重要力量。到2030年,能源电子产业综合实力持续提升,形成与国内外新能源需求相适应的产业规模。产业集群和生态体系不断完善,5G/6G、先进计算、人工智能、工业互联网等新一代信息技术在能源领域广泛应用,培育形成若干具有国际领先水平的能源电子企业,学科建设和人才培养体系健全。能源电子产业成为推动实现碳达峰碳中和的关键力量。二、深入推动能源电子全产业链协同和融合发展(四)加强供需两端统筹协调面向碳达峰碳中和目标,系统谋划能源电子全产业链条,以高质量供给引领和创造新需求,提升供给体系的韧性和对需求的适配性。鼓励以企业为主导,开展面向市场和产业化应用的研发活动,扩大光伏发电系统、新型储能系统、新能源微电网等智能化多样化产品和服务供给。推动能源电子重点领域深度融合,提升新能源生产、存储、输配和终端应用能力。推动能源绿色低碳转型,促进清洁能源与节能降碳增效、绿色能源消费等高效协同。(五)促进全产业链协同发展把促进新能源发展放在更加突出的位置,积极有序发展光能源、硅能源、氢能源、可再生能源,推动能源电子产业链供应链上下游协同发展,形成动态平衡的良性产业生态。引导太阳能光伏、储能技术及产品各环节均衡发展,避免产能过剩、恶性竞争。促进“光储端信”深度融合和创新应用,把握数字经济发展趋势和规律,加快推动新一代信息技术与新能源融合发展,积极培育新产品新业态新模式。推动基础元器件、基础材料、基础工艺等领域重点突破,锻造产业长板,补齐基础短板,提升产业链供应链抗风险能力。(六)健全技术创新支撑体系在能源电子领域支持建立制造业创新中心、碳中和未来技术学院等研发创新平台,推动产业基础研究,加大低碳零碳负碳等关键共性技术、前沿引领技术、现代工程技术、颠覆性技术研发力度。支持企业、高等院校及科研院所加强合作,构建多层次联合创新体系,强化创新链产业链融合,形成技术创新攻坚合力。鼓励地方围绕特色或细分领域,开展关键技术研发与产业化,形成差异化发展。充分发挥人才第一资源作用,加强能源电子创新人才体系建设。三、提升太阳能光伏和新型储能电池供给能力(七)发展先进高效的光伏产品及技术加快智能光伏创新突破,发展高纯硅料、大尺寸硅片技术,支持高效低成本晶硅电池生产,推动N型高效电池、柔性薄膜电池、钙钛矿及叠层电池等先进技术的研发应用,提升规模化量产能力。鼓励开发先进适用的智能光伏组件,发展智能逆变器、控制器、汇流箱、跟踪系统等关键部件。加大对关键技术装备、原辅料研发应用的支持力度。鼓励开发安全便捷的户用智能光伏系统,鼓励发展光伏充电宝、穿戴装备、交通工具等移动能源产品。探索建立光伏“碳足迹”评价标准并开展认证。加快构建光伏供应链溯源体系,推动光伏组件回收利用技术研发及产业化应用。专栏1 太阳能光伏产品及技术供给能力提升行动晶硅电池。支持开展大尺寸和双面、PERC、PERC+SE、MBB等PERC+高效电池技术的规模化量产。开展TOPCon、HJT、IBC等高效电池及组件的研发与产业化,突破N型电池大规模生产工艺。薄膜电池。统筹开发钙钛矿电池(含钙钛矿/晶硅叠层电池)、非晶硅/微晶硅/多晶硅薄膜电池、化合物薄膜电池等高效薄膜电池技术。开发BIPV构件、车船用构件、户外用品等产品,拓展应用领域。光伏材料和设备。开发高纯度、低成本多晶硅材料和高性能硅片,提升大尺寸单晶硅拉棒、切片等制备工艺技术,提升电子浆料、光伏背板、光伏玻璃、封装胶膜、电子化学品等关键光伏材料高端产业化能力。支持高效闭环硅料全套产线突破,提升还原炉、单晶炉、PECVD、切片机、丝网印刷机、光电检测设备等水平。智能组件及逆变器。发展具有优化消除阴影遮挡功率损失、失配损失、消除热斑、智能控制关断、智能光照跟踪、实时监测运行等功能的智能光伏组件产品,提升光伏组件轻质化、柔性化、智能化水平。开发新型高效率和高可靠性逆变器,提高光伏电站监控运维水平。系统和运维。研发推广智能管理系统和集成运维技术,提高光伏发电全周期信息化管理水平。结合5G、AI、机器视觉、无人机等开展无人智慧化电站运维系统研究,开发光伏电站系统智能清洗机器人、智能巡检无人机、智能AI系统平台等产品。推广应用1500V光伏系统技术。(八)开发安全经济的新型储能电池加强新型储能电池产业化技术攻关,推进先进储能技术及产品规模化应用。研究突破超长寿命高安全性电池体系、大规模大容量高效储能、交通工具移动储能等关键技术,加快研发固态电池、钠离子电池、氢储能/燃料电池等新型电池。推广智能化生产工艺与装备、先进集成及制造技术、性能测试和评估技术。提高锂、镍、钴、铂等关键资源保障能力,加强替代材料的开发应用。推广基于优势互补功率型和能量型电化学储能技术的混合储能系统。支持建立锂电等全生命周期溯源管理平台,开展电池碳足迹核算标准与方法研究,探索建立电池产品碳排放管理体系。专栏2 新型储能电池产品及技术供给能力提升行动锂离子电池。支持开发超长寿命高安全性储能锂离子电池。优化设计和制造工艺,从材料、单体、系统等多维度提升电池全生命周期安全性和经济性。推进聚合物锂离子电池、全气候电池、固态电池和快充电池等研发和应用。锂电材料及装备。保障高性能碳酸锂、氢氧化锂和前驱体材料等供给,提升单晶高镍、磷酸铁锰锂等正极材料性能。提高石墨、锂复合负极等负极材料应用水平。加快电解液用高纯碳酸酯溶剂、高纯六氟磷酸锂溶质等产业化应用。提升高破膜高粘接性功能隔膜的性能。突破搅拌、涂覆、卷绕、分切等高效设备。钠离子电池。聚焦电池低成本和高安全性,加强硬碳负极材料等正负极材料、电解液等主材和相关辅材的研究,开发高效模块化系统集成技术,加快钠离子电池技术突破和规模化应用。液流电池。发展低成本、高能量密度、安全环保的全钒、铬铁、锌溴液流电池。突破液流电池能量效率、系统可靠性、全周期使用成本等制约规模化应用的瓶颈。促进质子交换膜、电极材料等关键部件产业化。氢储能/燃料电池。加快高效制氢技术攻关,推进储氢材料、储氢容器和车载储氢系统等研发。加快氢、甲醇、天然气等高效燃料电池研发和推广应用。突破电堆、双极板、质子交换膜、催化剂、膜电极材料等燃料电池关键技术。支持制氢、储氢、燃氢等系统集成技术开发及应用。超级电容器。加强高性能体系、高电压电解液技术、低成本隔膜及活性炭技术的研发,提高超级电容器在短时高功率输出、调频稳压、能量回收、高可靠性电源等领域的推广应用。其他新型储能技术及产品。研发新型环保、长寿命、低成本铅炭电池,开发高导电的专用多孔炭材料。推动正负极板栅的塑铅复合化,减少用铅量,提高电池比能量。开发新型空气电池,加强金属负极保护、枝晶抑制、选择性透过膜、电池结构设计等基础研究。鼓励开发规模储能用水系新电池。推动飞轮储能、压缩空气、储热等其他新型储能技术装备研发及产业化突破。电池系统集成、检测评价和回收利用。开发安全高效的储能集成系统,针对电芯衰减、不一致性提高精细化管理水平,增强储能系统高效温控技术,提升电池管理系统性能、可用容量及系统可用度。开发电池全自动信息化生产工艺与装备。加强储能电池多维度安全测试技术、热失控安全预警技术和评价体系的开发与应用,突破电池安全高效回收拆解、梯次利用和再生利用等技术。储能系统智能预警安防。开发基于声、热、力、电、气多物理参数的智能安全预警技术,以及高效、清洁的消防技术。建立储能系统安全分级评估体系,发展基于运行数据驱动和先进人工智能算法的储能系统安全状态动态智能评估技术。四、支持新技术新产品在重点终端市场应用(九)推动先进产品及技术示范面向新型电力系统和数据中心、算力中心、电动机械工具、电动交通工具及充换电设施、新型基础设施等重点终端应用,开展能源电子多元化试点示范,打造一批提供光储融合系统解决方案的标杆企业。依托国家新型工业化产业示范基地等建设,培育形成一批能源电子产业集群,提升辐射带动作用。支持特色光储融合项目和平台建设,推进新技术、新产品与新模式先行先试,提升太阳能光伏发电效率和消纳利用水平。加快功率半导体器件等面向光伏发电、风力发电、电力传输、新能源汽车、轨道交通推广。提高长寿命、高效率的LED技术水平,推动新型半导体照明产品在智慧城市、智能家居等领域应用,发展绿色照明、健康照明。(十)支持重点领域融合发展加快能源电子技术及产品在工业、通信、能源、交通、建筑、农业等领域应用。鼓励建设工业绿色微电网,实现分布式光伏、分散式风电、多元储能、高效热泵、余热余压利用、智慧能源管控等一体化系统开发运行,实现多能高效互补利用。支撑大型风光电基地建设。强化能源电子技术在常规能源领域的融合应用,推动智能化开采和清洁高效利用。推动交通、机械工具电动化,加快电动船舶、电动飞机等研发推广。探索光伏和新能源汽车融合应用路径。推进屋顶、墙面光伏系统研发应用,发展户用光储超微电站,推动光伏、储能电池与建筑建材融合应用。推动农光互补、渔光互补等光伏发电复合开发,鼓励光伏农业新兴商业模式探索,促进农民增收,支持乡村振兴和共同富裕建设。(十一)加大新兴领域应用推广采用分布式储能、“光伏+储能”等模式推动能源供应多样化,提升能源电子产品在5G基站、新能源汽车充电桩等新型基础设施领域的应用水平。面向“东数西算”等重大工程提升能源保障供给能力,建立分布式光伏集群配套储能系统,促进数据中心等可再生能源电力消费。探索开展源网荷储一体化、多能互补的智慧能源系统、智能微电网、虚拟电厂建设,开发快速实时微电网协调控制系统和多元用户友好智能供需互动技术,加快适用于智能微电网的光伏产品和储能系统等研发,满足用户个性化用电需求。五、推动关键信息技术及产品发展和创新应用(十二)发展面向新能源的关键信息技术产品加强面向新能源领域的关键信息技术产品开发和应用,主要包括适应新能源需求的电力电子、柔性电子、传感物联、智慧能源信息系统及有关的先进计算、工业软件、传输通信、工业机器人等适配性技术及产品。研究小型化、高性能、高效率、高可靠的功率半导体、传感类器件、光电子器件等基础电子元器件及专用设备、先进工艺,支持特高压等新能源供给消纳体系建设。推动能源电子产业数字化、智能化发展,突破全环境仿真平台、先进算力算法、工业基础软件、人工智能等技术。推动信息技术相关装备及仪器创新发展。(十三)促进能源电子产业智能制造和运维管理推动互联网、大数据、人工智能、5G等信息技术与绿色低碳产业深度融合。加快智能工厂建设,推进关键工序数字化改造,优化生产工艺及质量管控系统。推动基础材料生产智能升级,提升硅料硅片、储能电池材料和高性能电池等生产、包装、储存、运输的机械化与自动化水平,提高产品一致性和稳定性。支持制造企业延伸服务链条,发展服务型制造新模式,推动提升智能设计、智能集成、智能运维水平。发展智慧能源系统关键技术和电网智能调度运行控制与维护技术。专栏3 能源电子关键信息技术产品供给能力提升行动光电子器件。基于能源电子需求,发展高速光通信芯片、高速高精度光探测器、高速直调和外调制激光器、高速调制器芯片、高功率激光器、光传输用数字信号处理器芯片、高速驱动器和跨阻抗放大器芯片。功率半导体器件。面向光伏、风电、储能系统、半导体照明等,发展新能源用耐高温、耐高压、低损耗、高可靠IGBT器件及模块,SiC、GaN等先进宽禁带半导体材料与先进拓扑结构和封装技术,新型电力电子器件及关键技术。敏感元件及传感类器件。发展小型化、低功耗、集成化、高灵敏度的敏感元件,集成多维度信息采集能力的高端传感器,新型MEMS传感器和智能传感器,突破微型化、智能化的电声器件和图像传感器件。发光二极管。推动高品质、全光谱LED芯片及器件研发,加快提升晶片、银胶、环氧树脂等性能。面向机器视觉、植物生长、紫外消杀等非视觉应用,突破LED生产工艺、高光效黄光LED芯片、新型高效非可见光发光材料等技术,支持新型照明应用。先进计算及系统。加快云计算、量子计算、机器学习与人工智能等技术推广应用。支持研究多域电子电气架构,突破智能设计与仿真及其工具、制造物联与服务、能源大数据处理等高端工业软件核心技术,建立健全能源电子生产运维信息系统。数据监测与运行分析系统。推动建设能源电子产业数据平台,开展平台基础能力、运营服务、产业支撑等运行数据自动化采集,研发平台运行监测及行业运行分析模型,提升数据汇聚、分析、应用能力。六、高度重视产业安全规范和有序发展(十四)加强公共服务平台建设支持能源电子领域建立多类型公共服务平台,培育特色工业互联网平台和监测分析数据平台,推动能源电子产业云建设,组织整合、集成优化各类资源,服务行业发展。探索建立分析评价专业平台,开展产品分析、评价、应用验证等服务。探索建立创新创业孵化平台,推动建立一批能源电子产业生态孵化器、加速器。支持建立能源电子领域知识产权运营中心,开展太阳能光伏、储能电池、终端应用以及信息技术产品知识产权交易与培训、科技成果评价等工作,完善知识产权布局,加强专利分析预警。搭建协同创新和成果转化平台,形成创新成果转化与新能源消费相互促进的良性循环。(十五)健全产业标准体系持续开展光伏、锂电等综合标准化技术体系建设。协同推进智能光伏国家标准、行业标准和团体标准,研究制定锂离子电池全生命周期评价体系及安全标准,加强固态电池、钠离子电池、超级电容器、氢储能/燃料电池等标准体系研究。开展能源电子智能制造与运维、管理控制系统等相关标准研制,加强与现行能源电力系统标准衔接,推动建立产品制造、建设安装、运行监测等环节的安全标准及管理体系。开展国际标准化合作,积极参与国际标准研究制定。(十六)加强行业规范管理加强与有关政策、规划衔接,引导能源电子产业转型升级和健康有序发展,支持智能光伏创新升级和应用示范,实施光伏、锂电等规范条件。加强行业统筹管理,提升项目建设和运营水平。完善检测认证服务,建立与国际接轨互认的检测平台和认证体系。规范质量品牌建设,引导企业建立以质量为基础的品牌发展战略,培育一批具有国际影响力的中国品牌。加强相关产品质量抽检,提高能源电子产品性能及可靠性。(十七)做好安全风险防范坚持底线思维,落实安全生产责任制。引导企业开展安全生产标准化建设,提升能源电子产业本质安全和生产安全。建立光伏发电项目全生命周期管理体系,实现全流程全要素精细化、系统化管理。建设分布式光伏大数据等管理中心,实现组件故障、事故隐患的可视化高效管理。鼓励储能电站定制安全保险,强化安全设施配置,制定完善专业人员培训考核制度,提高风险处置能力。七、着力提升产业国际化发展水平(十八)加快国际合作步伐秉持人类命运共同体理念,充分利用多边和双边合作机制,加强能源电子各领域的交流对话,促进能源电子领域贸易和投资自由化便利化,推动建设公平合理、合作共赢的全球秩序和能源体系,服务应对气候变化和新能源革命大局。在相关国际组织和区域合作等框架下,推动政府部门、研究机构、行业协会、企业间的交流互动,坚持市场驱动和企业自主选择,提升能源电子产业国际合作的水平和层次。(十九)深化全球产业链布局立足国内大循环、促进国内国际双循环,统筹利用国内国际两个市场、两种资源,统筹推动能源电子产业发展。鼓励企业依托绿色“一带一路”建设等机制,加强全球化布局,深化国际产能合作,构筑互利共赢的产业链供应链合作体系。推动能源电子产业国际合作向共同研发、联合设计、市场营销、国际品牌培育等高端环节延伸。积极构建全球产业链体系,鼓励企业依法合规开展投资、建立研发及产业中心,建设全球营销和服务体系。八、强化组织保障措施(二十)加强产业统筹协调加强能源电子产业发展组织领导,坚持系统思维,建立推动产业高质量发展的协调机制,地方有关部门加强协同和上下联动,共同研究能源电子碳足迹、推进大产业大市场建设等重大问题。深化全局观念,加强顶层设计,强化央地协调工作力度,鼓励地方出台配套支持政策。开展能源电子领域“揭榜挂帅”和试点示范,支持举办创新比赛和行业大会,鼓励行业协会、产业联盟、研究机构等加快建设和发展,充分发挥行业组织公共服务和支撑作用。(二十一)积极加大政策扶持充分利用中央及地方相关渠道,落实相关优惠政策措施。加快培育一批以专精特新“小巨人”企业、制造业单项冠军企业、产业链领航企业为代表的能源电子优质企业。研究建立能源电子产业绿色发展指导目录和项目库,发挥国家产融合作平台作用,开展多层次融资对接活动,不断提高金融服务的精准性、针对性和匹配度。综合运用信贷、债券、基金、保险等多种金融工具,加大对能源电子产业链供应链的支持力度。鼓励银行机构立足职能定位,聚焦主责主业,规范开展金融产品和服务创新,助力能源电子产业发展。(二十二)优化完善市场环境发挥市场在资源配置中的决定性作用,推动建立公平竞争、健康有序的市场发展环境。充分利用各类产业基金,为能源电子产业发展提供长期稳定资金。在审慎评估的基础上,引导社会资本等设立能源电子领域多元化市场化产业投资基金,探索社会资本投资新模式。建立健全能源电子产业企业信用体系,推行企业产品标准、质量、安全自我声明和监督制度。推动完善光伏发电等价格形成机制,研究制定储能成本补偿机制,提高新能源投资回报率。(二十三)全面加强人才培养加强能源电子人才队伍建设,完善从研发、转化、生产到管理的多元化、多层次培养体系。优化人才评价和激励制度,畅通人才流动渠道,加强能源电子职业教育和普通教育相互沟通、职前教育和职后教育有效衔接。创新人才培养模式,鼓励高校加快能源电子相关学科专业建设,开展高素质人才联合培养和科学研究,推进与世界高水平大学和学术机构的合作交流。深化能源电子领域产教融合,鼓励校企联合开展产学合作协同育人项目,探索产教融合创新平台建设。工业和信息化部教育部科学技术部中国人民银行中国银行保险监督管理委员会国家能源局2023年1月3日
  • “芯”时代,“芯”动能 ——天瑞仪器精彩亮相第十八届中国国际半导体博览会
    2020年10月14日至16日,第三届全球IC企业家大会暨第十八届中国国际半导体博览会(IC China2020)在上海新国际博览中心落下帷幕。IC China作为中国半导体行业高端年度盛会,以“开放发展 合作共赢—5G时代‘芯’动能”为主题,探讨新冠肺炎疫情下全球半导体产业的协作、创新与发展,展示全球半导体领域新的创新技术和成果,推动全球半导体产业可持续发展。江苏天瑞仪器股份有限公司(以下简称“天瑞仪器”)携手江苏天一瑞合仪器设备有限公司(以下简称“天一瑞合”)一同亮相本次展会,精彩展示公司半导体前沿产品及应用案例。天瑞仪器展台半导体行业从原材料到生产制造都需要应用到分析测试仪器。天瑞仪器作为国内化学分析行业的领航者,专业从事光谱仪、色谱仪、质谱仪和环境检测仪器四大系列分析测试仪器的研发、生产、销售与服务。公司产品丰富,可广泛应用于芯片材料检测与质量控制。此次,天瑞仪器展出产品呈现了其在半导体材料领域的技术应用,吸引了多方关注,为半导体产业链的安全提供了技术和产品的保障。展出产品包括可应用于半导体高纯水质在线检测的POW-I高精度水质重金属ICPMS在线监测系统、 半导体材料成分分析及杂质检测的ICP-3000电感耦合等离子体发射光谱仪、RoHS 有害元素检测的EDX 1800E能量色散X荧光光谱仪以及应用于半导体行业可靠性测试的TYST-600-60超快速冷热冲击试验机(热流仪)、TYCT-300芯片老化试验箱、TYOTC-22-40桌面型在线高低温试验箱和TYHST-40加速寿命试验机(HAST)。参展仪器天瑞仪器展台前咨询产品的客户络绎不绝天瑞仪器工程师为客户详细介绍产品天一瑞合董事长刘湘泉(右二)天一瑞合总经理刘春喜(左二) 现场指导工作目前,中国已经成为全球半导体行业的消费大国。而全球IC企业家大会暨IC China历经多年发展,也已成为了全球集成电路行业具有权威的行业盛会,是开放发展、合作共赢的舞台。天瑞仪器也将把握时代“芯”动能,不断交流合作,共同推动中国半导体行业发展,铸就“芯”时代。
  • 加强科技创新 培育发展新质生产力的新动能——访科技部党组书记、部长阴和俊
    习近平总书记关于新质生产力的重要论述,深刻揭示了科技创新与产业升级、高质量发展的内在关系,是对马克思主义生产力理论的创新和发展,深化了科技创新推动生产力发展的规律性认识,为以科技创新推动高质量发展、支撑中国式现代化建设指明了前进方向。如何理解新质生产力与科技创新的关系?怎样加快培育发展新质生产力的新动能?如何及时将科技创新成果应用到具体产业和产业链上?记者就这些问题采访了科技部党组书记、部长阴和俊。科技创新通过对劳动者、劳动资料、劳动对象“生产力三要素”的改造,从本质上推动新质生产力实现能级跃升记者:如何理解科技创新是发展新质生产力的核心要素?阴和俊:新质生产力是以劳动者、劳动资料、劳动对象及其优化组合的跃升为基本内涵的先进生产力。科技创新是发展新质生产力的核心要素,通过对劳动者、劳动资料、劳动对象“生产力三要素”的改造,增强劳动者认识自然和改造自然的能力,丰富劳动对象种类和形态,创造新的生产要素组合,拓展生产新边界,塑造发展新动能,从本质上推动新质生产力实现能级跃升。科技创新能够促进劳动者全面发展,为加快形成新质生产力锻造一支知识型、技能型、创新型劳动者队伍。随着科技创新带来的劳动资料和劳动对象升级、拓展,新型劳动者需要具备更多专业知识、掌握先进设备以适应新型生产模式。同时,科技创新催生新兴产业,5G通信、智能网联、无人工厂、智慧港口等进一步解放了劳动者,消除或弱化了自然条件对生产活动的限制,为劳动者提供更好的生产环境。科技创新能够极大拓展劳动对象的范围和类别,为加快形成新质生产力开辟广阔空间。一方面,人工智能、量子科技、生物科技、元宇宙、脑机接口、大数据等新技术的出现极大丰富了劳动对象的种类和形态,拓展了生产新边界,为生产力发展提供新动力。另一方面,新工艺、新技术进一步提高了劳动对象的产品附加值和市场竞争力,加快实现产业转型升级。科技创新能够催生劳动资料革新升级,为加快形成新质生产力注入澎湃动能。新技术、新材料、新工艺的广泛应用,孕育出一大批具有更高科技属性的新型劳动资料,推动生产效率、生产质量不断提高,生产过程向平台化、网络化、协作化转变。在数字化技术加持下,数字经济与实体经济深度融合,产业形态重塑升级,推动生产力不断进步。抓好科技创新这个“源头活水”,不断塑造发展新动能新优势记者:如何加强科技创新,培育发展新质生产力的新动能?阴和俊:培育发展新质生产力,必须抓好科技创新这个“源头活水”,坚持科技引领、创新驱动,不断开辟发展新领域新赛道,不断塑造发展新动能新优势。立足当下,着力攻克关键核心技术“卡脖子”难题,解决产业链供应链受制于人问题;面向未来,着力加速未来科技突破、构筑未来产业先发优势,下好发展新质生产力“先手棋”。一是加强前沿技术和颠覆性技术趋势研判。密切关注集成电路、人工智能、量子科技、生物技术、先进能源等科技前沿突破方向和最新趋势,强化对科技变革性、苗头性态势分析,研判可能形成新质生产力的重点技术和技术群。持续开展常态化技术预测,针对重点前沿领域和未来竞争热点开展动态监测,加强多元布局和并行推进。二是强化国家战略科技力量,完善国家实验室运行管理机制,加快重组全国重点实验室。发挥国家科研机构、高水平研究型大学、科技领军企业优势,集成各方面创新资源,开展“大兵团”作战,加快产出一批重大原创性成果,为加快实现高水平科技自立自强、培育发展新质生产力提供强劲动能。三是聚焦重点产业领域加快研发攻关。从国家紧迫需求出发,举全国之力打好关键核心技术攻坚战,在基础研究、技术研发、产业应用等方面进行系统部署,突破基本原理、基础软硬件、基础材料等瓶颈制约,维护产业链供应链安全稳定,强化科技创新对产业发展的支撑引领作用。四是加快实施引领未来的重大科技项目。围绕新质生产力发展的重大需求,凝练部署一批能够引领未来发展方向的重大科技项目。发挥新型举国体制优势,推动建立适应新质生产力发展的新型科研组织模式和资源配置方式,大力发展目标导向的基础研究,突出前沿技术交叉融合,积极抢占未来产业发展制高点。全面提高科技成果转化和产业化水平,助力新质生产力发展和现代化产业体系建设记者:如何及时将科技创新成果应用到具体产业和产业链上,改造提升传统产业,培育壮大新兴产业,布局建设未来产业,完善现代化产业体系?阴和俊:现代化产业体系是新质生产力的重要载体,科技创新成果应用是发展新质生产力的重要途径。科技创新成果通过转化成为新质生产力,进而推动现代化产业体系升级和发展。科技部将全面提高科技成果转化和产业化水平,助力新质生产力发展和现代化产业体系建设。一是突出企业科技创新主体地位。统筹基础研究、技术创新、成果转化和产业化全链条各环节,依托我国广阔市场空间和丰富场景优势,激励企业加快数智化转型,打造更多具有国际竞争力的科技领军企业。二是强化企业主导的产学研深度融合。围绕现代化产业体系建设重大需求,强化系统观念,推动创新链产业链资金链人才链一体谋划、一体设计,在传统产业、战略性新兴产业、未来产业的重点领域协调推动重大科研成果转化和产业化试点示范,支撑产业基础高级化、产业链现代化,增强我国产业整体竞争力。三是推动“科技—产业—金融”融合发展。以科技创新全链条、科技型企业全生命周期融资两大需求为牵引,坚持支撑科技攻关和服务实体经济同步推进,综合运用信贷、基金、债券以及科技保险等金融手段,为新质生产力加快形成提供灵活充足的资金供给,实现科技、产业、金融良性循环。深化科技体制改革,着力打通束缚新质生产力发展的堵点卡点记者:如何通过深化科技体制改革,着力打通束缚新质生产力发展的堵点卡点,建立高标准市场体系,创新生产要素配置方式,让各类先进优质生产要素向发展新质生产力顺畅流动?阴和俊:改革的过程就是生产关系不断调整适应的过程,与新质生产力发展相适应的新型生产关系需要通过改革形成。深化科技体制改革、提高科技资源配置效率、激发各类创新主体活力,是释放新质生产力澎湃动能的有效手段。下一步,按照党中央部署,科技部将进一步深化科技体制改革,不断破除制约科技创新活力的深层次体制机制障碍,提升国家创新体系整体效能。一是加强改革顶层设计,加快健全新型举国体制。统筹健全科技政策体系,针对国家战略科技力量、战略博弈必争领域强化精准政策支持,推动有为政府和有效市场更好结合,让各类先进优质生产要素向发展新质生产力顺畅流动。二是深化重点领域和关键环节体制机制改革,畅通教育、科技、人才一体发展的良性循环。三是健全科技创新治理机制。完善新技术研发应用的法律制度,优化激励创新的公平竞争市场环境,为新质生产力发展提供良好土壤。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制