纳米棒

仪器信息网纳米棒专题为您整合纳米棒相关的最新文章,在纳米棒专题,您不仅可以免费浏览纳米棒的资讯, 同时您还可以浏览纳米棒的相关资料、解决方案,参与社区纳米棒话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

纳米棒相关的耗材

  • 纳米单晶硅衬底2D线性纳米棒LIGHTSMYTH
    纳米单晶硅衬底2D线性纳米棒LIGHTSMYTH屹持光电提供各种纳米单晶硅衬底2D线性纳米棒,为工业和科研提供低成本的纳米光子学研究。基板可用于光学、生物学、化学、物理学(例如中子散射)、聚合物研究、纳米压印、微流体等各种应用。如果需要,可以用金属或介电涂层涂覆基底。大多数表面特征具有略微梯形的横截面轮廓,具有直平行台面和沟槽。也可以使用格状结构。提供多种特征尺寸和沟槽深度。可以在发货之前拍摄基板的SEM图像以验证确切的轮廓。表中显示的尺寸代表目标值。周期的精度优于0.5%,而沟槽深度和线和空间的宽度可能与目标值相差15%。SEM用于说明目的。可定制更精确尺寸信息。纳米单晶硅衬底2D线性纳米棒LIGHTSMYTH规格描述值基材宽度和高度公差标准公差±0.2 mm通光孔径(CA)距基板边缘0.5 mm(图案可延伸至基板边缘)基材厚度0.675±0.050mmCA表面质量P / N “-P”:60/40,最高20/10CA表面质量P / N “-S”:80/100CA外表面质量无要求材料单晶硅,反应离子蚀刻1、线性纳米棒(线+间隔)P/N周期(nm)凹槽深度(nm)工作周期1线宽度2(nm尺寸3(mm)SNS-C72-1212-50-P1395050%69.512.5×12.5×0.7SNS-C72-2525-50-P1395050%69.525×25×0.75SNS-C36-1212-110-P27811050%13912.5×12.5×0.7SNS-C24-1212-110-P416.611050%20812.5×12.5×0.7SNS-C20-0808-150-D45-P50015044%2208×8.3×0.7SNS-C20-0808-350-D45-P50035044%2208×8.3×0.7SNS-C20-0808-150-D60-P50015060%3008×8.3×0.7SNS-C20-0808-350-D60-P50035060%3008×8.3×0.7SNS-C18-2009-110-D50-P555.511050%27820×9×0.7SNS-C18-2009-140-D50-P555.514050%27820×9×0.7SNS-C18-2009-110-D29-P555.511029%15820×9×0.7SNS-C18-2009-140-D29-P555.514029%15820×9×0.7SNS-C16.7-0808-150-D45-P60015043%2608×8.3×0.7SNS-C16.7-0808-350-D45-P60035043%2608×8.3×0.7SNS-C16.7-0808-150-D55-P60015055%3308×8.3×0.7SNS-C16.7-0808-350-D55-P60035055%3308×8.3×0.7SNS-C16.5-2912-190-P60619050%30329×12×0.7SNS-C16.5-2912-190-S460619050%30329×12×0.7SNS-C16.5-2924-190-P60619050%30329×24.2×0.75SNS-C14.8-2410-170-P67517032%21824×10×0.7SNS-C14.8-2430-170-P67517032%21824×30.4×0.75SNS-C14.3-0808-150-D45-P70015047%3308×8.3×0.7SNS-C14.3-0808-350-D45-P70035047%3308×8.3×0.7SNS-C14.3-0808-150-D55-P70015055%3758×8.3×0.7SNS-C14.3-0808-150-D55-P70015055%3758×8.3×0.7SNS-C12-1212-200-P833.320050%41612.5×12.5×0.7SNS-C12-2525-200-P833.320050%41625×25×0.75SNS-C11.7-1212-200-P85520050%42812.5×12.5×0.7SNS-C11.7-2525-200-P85520050%42825×25×0.75纳米单晶硅衬底2D线性纳米棒LIGHTSMYTH1 占空比表示线(台面)宽度与周期的比率。2 表示台面的宽度值。3 第二维对应于凹槽长度。4 以“-S”结尾的是“科研”等级。它至少有80%的可用面积。可能存在高达80/100表面质量值。5 可提供更大的自定义尺寸2、2D纳米图案(矩形和六边形网格)P/N周期(nm)格子类型凹槽深度特征宽度(nm)尺寸(mm)S2D-24B3-0808-150-P700矩形1502608×8.3×0.7S2D-24B3-0808-350-P700矩形3502608×8.3×0.7S2D-18B3-0808-150-P700矩形1503508×8.3×0.7S2D-18B3-0808-350-P700矩形3503508×8.3×0.7S2D-24C2-0808-150-P600六角1501658×8.3×0.7S2D-24C2-0808-350-P600六角3501658×8.3×0.7S2D-18C2-0808-150-P600六角1502408×8.3×0.7S2D-18C2-0808-350-P600六角3502408×8.3×0.7S2D-24C3-0808-150-P700六角1502208×8.3×0.7S2D-24C3-0808-350-P700六角3502208×8.3×0.7S2D-18C3-0808-150-P700六角1502908×8.3×0.7S2D-18C3-0808-350-P700六角3502908×8.3×0.7S2D-24D2-0808-150-P600六角孔1501808×8.3×0.7S2D-24D2-0808-350-P600六角孔3501808×8.3×0.7S2D-18D3-0808-150-P700六角孔1502008×8.3×0.7S2D-18D3-0808-350-P700六角孔3502008×8.3×0.7S2D-24D3-0808-150-P700六角孔1502908×8.3×0.7S2D-24D3-0808-350-P700六角孔3502908×8.3×0.7rect posthex posthex hole相关产品:脉冲压缩透射光栅高功率光束组合光谱衍射光栅光通信透射衍射光栅纳米单晶硅衬底2D线性纳米棒
  • SIM纳米标尺
    产品特点:GATTA-SIM系列的纳米标尺可以用于检测您的SIM系统的分辨率。该纳米标尺带有两个荧光标记,这些荧光标记都是来自于密集排列的高量子效率的染料分子。两个荧光标记之间的距离固定,尺寸包括120nm,140nm和160nm。我们为您提供带有以下颜色的不同尺寸的纳米标尺,包括:红色(ATTO 647N),黄色(Alexa Fluor 568)或蓝色(Alexa Fluor 488)。纳米标尺,AFM纳米标尺,原子力显微镜纳米标尺,共聚焦显微镜纳米标尺,超高分辨显微镜纳米标尺,SIM纳米标尺,STED纳米标尺,STORM纳米标尺,电镜纳米螺旋标尺,金纳米螺旋标尺,显微镜亮度灵敏度标尺,显微镜纳米标尺技术参数:
  • STED纳米标尺
    产品特点:作为第一个超高分辨率显微技术的STED方法彻底改变了光学显微镜。适用于STED的校准探针--GATTA-STED纳米标尺也终于面世。标尺带有高量子效率的荧光标记染料ATTO 647N。两个荧光分子之间的距离固定,我们提供的尺寸包括:30nm,50nm,70nm和90nm。纳米标尺,AFM纳米标尺,原子力显微镜纳米标尺,共聚焦显微镜纳米标尺,超高分辨显微镜纳米标尺,SIM纳米标尺,STED纳米标尺,STORM纳米标尺,电镜纳米螺旋标尺,金纳米螺旋标尺,显微镜亮度灵敏度标尺,显微镜纳米标尺产品参数:

纳米棒相关的仪器

  • 一、砂磨机介绍①什么是砂磨机?湿磨砂磨机是一种将粉末精制到纳米级的机器。通过在研磨机中与研磨珠一起搅拌来粉碎分解分散液体中的粉体(浆料)。 ②使用砂磨机来使颗粒更细,到底会有什么样的作用呢? ③可使用到砂磨机的产品: ④砂磨机中发生了什么? ⑤砂磨机和球磨机的比较 ⑥单桶循环彩图/双桶循环彩图 ⑦砂磨机的工作原理:砂磨机属于湿法超细研磨设备,,是从球磨机发展而来,广泛应用于超细粉体(亚微米、纳米级粉体)的生产过程中。砂磨机有不同的分类方式:根据搅拌轴的结构形状可分为盘式、涡轮式、棒销式 根据研磨筒的布置形式可以分为立式,卧式 也可根据筒体容积大小区分。 ⑧砂磨机的发展历程砂磨机发展大概经历了以下几个阶段:第一阶段:立式搅拌磨〔棒式+底部筛网分离器)第二阶段:立式盘式砂磨机(盘式+顶部筛网分离器)第三阶段:立式棒销砂磨机(棒式+顶部缝隙分离器)第四阶段:卧式盘式砂磨机(盘式+动态间隙分离器)〔棒式+大过滤面积分离器)第五阶段:立式棒销砂磨机(棒式+无晒网离心分离)适用于小批量生产卧式棒销砂磨机(棒式+大过滤面积分离器)(棒式+无晒网离心分离)适用于大批量生产⑨砂磨机的主要指示A、砂磨机的流量:影响产品细度,产量以及粒度分布。B、搅拌轴线速度:影响研磨效率,物料细度及磨损。线速度大小影响研磨介质施加给物料颗粒的动能强度,一般为8-16m/s。C、介质尺寸:影响研磨效率,产品细度。介质径越小,磨球之间接触点多和接触间隙越小,理论上研磨物料粒径越小,但是还要取决于物料进料粒径等多方面因素,总之合适尺寸的研磨介质,研磨合适粒径的物料。D、介质填充率:影响研磨效率,产品细度。研磨介质装填率高,研磨效率高,但是过高装填率会引起砂磨机温升过高或者出口堵塞。研磨介质装填率过低,研磨效率低,磨损加剧,研磨时间延长 合适的装填率质量计算法=砂磨机有效容积×装填率(70-85%)×介质堆积密度)。E、介质比重:影响研磨效率。产品细度。介质比重越大,动能越大,研磨效率越高。F、分离间隙尺寸:分离器的结构及缝隙宽度决定研磨介质尺寸大小。一般情况下研磨介质直径为砂磨机分离器缝隙宽度的2-4倍。 二、产品说明MQ-B1~B10动态筛网棒效纳米砂磨机是一款超细纳米研磨精密设备,装配尺寸及公差等级较高,能适应批量0.1mm及以下氧化锆球有效研磨,由于筛网是动态分离网,不容易堵机,设备稳定性好。超细纳米研磨,适用小批量高要求纳米级材料行业。 三、主要特点动态筛网,不容易堵网,可用更细的氧化锆球稳定运行。 四、主要技术参数◆适合细度:1um-50nm◆磨介尺寸:≥0.05nm
    留言咨询
  • 一、砂磨机介绍①什么是砂磨机?湿磨砂磨机是一种将粉末精制到纳米级的机器。通过在研磨机中与研磨珠一起搅拌来粉碎分解分散液体中的粉体(浆料)。 ②使用砂磨机来使颗粒更细,到底会有什么样的作用呢? ③可使用到砂磨机的产品: ④砂磨机中发生了什么? ⑤砂磨机和球磨机的比较 ⑥单桶循环彩图/双桶循环彩图 ⑦砂磨机的工作原理:砂磨机属于湿法超细研磨设备,,是从球磨机发展而来,广泛应用于超细粉体(亚微米、纳米级粉体)的生产过程中。砂磨机有不同的分类方式:根据搅拌轴的结构形状可分为盘式、涡轮式、棒销式 根据研磨筒的布置形式可以分为立式,卧式 也可根据筒体容积大小区分。 ⑧砂磨机的发展历程砂磨机发展大概经历了以下几个阶段:第一阶段:立式搅拌磨〔棒式+底部筛网分离器)第二阶段:立式盘式砂磨机(盘式+顶部筛网分离器)第三阶段:立式棒销砂磨机(棒式+顶部缝隙分离器)第四阶段:卧式盘式砂磨机(盘式+动态间隙分离器)〔棒式+大过滤面积分离器)第五阶段:立式棒销砂磨机(棒式+无晒网离心分离)适用于小批量生产卧式棒销砂磨机(棒式+大过滤面积分离器)(棒式+无晒网离心分离)适用于大批量生产⑨砂磨机的主要指示A、砂磨机的流量:影响产品细度,产量以及粒度分布。B、搅拌轴线速度:影响研磨效率,物料细度及磨损。线速度大小影响研磨介质施加给物料颗粒的动能强度,一般为8-16m/s。C、介质尺寸:影响研磨效率,产品细度。介质径越小,磨球之间接触点多和接触间隙越小,理论上研磨物料粒径越小,但是还要取决于物料进料粒径等多方面因素,总之合适尺寸的研磨介质,研磨合适粒径的物料。D、介质填充率:影响研磨效率,产品细度。研磨介质装填率高,研磨效率高,但是过高装填率会引起砂磨机温升过高或者出口堵塞。研磨介质装填率过低,研磨效率低,磨损加剧,研磨时间延长 合适的装填率质量计算法=砂磨机有效容积×装填率(70-85%)×介质堆积密度)。E、介质比重:影响研磨效率。产品细度。介质比重越大,动能越大,研磨效率越高。F、分离间隙尺寸:分离器的结构及缝隙宽度决定研磨介质尺寸大小。一般情况下研磨介质直径为砂磨机分离器缝隙宽度的2-4倍。 二、产品用途MQ-B150~B400高效棒销式纳米陶瓷砂磨机是一款新型大流量循环砂磨机,是目前超细研磨设备的精华。采用循环砂磨工艺或多次研磨工艺能提高产能,产品颗粒级配分布得以优化。稍加一些控制功能,可保证产品的可复制性及节约成本。大尺寸转子加上筒状缝隙式分离器,使该型设备可使用不同材质小粒径磨介。对于有避免金属污染要求的物料,可采用陶瓷(碳化硅、氮化硅、氧化锆) 及聚氨酯结构材料。适用于锂电材料(磷酸铁锂、硅碳负极等)、硅微粉、氧化锆、氧化铝、硅酸锆、电子陶瓷、农药悬浮剂、磁性材料、墨水涂料、医药食品、生物化工及其他纳米级材料领域。 三、主要特点满足相关行业的湿法纳米研磨,清洗方便,维护简单,效率高、产量大、能耗低,控制简单。 四、主要技术参数◆适合细度:1um-50nm◆磨介尺寸:≥0.2nm
    留言咨询
  • 一、砂磨机介绍①什么是砂磨机?湿磨砂磨机是一种将粉末精制到纳米级的机器。通过在研磨机中与研磨珠一起搅拌来粉碎分解分散液体中的粉体(浆料)。 ②使用砂磨机来使颗粒更细,到底会有什么样的作用呢? ③可使用到砂磨机的产品: ④砂磨机中发生了什么? ⑤砂磨机和球磨机的比较 ⑥单桶循环彩图/双桶循环彩图 ⑦砂磨机的工作原理:砂磨机属于湿法超细研磨设备,,是从球磨机发展而来,广泛应用于超细粉体(亚微米、纳米级粉体)的生产过程中。砂磨机有不同的分类方式:根据搅拌轴的结构形状可分为盘式、涡轮式、棒销式 根据研磨筒的布置形式可以分为立式,卧式 也可根据筒体容积大小区分。 ⑧砂磨机的发展历程砂磨机发展大概经历了以下几个阶段:第一阶段:立式搅拌磨〔棒式+底部筛网分离器)第二阶段:立式盘式砂磨机(盘式+顶部筛网分离器)第三阶段:立式棒销砂磨机(棒式+顶部缝隙分离器)第四阶段:卧式盘式砂磨机(盘式+动态间隙分离器)〔棒式+大过滤面积分离器)第五阶段:立式棒销砂磨机(棒式+无晒网离心分离)适用于小批量生产卧式棒销砂磨机(棒式+大过滤面积分离器)(棒式+无晒网离心分离)适用于大批量生产⑨砂磨机的主要指示A、砂磨机的流量:影响产品细度,产量以及粒度分布。B、搅拌轴线速度:影响研磨效率,物料细度及磨损。线速度大小影响研磨介质施加给物料颗粒的动能强度,一般为8-16m/s。C、介质尺寸:影响研磨效率,产品细度。介质径越小,磨球之间接触点多和接触间隙越小,理论上研磨物料粒径越小,但是还要取决于物料进料粒径等多方面因素,总之合适尺寸的研磨介质,研磨合适粒径的物料。D、介质填充率:影响研磨效率,产品细度。研磨介质装填率高,研磨效率高,但是过高装填率会引起砂磨机温升过高或者出口堵塞。研磨介质装填率过低,研磨效率低,磨损加剧,研磨时间延长 合适的装填率质量计算法=砂磨机有效容积×装填率(70-85%)×介质堆积密度)。E、介质比重:影响研磨效率。产品细度。介质比重越大,动能越大,研磨效率越高。F、分离间隙尺寸:分离器的结构及缝隙宽度决定研磨介质尺寸大小。一般情况下研磨介质直径为砂磨机分离器缝隙宽度的2-4倍。 二、产品说明MQ-B10~B60高效棒销式纳米砂磨机是一款新型大流量循环砂磨机,是目前超细研磨设备的精华。采用循环砂磨工艺或多次研磨工艺能提高产能,产品颗粒级配分布得以优化。稍加一些控制功能,可保证产品的可复制性及节约成本.大尺寸转子加上筒状缝隙式分离器,使该型设备可使用不同材质小粒径磨介。对于有避免金属污染要求的物料,可采用陶瓷(碳化硅、氮化硅、氧化锆) 及聚氨酯结构材料。主要适用于锂电材料(磷酸铁锂、硅碳负极等)、硅微粉、氧化锆、氧化铝、硅酸锆、电子陶瓷、农药悬浮剂、磁性材料、墨水涂料、医药食品、生物化工及其他纳米级材料领域。 三、主要特点满足相关行业的湿法纳米研磨,清洗方便,维护简单,效率高、产量大、能耗低,控制简单。 四、主要技术参数 ◆适合细度:1um-50nm◆磨介尺寸:≥0.1mm
    留言咨询

纳米棒相关的试剂

纳米棒相关的方案

  • 天津兰力科:PbSe 纳米棒的模板合成及其性质
    在表面活性剂十六烷基三甲基溴化铵(CTAB) 存在下,利用N2H4 H2O 还原H2SeO3 合成出单质硒纳米管,然后以硒纳米管为模板,与Pb(NO3 ) 2 和N2H4 H2O 在常压低温下反应,制备了PbSe 纳米棒。采用电子透射电镜、X射线衍射等方法对产物进行了表征。探讨了PbSe 纳米棒的形成机理和制备反应的影响因素。测定了产物的荧光性质,并利用电位扫描伏安法研究了所得PbSe 纳米棒的电化学性质。结果表明,所得产物在碱性介质中电化学活性较高,在循环伏安曲线上出现明显的氧化峰和还原峰。
  • Fe2O3H2O纳米棒/环氧树脂复合材料的宽带介电性能
    采用立陶宛Ekspla公司的太赫兹时域光谱测量系统T-Spec,对Fe2O3· H2O纳米棒/环氧树脂复合材料的宽带介电性能进行了研究
  • 天津兰力科:盐酸和磺基水杨酸共掺杂聚苯胺/凹凸棒黏土纳米复合材料的制备与表征
    用快速原位聚合工艺制备了盐酸(HCl)和磺基水杨酸(sulfosalicylic acid,SSA)共掺杂聚苯胺(polyaniline,PANI)/凹凸棒黏土(attapulgite,ATP)纳米复合材料(HCl–SSA–PANI/ATP),用热重–差热分析、X 射线衍射、Fourier 红外光谱、紫外–可见光谱、透射电镜、循环伏安法和Raman 光谱等对所得的复合材料进行了表征。结果表明:HCl 和SSA 所组成的混合酸溶液能快速促进苯胺聚合和PANI 掺杂反应。反应15 min,所制得的纳米复合材料的体积电阻率可达2 Ω· cm。HCl–SSA–PANI 以晶态形式包覆在ATP 表面,形成核壳棒状纳米结构,包覆层厚度在3 nm 左右。纳米复合材料中HCl–SSA–PANI 的包覆率约为27.79%,与纯HCl–SSA–PANI 相比,其耐热性得到了提高,且具有较高的电化学活性。纳米复合材料中由对位聚合生成的HCl–SSA–PANI 为翠绿亚胺结构,其与ATP 之间存在物理作用。

纳米棒相关的论坛

  • 【求助】金纳米棒电子衍射标定

    请各位高手赐教:1 图片效果很差,不知能否标定并确定纳米棒取向2 初次接触SAED,参考了很多资料,但还是在云里雾里的,请高手指点3 做了几个样,SAED效果都不好,不知如何能得到纳米棒较好的SAED图多谢! [img]http://ng1.17img.cn/bbsfiles/images/2009/02/200902190933_133987_1777457_3.gif[/img]

  • 【求助】为什么用SEM看不到金纳米棒的图象啊?

    金棒是用普通的合成方法,CTAB包被的金种调制合成,将其直接滴在乙醇浸泡过的铝箔上,室温晾干,放在场发射SEM(Hitachi S-4800),却看不到一个金纳米棒啊?怎么回事?急啊,请各位支招!感激涕零!

纳米棒相关的资料

纳米棒相关的资讯

  • 国家纳米中心非形状依赖对称性纳米棒组装研究获进展
    style type="text/css".TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }/stylep  微纳加工方法分为“自上而下”和“自下而上”两种基本类型。前者是目前广泛应用于微纳加工领域的主流技术,但其由于受到物理极限的制约,一般加工分辨率在几十纳米量级上。后者则可在更小的尺度(包括分子尺度)上实现加工,被认为是一种突破物理限制的有效途径。然而,“自下而上”的组装方法由于科学认知和实验技术的不足,导致其在低缺陷、大面积、组装过程、组装结构等四个方面存在持续的挑战。相对而言,组装结构面临的障碍最大。这其中最重要问题是如何实现组装对称性的可调控,组装对称性可调控对于组装结构多样性和组装体功能的丰富至关重要。一般而言,由于形状互补性,组装结构对称性受到组装单元的形貌限制,四方单元易于形成四方密排结构,而球型则形成六方密排对称结构。由于在组装动力学过程中组装单元间的复杂力平衡和热力学最小原理的要求,打破形状依赖的组装结构对称性或是难以实现的目标。/pp  中国科学院国家纳米科学中心和中科院纳米科学卓越中心刘前课题组与吴晓春课题组、邓珂课题组,以及美国科罗拉多大学Ivan I. Smalyukh课题组合作,通过引入一种新概念的主导控制力,首次实现了纳米金棒的四方对称性组装,一举突破了一直以来八面体金棒只能是形状依赖的六方对称结构的实验结果。这一结果在八面体银和钯纳米棒上也得到了实现,展示了这种方法的普适性。多尺度模拟计算进一步揭示这种控制力主导了非形状依赖的组装过程,并解释了四方对称比六方对称具有更高的热力学稳定性的实验结果。这一方法开辟了打破形状依赖组装对称性的新途径,为组装结构的多样性和纳米材料组装结构的可设计、可控提供了有力工具,将为推动纳米组装技术的进步提供助力。/pp  该项工作是刘前课题组前期研究的进一步拓展,相关研究结果在线发表在《自然· 通讯》上,研究工作获得了国家重点研发计划纳米科技重点专项、中科院战略性先导科技专项A、国家基金委和欧盟项目的支持。/ppbr//pp style="text-align:center "img alt="" oldsrc="W020171116335815903956.jpg" src="http://img1.17img.cn/17img/images/201711/uepic/363e43be-098e-40e6-9983-f0fef4b2e479.jpg" uploadpic="W020171116335815903956.jpg"//pp style="text-align: center "多尺度模拟计算揭示四方对称的主导控制力和更小的热力学势能/p
  • 半导体所等在纳米点棒异质结的超低频拉曼光谱研究中获进展
    胶体半导体纳米微晶,如CdSe纳米点、CdS纳米棒因其光致发光和光致发光效率很高且发射波长的粒径可调等优良光学和电学性质而在光电器件等方面有重要应用。目前这些应用已经拓展到了激光二极管、激光器、显示屏以及生物标记等领域。将纳米点和纳米棒进行组装可以得到纳米点棒异质结,不同类型的材料组合可以得到不同类型的异质结,而通过调控纳米棒和纳米点的尺寸比例又可以进一步对其发光性能进行调控,这无疑增加了纳米微晶的调控维度并大大丰富了光电学性质。  近年对纳米点棒异质结的光发射研究层出不穷,尤其是其带边发射不仅取决于其本征的能带结构,还会受到声子的调控。在声子辅助下,原本跃迁禁戒的暗态可能转变为跃迁允许的亮态,形成新的发射峰,从而发现了诸多带边发射的新奇现象。纳米微晶的声子主要有光学声子和声学声子。光学声子主要是由纳米微晶原子间的相互作用决定的,而声学声子则严重依赖于纳米微晶的形状和尺寸。由于声学声子的频率低且强度弱,学界对纳米微晶及其异质结的研究还非常少。  拉曼光谱是表征声子振动光谱的重要技术手段。近年来,中国科学院半导体研究所半导体超晶格国家重点实验室谭平恒研究组与意大利技术所教授Roman Krahne在中科院王宽诚率先人才计划卢嘉锡国际创新团队的支持下,利用该研究组自己发展的超低波数拉曼技术在非共振条件下对CdSe/CdS纳米点棒异质结的超低频量子受限的声学声子进行了系统的研究。他们发现该纳米点棒异质结的声学声子主要包含了伸缩模(2 cm-1~10 cm-1)和径向呼吸模(10 cm-1~20 cm-1),这与纳米棒的声学模式类似,但是异质结的径向呼吸模较相应尺寸纳米棒出现了明显的红移(2-3 cm-1),且红移量随着异质结中纳米点尺寸的增加而增加。有限元模拟结果表明,该红移主要是由纳米点导致的呼吸模局域化所引起的。伸缩模的非局域性使得这种红移效应明显减弱。进一步研究表明,纳米点引入的平均声速度减小是导致异质结量子点径向呼吸模红移的直接原因。在改良的Lamb理论中,引入有效声速度,可以得到声速度改变的有效体积基本与纳米点尺寸相同,更进一步验证了异质结中呼吸模振动的局域性。研究还发现,通过调控纳米点位置也可以调控呼吸模的振动频率和振幅分布等性质。对于CdSe/CdS这种I型异质结来说,其吸收主要由CdS棒来决定,而光发射局域在CdSe纳米球部位,也就是说,声学模的局域部位与光跃迁位置相同,因此这为通过调控纳米点的粒径和位置来调控纳米点棒异质结声学声子辅助的光学跃迁性质提供了可能,对研究点棒异质结的光发射性质具有重要参考意义。  该项研究工作也得到了国家自然科学基金委的大力支持,相关研究成果于近期在线发表在美国化学会学术刊物《纳米快报》(Nano Letters)上。Mario Miscuglio和林妙玲为该文章的共同第一作者,谭平恒和Roman Krahne为该文章的共同通讯作者。  文章链接CdS纳米棒(左)和CdSe/CdS点棒异质结(右)的结构示意图、拉曼光谱以及振动幅度分布图
  • 银纳米棒簇有序阵列构筑及SERS检测水中农药残留研究获进展
    近期,中国科学院合肥物质科学研究院固体物理研究所研究员孟国文小组与美国西弗吉尼亚大学教授吴年强小组及技术生物与农业工程研究所研究员黄青小组合作,在银纳米棒簇有序阵列构筑及基于其表面增强拉曼散射(SERS)效应检测水中农药残留方面取得进展,相关成果以卷首插画论文发表在《先进材料》(Adv. Mater. 2016, 28, 4871-4876)上。  拉曼散射光谱能够提供分子振动的指纹信息,是化学、生物、环境等领域中最具应用前景的分析技术之一。然而拉曼散射效应非常微弱,拉曼散射光强度约为入射光强度的10-6~10-9,所以需要利用贵金属纳米结构SERS基底来大幅度增强拉曼散射信号。对于理想的SERS基底,首先应具有高密度的“热点”(一般位于10nm的贵金属纳米结构间隙处,具有显著增强的局域电磁场),从而保证其具有高sers灵敏度 其次,要求sers信号分布均匀一致,即信号可信度高。贵金属纳米棒簇拥有大量狭窄的缝隙,因而能够产生高密度的sers“热点” 并且纳米结构有序阵列具有优异的结构均一性,能够提供高的sers信号可重复性和可信度。因此,如果能够成功制备贵金属纳米棒簇有序阵列,将有望实现高灵敏度、高可信度sers检测。 p=""  该团队副研究员朱储红利用多孔阳极氧化铝和单层胶体球构成的复合模板,采用电沉积法成功构筑了银纳米棒簇有序阵列。这种分级有序纳米结构阵列的SERS增强因子高达108,并具有较好的信号均匀性和重现性,其信号特征峰强度的相对标准偏差小于10%。时域有限差分法模拟结果表明,相邻纳米棒顶端之间约2纳米宽的间隙内,具有强电磁场耦合产生的“热点” 该有序阵列的高增强因子正是源于这些密集分布的“热点”。采用该SERS基底能够同时检测水中多种痕量农药,例如甲基对硫磷和2,4-二氯苯氧乙酸等。该工作为大面积、可重复制备高度有序的纳米棒簇阵列提供了一种低成本的简便方法。相关研究结果表明银纳米棒簇有序阵列在基于SERS效应检测水中农药残留方面具有重要的应用前景。  相关工作得到国家重点基础研究发展计划、“中国科学院、国家外国专家局创新团队国际合作伙伴计划”和国家自然科学基金等项目的支持。  文章链接  图1. 卷首插画  图2. 银纳米棒簇有序阵列同时检测水中的甲基对硫磷和2,4-二氯苯氧乙酸得到的SERS光谱。曲线I:水中0.3μ M甲基对硫磷和2μ M的2,4-二氯苯氧乙酸混合农药的SERS光谱 曲线II:0.3μ M甲基对硫磷的SERS光谱 曲线III:2μ M的2,4-二氯苯氧乙酸的SERS光谱。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制