木蝴蝶

仪器信息网木蝴蝶专题为您整合木蝴蝶相关的最新文章,在木蝴蝶专题,您不仅可以免费浏览木蝴蝶的资讯, 同时您还可以浏览木蝴蝶的相关资料、解决方案,参与社区木蝴蝶话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

木蝴蝶相关的耗材

  • VWR防液体不渗透蝴蝶 式鞋盖
    VWR® 护防液体不渗透蝴蝶 式鞋盖? 具有无缝底部防水不渗透材料? 在潮湿和光滑的表面上防滑? 优异的颗粒阻隔率VWR防护产品线中最干净,最耐用。 这些非导电鞋套兼顾防护、清洁和舒 适。 锁边缝纫。VWR防水蝴蝶结鞋套尺寸货号包装数量白色均码113-1379150X-大号113-13801502X-大号113-1381150蓝色均码113-1366150X-大号113-13671502X-大号113-1368150
  • 硅碳棒夹弹簧夹子40M夹蝴蝶夹12C型卡 30G型螺丝夹20内编织夹
    硅碳棒夹具有编织带,铝箔带,M夹/蝴蝶夹,G型夹,内编织夹,C型夹,编织带夹头一体夹,固定夹块,规格全,一般当天或隔天发货,订做产品有一定工期,具体请咨询客服,并确认好参数.蝴蝶夹又叫M夹,安装简单快捷,节约接线时间,在棒体喷铝部缠绕一圈连接带,然后用手捏开夹上即可,是市场上使用较多的硅碳棒夹子。C型夹与蝴蝶夹相近,安装时先在硅碳棒白色喷铝部缠绕一圈铝带,再用卡簧钳撑开C型夹夹上。与蝴蝶夹相比,主要优势在于适用于狭小的空间,棒体排列密集的地方,此刻蝴蝶夹太宽,过度狭小密集易导致连电短路,C型夹更合适G型夹,又称螺丝夹,主要夹紧方式为螺丝固定,其优点,夹的更紧,接触好,不宜松动内编织夹,夹子内部嵌有铝编织带,可直接套在冷端喷铝部,螺丝处连接配套导电带,与G型夹相比接线更便捷。单环、双环或多环的夹头,连接带一起的硅碳棒夹具,常用于直径较大的硅碳棒,安装方便,螺丝紧固,编织带的长度可以订做固定夹块,整个元件的重量都是由它承担,元件的位置也由它决定,须仔细安装,使元件垂直悬挂。为避免幅射热传到夹头,夹头下端和穿砖上面的距离不应小于50mm。
  • 蝴蝶夹(蝶式)
    全塑

木蝴蝶相关的仪器

  • 上海那艾实验仪器设备[那艾仪器厂家]网站 全国送货厂家一手货! 品质保证!实验仪器非电子产品,使用效率和售后服务很重要。我们同品质比价格,同价格比效率,同效率比售后。设备仪器属于精密设备 客户订单录档案 免费1年质量保质,任何问题提供配件保养维护上海那艾仪器专注以实验仪器设计、研发,生产,销售为核心的仪器企业,目前热卖销售生产有一体化蒸馏仪,中药二氧化硫蒸馏仪,COD消解仪,高氯COD消解仪,硫化物酸化吹气仪,全自动液液萃取仪,挥发油测定仪等等。随着GB5009.34-2022《食品中二氧化硫的测定》新国标颁布,食品中的二氧化硫和《中国药典》中的中药材二氧化硫测定检测方法已完全相同。那艾在严格遵循国标要求的基础上, 整合加热,蒸馏,氮吹,加酸,搅拌以及滴定等功能为一体,还可同时操作1-6个样品(空白样,平行样)的处理,从面极大的提高了检测数据的精度和减少了工作时间。国标应用《中国药典》第四部 二氧化硫残留量测定法GB5009.34-2022《食品中二氧化硫的测定》主要特征1、仪器机身采用框架一体式设计,稳固牢靠,主体采用品牌冷轧板配合静电粉末涂装,更加耐磨、耐腐蚀;2、从空开到触点,继电保护器到按钮开关等,选用正泰/德力西或同级别品牌电气,保证仪器品质和的使用寿命;3、控制模块采用PLC控制,性能强劲稳定,5/7寸液晶触摸屏,操作简单易控;4、加热模块远红外陶瓷加热碗,贴合度高,集热性好,加热效率高,同时有防水和防干烧的设计;5、每路加热装置独立调控,加热功率0-500w可调;内置微沸模式,沸腾后自动转为微沸功率;6、加热倒计时功能,单通道时间可任意设定,到点自动停止加热,实验结束,机器自动鸣叫提示;☆7、主机有氮气总接口,带稳压保护阀,每路采用独立的转子流量计控制氮气流速,单路单控;☆8、接收瓶底部内置磁力搅拌器,可单组单调,搅拌速度无级调速;☆9、接收部分上方标配蝴蝶夹和滴定支架,实验完成后无需转移直接进行滴定;10、可升级自动加酸模块,实现每一路自动闭环加酸,安全便捷,提升实验自动化程度;11、标配外接超大制冷量冷却水循环机,节约用水,适合实验长时间使用,实验结束后可选择冷凝水自动排空功能,防止长期不使用滋生细菌;12、系统内自带说明书和服务中心二维码,手机扫码自动查看电子说明书和一键连接服务中心。技术参数产品型号NAI-ZLY-4CNAI-ZLY-6C控制方式PLC;5寸液晶触摸屏PLC;7寸液晶触摸屏加热方式远红外陶瓷加热碗(无明火加热,功耗小,效率高)温度控制加热功率0-500w可调,内置微沸控制氮吹控制流量计单独控制,流速控制100-2000ml/min冷却方式外接大功率冷水机CW5300蒸馏烧瓶1000ml双口烧瓶蒸馏单元数4组6组接收瓶规格250ml×4锥形瓶250ml×6锥形瓶磁力搅拌装置搅拌速度可单组单调,无级调速滴定架和蝴蝶夹2个双夹3个双夹加酸分液漏斗50ml;支架上有6个独立固定管卡漏电保护装置有清洗功能无有冷凝水排空有尺寸(含玻璃)930*486*730(950)mm1200*486*730(950)mm额定功率2100W3100W额定电压220V/50HZ
    留言咨询
  • 三为科学致力于中药中草药分离纯化、天然药物活性成分有效成分分离纯化应用的快速纯化制备液相色谱技术的开发,sanotac高压层析系统同时兼容Biotage 快速纯化制备液相色谱、ge AKTA、isco、biotage,buchi、biorad等中压分离纯化制备色谱的色谱柱和纯化柱,是一款高效、功能强大的模块化快速纯化制备液相色谱,在中药化学成分分离纯化与合成化合物的分离纯化领域已经得到广泛应用:皂苷类离纯化 ,黄酮分离纯化,异黄酮分离纯化,香豆素分离纯化,色原酮分离纯化,生物碱分离纯化,酚酸分离纯化,萜类分离纯化,蒽醌分离纯化,木脂素分离纯化。黄酮类化合物是以黄酮(2-苯基色原酮)为母核而衍生的一类黄色色素,其中包括黄酮的同分异构体及其氢化和还原产物,也即以C6一C3一C6为基本碳架的一系列化合物。天然黄酮类化合物母核上常含有羟基、甲氧基、烃氧基、异戊烯氧基等取代基。由于这些助色团的存在,使该类化合物多显黄色。又由于分子中γ-吡酮环上的氧原子能与强酸成盐而表现为弱碱性,因此曾称为黄碱素类化合物。黄酮类化合物可分为下列几类:黄酮类(flavone),黄酮醇类(flavonol),二氢黄酮类(dihydroflavone),二氢黄酮醇类(dihydroflavonol),异黄酮类(isoflavone),二氢异黄酮类(dihydroisoflavone),查尔酮类(chalcone),橙酮类(aurones),黄烷类(flavanes,花色素类(anthocyanidins),双黄酮类(biflavone) 高压层析系统技术参数: 泵头316L不锈钢泵 高精度、低脉冲、耐腐蚀 (peek泵头可选)流速范围0.01-50.00ml/min(梯度)流速精度±0.5%压力范围0-30MPa压力脉动≤0.2MPa梯度类型台阶、线性变化梯度、可在线修改梯度和流速最小梯度调节1%检测器光源氘灯+钨灯(进口)检测波长190-800nm 全波长检测器 双波长同时检测波长精度±1nm吸光度范围0-2AU收集全自动收集器收集管架2×60支试管(Φ15mm*150mm试管) 其他规格可以选配收集模式普通模式(按时间收集、峰收集、阈值收集)、顺序收集、循环收集手动上样阀制备色谱阀(标配10ml定量环)上样方式固体上样或液体上样电源220V±10% 50Hz色谱软件控制通过sanochrom色谱软件控制泵、紫外、自动收集器等组件设置与运行控制界面图形界面,USB接口+RS-232可接口,采用基于Windows7/Windows 8/Windows 10的PC软件工作站,软件符合“CFDA GXP和FDA 21CFR Part 11 ”法规要求 三为科学黄酮类化合物分离纯化案例:(二)黄酮类化合物 Flavonoids中文名英文名CAS No纯度(%)植物来源大波斯菊苷;芹菜素-7-葡萄糖苷;芹菜素-7-O-葡萄糖苷;芹菜素-7-O-β-D-葡萄糖苷;芹黄素葡糖苷;芹黄春Apigenin-7-glucoside;Apigenin-7-O-β-D-glucopyranoside Apigetrin578-74-5≥98.5黄菊花香叶木素-7-葡萄糖苷 香叶木素-7-O-葡萄糖苷;香叶木素-7-O-β-D-葡萄糖苷Diosmetin-7-glucoside;Diosmetin-7-O-β-D-glucopyranoside20126-59-4≥98.5芹菜苷 芹黄苷;芹菜素-7-O-葡萄糖-2-O-芹糖苷Apiin Apigenin-7-(2-O-apiosylglucoside)26544-34-3≥98.5芹菜芹菜素;芹黄素;4’,5,7-三羟基黄酮Apigenin 4’,5,7-Trihydroxyflavone Apigenin Apigenol520-36-5≥98.5山奈素;3,5,7-三羟基-4’-甲氧基黄酮;山奈酚-4’-O-甲醚Kaempferide;3,5,7-trihydroxy-4′-methoxyflavone491-54-3≥98.5高良姜高良姜素;3,5,7-三羟基黄酮Galangin 3,5,7-trihydroxyflavone Norizalpinin548-83-4≥98.5山奈酚Kaempferol520-18-3≥98.5油菜花粉香叶木素Diosmetin520-34-3≥98.5苏薄荷异槲皮苷;异栎素;罗布麻甲素;槲皮素-3-O-葡萄糖苷Isoquercitrin Isoquercitroside Quercetin 3-O-glucofuranoside21637-25-2≥98.5桑叶紫云英苷;黄芪苷;紫云英甙;莰非醇-3-O-葡萄糖苷;山柰酚-3-葡萄糖苷;百蕊草素ⅡAstragalin;Kaempferol-3-glucoside 3-Glucosylkaempferol480-10-4≥99.0百蕊草素I;山柰酚-3-葡萄糖鼠李糖苷;阿福豆苷Kaempferol-3-O-glucorhamnoside40437-72-7≥98.5百蕊草槲皮素Quercetin117-39-5≥98.5鱼腥草 桑寄生槲皮苷Quercitrin522-12-3≥98.5木犀草苷;木犀草素-7-O-β-D-葡萄糖苷;木犀草素-7-O-葡萄糖苷;青兰苷Luteolin-7-O-β-D-glucoside Luteoloside Glucoluteolin Cynaroside Cinaroside Cymaroside5373/11/5≥99.0金银花水仙苷;水仙甙;异鼠李素-3-O-β-D-芸香糖苷;异鼠李素-3-O-芸香糖苷Narcissoside;Narcissin Isorhamnetin-3-O-β-D-rutinoside604-80-8≥98.5芦笋异鼠李素Isorhamnetin480-19-3≥98.5蒲黄异鼠李素-3-O-新橙皮糖苷Isorhamnetin-3-O-neohespeidoside;55033-90-4≥98.5香蒲新苷Typhaneoside104472-68-6≥98.5异鼠李素-3-O-葡萄糖苷;异鼠李素-3-O-β-D-吡喃葡萄糖苷Isorhamnetin-3-O-β-D-glucoside;Isorhamnetin-3-O-glucoside5041-82-7≥98.5蒙花苷Acaciin Acaciin Linarin Buddleoflavonoloside Buddleoglucoside480-36-4≥95.0野菊花芸香柚皮苷;柚皮素-7-O-芸香糖苷Narirutin;Isonaringenin;Naringenin 7-rutinoside14259-46-2≥98.5枳实柚皮苷;柚皮甙;柚皮素-7-O-新橙皮糖苷Naringin;Naringenoside Naringenin 7-neohesperidoside10236-47-2≥98.5橙皮苷;橙皮甙Hesperidin;Hesperidoside Hesperetin 7-rutinoside 520-26-3≥98.5新橙皮苷;新橙皮甙Neohesperidin;Hesperetin 7-neohesperidoside13241-33-3≥98.5柚皮苷二氢查尔酮Naringin dihydrochalcone18916-17-1≥98.5柚皮素;柚皮苷元;柑橘素Naringenin;4’,5,7-Trihydroxyflavanone480-41-1≥98.5山奈苷;山奈酚-3,7-二鼠李糖苷Kaempferitrin Kaempferol 3,7-L-dirhamnoside Lespedin482-38-2≥98.5鸡冠花 罗汉果异荭草苷Isoorientin Homoorientin Lespecapitoside4261-42-1≥98.5竹叶异牡荆素(under development)Isovitexin Apigenin 6-C-β-D-glucoside38953-85-4≥98.5牡荆素鼠李糖苷;牡荆素-2-O-鼠李糖苷Rhamnosylvitexin Vitexin-Rhamnoside Vitexin 2' ' -rhamnoside64820-99-1≥98.5山楂叶牡荆素葡萄糖苷;牡荆素-4″′-O-葡萄糖苷Glucosylvitexin Vitexin glucoside Vitexin-4″-O-glucoside76135-82-5≥98.5金丝桃苷Hyperoside Hyperin Hyperosid Quercetin 3-galactoside482-36-0≥98.5牡荆素Vitexin Apigenin 8-C-glucoside Vitexina3681-93-4≥99.0白杨素;5,7-二羟黄酮;柯因Chrysin480-40-0≥98.5汉黄芩苷Wogonoside Oroxindin Wogonin 7-β-D-glucuronide51059-44-0≥98.5黄芩野黄芩苷;灯盏花乙素Scutellarin 27740-01-8≥98.0木蝴蝶素A-7-葡萄糖醛酸苷 木蝴蝶素A-7-0-β-D-葡萄糖醛酸苷 千层纸素A-7-0-β-D-葡萄糖醛酸苷Oroxyloside Oroxylin A-7-glucoronide ≥98.5Oroxylin A-7-O-β-D-glucoronide黄芩素Baicalein491-67-8≥98.5黄芩苷;黄芩素-7-O-葡萄糖苷Baicalin21967-41-998.5草质素苷;草质素甙;草质素-7-O-鼠李糖苷Rhodionin;Herbacetin 7-O-α-rhamnopyranoside≥98.5红景天红景天素;草质素甙;草质素-7-O-(3′′-β-D-葡萄糖基)-α-L-鼠李糖苷Rhodiosin Herbacetin-7-O-glucorhamnoside86831-54-1≥98.5射干苷;鸢尾种苷;鸢尾黄酮苷;鸢尾甙Shekanin Tectoridin611-40-5≥98.5射干杨梅素Myricetin 3,5,7,3' ,4' ,5' -hexahydroxyflavone529-44-2≥98.0侧柏叶杨梅苷;杨梅素-3-O-鼠李糖苷Myricitrin Myricetin3-O-rhamnoside Myricitroside Myricitrine17912-87-7≥98.0淫羊藿苷Icariin Icariine Icariln Ieariline489-32-7≥98.0淫羊藿朝藿定AEpimedin A110623-72-8≥98.0朝藿定BEpimedin B110623-73-9≥98.0朝藿定CEpimedin C Baohuoside VI110642-44-9≥98.0甘草素;4′,7-二羟基黄烷酮Liquiritigenin 4′,7-dihydroxyflavanone578-86-9≥98.5甘草甘草苷;甘草甙;甘草素-4’-O-葡萄糖苷Liquiritoside Liquiritin Likvirtin Liquiritigenin 4′-O-glucoside551-15-5≥98.5芹糖甘草苷;甘草苷芹糖;甘草苷元-7-O-D-芹糖-4’-O-D-葡萄糖苷;甘草素二糖苷Liquiritin apioside≥98.5异甘草素;4,2' ,4' -三羟基查耳酮Isoliquiritigenin 2′,4, 4′-Trihydroxychalcone961-29-5≥98.5异甘草苷;异甘草甙Isoliquiritin5041-81-6≥98.5芹糖异甘草苷;异甘草苷芹糖;异甘草苷元-7-O-D-芹糖-4’-O-D-葡萄糖苷;异甘草素二糖苷Isoliquiritin apioside; Neolicuroside120926-46-7≥98.5氯化矢车菊素-3-O-葡萄糖苷Cyanidin-3-O-glucoside;Kuromanin Chloride7084-24-4≥97.0黑米皮 黑豆衣 更多制备液相色谱/蛋白纯化系统/中压制备色谱近20个型号详见三为科学官网: 流量:50ml、100ml、200ml、 1000ml 流通池:半制备池、制备池泵材料:不锈钢泵、peek泵
    留言咨询
  • 三为科学致力于中药中草药分离纯化、天然药物活性成分有效成分分离纯化应用的快速纯化制备液相色谱技术的开发,sanotac高压层析系统同时兼容Biotage 快速纯化制备液相色谱、ge AKTA、isco、biotage,buchi、biorad等中压分离纯化制备色谱的色谱柱和纯化柱,是一款高效、功能强大的模块化快速纯化制备液相色谱,在中药化学成分分离纯化与合成化合物的分离纯化领域已经得到广泛应用:皂苷类离纯化 ,黄酮分离纯化,异黄酮分离纯化,香豆素分离纯化,色原酮分离纯化,生物碱分离纯化,酚酸分离纯化,萜类分离纯化,蒽醌分离纯化,木脂素分离纯化。黄酮类化合物是以黄酮(2-苯基色原酮)为母核而衍生的一类黄色色素,其中包括黄酮的同分异构体及其氢化和还原产物,也即以C6一C3一C6为基本碳架的一系列化合物。天然黄酮类化合物母核上常含有羟基、甲氧基、烃氧基、异戊烯氧基等取代基。由于这些助色团的存在,使该类化合物多显黄色。又由于分子中γ-吡酮环上的氧原子能与强酸成盐而表现为弱碱性,因此曾称为黄碱素类化合物。黄酮类化合物可分为下列几类:黄酮类(flavone),黄酮醇类(flavonol),二氢黄酮类(dihydroflavone),二氢黄酮醇类(dihydroflavonol),异黄酮类(isoflavone),二氢异黄酮类(dihydroisoflavone),查尔酮类(chalcone),橙酮类(aurones),黄烷类(flavanes,花色素类(anthocyanidins),双黄酮类(biflavone) 高压层析系统技术参数: 泵头316L不锈钢泵 高精度、低脉冲、耐腐蚀 (peek泵头可选)流速范围0.01-50.00ml/min(梯度)流速精度±0.5%压力范围0-30MPa压力脉动≤0.2MPa梯度类型台阶、线性变化梯度、可在线修改梯度和流速最小梯度调节1%检测器光源氘灯+钨灯(进口)检测波长190-800nm 全波长检测器 双波长同时检测波长精度±1nm吸光度范围0-2AU收集全自动收集器收集管架2×60支试管(Φ15mm*150mm试管) 其他规格可以选配收集模式普通模式(按时间收集、峰收集、阈值收集)、顺序收集、循环收集手动上样阀制备色谱阀(标配10ml定量环)上样方式固体上样或液体上样电源220V±10% 50Hz色谱软件控制通过sanochrom色谱软件控制泵、紫外、自动收集器等组件设置与运行控制界面图形界面,USB接口+RS-232可接口,采用基于Windows7/Windows 8/Windows 10的PC软件工作站,软件符合“CFDA GXP和FDA 21CFR Part 11 ”法规要求 三为科学黄酮类化合物分离纯化案例:(二)黄酮类化合物 Flavonoids中文名英文名CAS No纯度(%)植物来源大波斯菊苷;芹菜素-7-葡萄糖苷;芹菜素-7-O-葡萄糖苷;芹菜素-7-O-β-D-葡萄糖苷;芹黄素葡糖苷;芹黄春Apigenin-7-glucoside;Apigenin-7-O-β-D-glucopyranoside Apigetrin578-74-5≥98.5黄菊花香叶木素-7-葡萄糖苷 香叶木素-7-O-葡萄糖苷;香叶木素-7-O-β-D-葡萄糖苷Diosmetin-7-glucoside;Diosmetin-7-O-β-D-glucopyranoside20126-59-4≥98.5芹菜苷 芹黄苷;芹菜素-7-O-葡萄糖-2-O-芹糖苷Apiin Apigenin-7-(2-O-apiosylglucoside)26544-34-3≥98.5芹菜芹菜素;芹黄素;4’,5,7-三羟基黄酮Apigenin 4’,5,7-Trihydroxyflavone Apigenin Apigenol520-36-5≥98.5山奈素;3,5,7-三羟基-4’-甲氧基黄酮;山奈酚-4’-O-甲醚Kaempferide;3,5,7-trihydroxy-4′-methoxyflavone491-54-3≥98.5高良姜高良姜素;3,5,7-三羟基黄酮Galangin 3,5,7-trihydroxyflavone Norizalpinin548-83-4≥98.5山奈酚Kaempferol520-18-3≥98.5油菜花粉香叶木素Diosmetin520-34-3≥98.5苏薄荷异槲皮苷;异栎素;罗布麻甲素;槲皮素-3-O-葡萄糖苷Isoquercitrin Isoquercitroside Quercetin 3-O-glucofuranoside21637-25-2≥98.5桑叶紫云英苷;黄芪苷;紫云英甙;莰非醇-3-O-葡萄糖苷;山柰酚-3-葡萄糖苷;百蕊草素ⅡAstragalin;Kaempferol-3-glucoside 3-Glucosylkaempferol480-10-4≥99.0百蕊草素I;山柰酚-3-葡萄糖鼠李糖苷;阿福豆苷Kaempferol-3-O-glucorhamnoside40437-72-7≥98.5百蕊草槲皮素Quercetin117-39-5≥98.5鱼腥草 桑寄生槲皮苷Quercitrin522-12-3≥98.5木犀草苷;木犀草素-7-O-β-D-葡萄糖苷;木犀草素-7-O-葡萄糖苷;青兰苷Luteolin-7-O-β-D-glucoside Luteoloside Glucoluteolin Cynaroside Cinaroside Cymaroside5373/11/5≥99.0金银花水仙苷;水仙甙;异鼠李素-3-O-β-D-芸香糖苷;异鼠李素-3-O-芸香糖苷Narcissoside;Narcissin Isorhamnetin-3-O-β-D-rutinoside604-80-8≥98.5芦笋异鼠李素Isorhamnetin480-19-3≥98.5蒲黄异鼠李素-3-O-新橙皮糖苷Isorhamnetin-3-O-neohespeidoside;55033-90-4≥98.5香蒲新苷Typhaneoside104472-68-6≥98.5异鼠李素-3-O-葡萄糖苷;异鼠李素-3-O-β-D-吡喃葡萄糖苷Isorhamnetin-3-O-β-D-glucoside;Isorhamnetin-3-O-glucoside5041-82-7≥98.5蒙花苷Acaciin Acaciin Linarin Buddleoflavonoloside Buddleoglucoside480-36-4≥95.0野菊花芸香柚皮苷;柚皮素-7-O-芸香糖苷Narirutin;Isonaringenin;Naringenin 7-rutinoside14259-46-2≥98.5枳实柚皮苷;柚皮甙;柚皮素-7-O-新橙皮糖苷Naringin;Naringenoside Naringenin 7-neohesperidoside10236-47-2≥98.5橙皮苷;橙皮甙Hesperidin;Hesperidoside Hesperetin 7-rutinoside 520-26-3≥98.5新橙皮苷;新橙皮甙Neohesperidin;Hesperetin 7-neohesperidoside13241-33-3≥98.5柚皮苷二氢查尔酮Naringin dihydrochalcone18916-17-1≥98.5柚皮素;柚皮苷元;柑橘素Naringenin;4’,5,7-Trihydroxyflavanone480-41-1≥98.5山奈苷;山奈酚-3,7-二鼠李糖苷Kaempferitrin Kaempferol 3,7-L-dirhamnoside Lespedin482-38-2≥98.5鸡冠花 罗汉果异荭草苷Isoorientin Homoorientin Lespecapitoside4261-42-1≥98.5竹叶异牡荆素(under development)Isovitexin Apigenin 6-C-β-D-glucoside38953-85-4≥98.5牡荆素鼠李糖苷;牡荆素-2-O-鼠李糖苷Rhamnosylvitexin Vitexin-Rhamnoside Vitexin 2' ' -rhamnoside64820-99-1≥98.5山楂叶牡荆素葡萄糖苷;牡荆素-4″′-O-葡萄糖苷Glucosylvitexin Vitexin glucoside Vitexin-4″-O-glucoside76135-82-5≥98.5金丝桃苷Hyperoside Hyperin Hyperosid Quercetin 3-galactoside482-36-0≥98.5牡荆素Vitexin Apigenin 8-C-glucoside Vitexina3681-93-4≥99.0白杨素;5,7-二羟黄酮;柯因Chrysin480-40-0≥98.5汉黄芩苷Wogonoside Oroxindin Wogonin 7-β-D-glucuronide51059-44-0≥98.5黄芩野黄芩苷;灯盏花乙素Scutellarin 27740-01-8≥98.0木蝴蝶素A-7-葡萄糖醛酸苷 木蝴蝶素A-7-0-β-D-葡萄糖醛酸苷 千层纸素A-7-0-β-D-葡萄糖醛酸苷Oroxyloside Oroxylin A-7-glucoronide ≥98.5Oroxylin A-7-O-β-D-glucoronide黄芩素Baicalein491-67-8≥98.5黄芩苷;黄芩素-7-O-葡萄糖苷Baicalin21967-41-998.5草质素苷;草质素甙;草质素-7-O-鼠李糖苷Rhodionin;Herbacetin 7-O-α-rhamnopyranoside≥98.5红景天红景天素;草质素甙;草质素-7-O-(3′′-β-D-葡萄糖基)-α-L-鼠李糖苷Rhodiosin Herbacetin-7-O-glucorhamnoside86831-54-1≥98.5射干苷;鸢尾种苷;鸢尾黄酮苷;鸢尾甙Shekanin Tectoridin611-40-5≥98.5射干杨梅素Myricetin 3,5,7,3' ,4' ,5' -hexahydroxyflavone529-44-2≥98.0侧柏叶杨梅苷;杨梅素-3-O-鼠李糖苷Myricitrin Myricetin3-O-rhamnoside Myricitroside Myricitrine17912-87-7≥98.0淫羊藿苷Icariin Icariine Icariln Ieariline489-32-7≥98.0淫羊藿朝藿定AEpimedin A110623-72-8≥98.0朝藿定BEpimedin B110623-73-9≥98.0朝藿定CEpimedin C Baohuoside VI110642-44-9≥98.0甘草素;4′,7-二羟基黄烷酮Liquiritigenin 4′,7-dihydroxyflavanone578-86-9≥98.5甘草甘草苷;甘草甙;甘草素-4’-O-葡萄糖苷Liquiritoside Liquiritin Likvirtin Liquiritigenin 4′-O-glucoside551-15-5≥98.5芹糖甘草苷;甘草苷芹糖;甘草苷元-7-O-D-芹糖-4’-O-D-葡萄糖苷;甘草素二糖苷Liquiritin apioside≥98.5异甘草素;4,2' ,4' -三羟基查耳酮Isoliquiritigenin 2′,4, 4′-Trihydroxychalcone961-29-5≥98.5异甘草苷;异甘草甙Isoliquiritin5041-81-6≥98.5芹糖异甘草苷;异甘草苷芹糖;异甘草苷元-7-O-D-芹糖-4’-O-D-葡萄糖苷;异甘草素二糖苷Isoliquiritin apioside; Neolicuroside120926-46-7≥98.5氯化矢车菊素-3-O-葡萄糖苷Cyanidin-3-O-glucoside;Kuromanin Chloride7084-24-4≥97.0黑米皮 黑豆衣 更多制备液相色谱/蛋白纯化系统/中压制备色谱近20个型号详见三为科学官网: 流量:50ml、100ml、200ml、 1000ml 流通池:半制备池、制备池泵材料:不锈钢泵、peek泵
    留言咨询

木蝴蝶相关的试剂

木蝴蝶相关的方案

木蝴蝶相关的论坛

  • 蝴蝶怎么了?

    蝴蝶怎么了?

    周五上班时发现实验室操作间窗台有一只蝴蝶,当时忙就没怎么注意,下班后,也没记得看看,安全员也没注意,把门关了,第二天一早上班,发现蝴蝶瘫死在窗台。http://ng1.17img.cn/bbsfiles/images/2011/09/201109040918_314153_1601823_3.jpg大家说说,蝴蝶是怎么死的,难道是一个晚上没吃东西,饿死的吗,还是其他原因呢。

  • 欣赏蝴蝶美丽篇

    请您欣赏蝴蝶![img]https://ng1.17img.cn/bbsfiles/images/2022/01/202201190640289813_2858_1642069_3.png[/img]

  • 欣赏蝴蝶??

    美丽的蝴蝶![img]https://ng1.17img.cn/bbsfiles/images/2024/07/202407041123190844_6531_1642069_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2024/07/202407041123197588_8894_1642069_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2024/07/202407041123199651_6528_1642069_3.png[/img]

木蝴蝶相关的资料

木蝴蝶相关的资讯

  • 亲近自然!用科学方法揭开蝴蝶“乘凉”的秘密~
    事实证明,蝴蝶在红外世界和在可见光光谱中一样引人注目。最近,哥伦比亚工程大学和哈佛大学的研究人员在《自然》杂志上发表了一项研究,研究了蝴蝶翅膀的热力学特性,以及辐射冷却在保持这些精细结构颤振中的重要性。哥伦比亚大学应用物理学副教授Nanfang Yu特别说明了热成像仪在这项研究中扮演了重要角色。传统测量误差大过去对蝴蝶翅膀的研究由于使用热电偶等设备来测量温度而受到限制。即使是最小的探针也比蝴蝶翅膀的厚度大,而且测量的行为会影响局部温度。由于测量是逐点进行的,因此可能会出现额外的误差。现在有了热成像仪,“你可以测量和绘制整个温度分布图,”Yu说。他的团队已经能够观察和测量翅膀静脉、膜和其他结构(如气味垫)之间的温度差异。他们发现,含有活细胞(翅脉)的蝴蝶翅膀区域比没有生命的翅膀区域(薄膜)有更高的热发射率。活体翅膀结构(翅膀静脉、气味垫/补丁)具有较高的发射率,以便于通过热辐射散热无创红外测量也有挑战“这是最无创的温度测量方法” Yu解释说。在这项研究中,研究小组鉴定了蝴蝶翅膀中复杂的生物结构,这些结构可以熟练地帮助调节温度。Yu说,通过FLIR SC660,几乎就像x光一样,你可以看到——蝴蝶的骨架,翅膀纹理、薄膜̷...在热环境下,蝴蝶翅膀的明亮颜色和图案都消失了,取而代之的是你看到的是翅膀本身的底层结构。红外世界中的蝴蝶“这种热成像技术使我们能够检测物理适应,从而将翅膀的可见外观与其热力学特性分离开来。”Yu在《哥伦比亚工程》杂志上的一篇文章中说。“我们发现,不同尺度的纳米结构和不均匀的角质层厚度会通过热辐射产生不均匀的散热分布,从而有选择地降低活体结构的温度,如翅膀静脉和气味垫。利用热成像技术测量蝴蝶翅膀的温度并非没有障碍。“这里的挑战是,在测量蝴蝶翅膀时,热成像仪给你一个温度读数,但你却不能完全相信这个温度读数,”Yu说。“蝴蝶翅膀在红外世界中是半透明的,所以当你用热成像仪观察蝴蝶翅膀时,你不仅仅是在接收翅膀本身的热辐射,你还接收到了翅膀后面背景产生的热辐射。”类似的现象也可以用一层薄薄的塑料薄膜观察到,比如塑料购物袋,它就像蝴蝶翅膀一样,在可见光光谱中是不透明的,但在红外光谱中是透明的。很薄的材料,如塑料袋或蝴蝶翅膀,在红外光谱中可能是透明的。为了得到蝴蝶翅膀的真实温度读数,Yu的团队必须量化翅膀的发射率和反射率,并从测量中去除这些背景温度源。FLIR红外热成像仪的应用除了绘制蝴蝶翅膀的热分布图之外,研究人员还在热状态下进行了行为学研究。他们使用一束微弱的光作为热源,证明了蝴蝶利用翅膀来感知阳光的方向和强度。在大约40°C的“触发”温度下,他们研究的所有物种都在几秒钟内转过身,以避开光线并防止翅膀过热。蝴蝶翅膀具有机械传感器,可检测光的方向和强度。在这里,蝴蝶迅速移动以防止其翅膀过热Yu使用热像仪研究昆虫。“2013年我加入哥伦比亚大学时,FLIR热像仪是我在建立实验室时购买的设备,” Yu说。在与纳米生物学同事的早期合作中,Yu研究了撒哈拉银蚁,它们生活在地球上最热的陆地环境中,在白天的高温下觅食。 这项研究在2015年发表在《科学》中,报道中说研究人员还使用了FLIR热成像仪监控蚂蚁的体温。 蝴蝶翅膀研究的延伸他的研究继续探索小昆虫如何保持凉爽的问题。蝴蝶翅膀上覆盖着探测过热的机械传感器,它们的翅膀鳞片含有纳米结构,有助于辐射冷却。除了这些发现的生物学意义外,Yu认为这些发现还可以为耐热纳米结构和热感飞机的设计提供灵感。热成像有助于揭示这种山核桃色的蝴蝶是如何防止过热的。翅膀纹理之间的薄膜实际上比翅膀的其他部分更热,但看起来更冷,因为它是半透明的,背景比较冷Yu和他的同事Naomi E. Pierce(生物学教授)计划继续他们对蝴蝶翅膀的研究。Pierce是哈佛比较动物学博物馆鳞翅目动物的馆长,可以接触到大量蝴蝶和飞蛾。他们目前正在使用FLIR热成像仪对馆藏进行广泛的扫描,以希望了解有助于蝴蝶翅膀设计的因素。
  • 蝴蝶、蜜蜂和蛇,它们在红外世界中有哪些趣事?
    人类之所以能够和自然万物和平共处,科技的力量发挥了很大的作用!今天小菲就与大家分享一些使用FLIR热成像技术与动物和睦相处的实例!散热的蝴蝶色彩斑斓的蝴蝶是一种迷人的生物,最近一项用FLIR红外热像仪,研究揭示了关于它们的翅膀、温度和飞行能力的有趣的发现。这项由哥伦比亚工程大学和哈佛大学共同进行的研究发表在《自然》杂志上,它强调了温度调节对鳞翅目昆虫的重要性,以及身体和行为适应如何帮助它们防止翅膀过热。利用FLIR SC660红外热像仪,包括哥伦比亚大学应用物理学副教授Nanfang Yu在内的研究团队,研究了蝴蝶翅膀中复杂生物结构的热力学特性,以及对热触发的行为反应。此外,该技术还可以用于无创性研究,测量翅膀静脉、膜和气味垫之间的温差。至于这项研究的目的, Yu说,“我们想找出小型动物是如何在极端高温下生存的。”他还说,热成像蝴蝶的研究也可以为其他应用提供灵感,如耐热纳米结构和热感飞机的设计。寒冬中拯救蜜蜂寒冷的冬天,对养蜂人来说保护蜜蜂们顺利活下来是巨大的挑战!但对于养蜂大师Rusty Burlew来说就比较容易,有了FLIR ONE手机红外热像仪,就可以轻松确定蜂巢内蜜蜂群的位置,它们在热感图像上作为一个热点出现。确定位置非常重要,比如蜂巢顶部的蜂群表明蜜蜂已经成功地吃掉了它们储存的蜂蜜,需要快速补食。在使用FLIR ONE手机红外热像仪的一年里,Burlew说她挽救了两个蜂箱。“我只是给它们喂糖水,让它们吃到春天,这样就可以把它们都救活了。”说到春天,FLIR热像仪在一年中的任何时候检查蜂群都很方便。Burlew补充说,“假设你想添加一种螨虫治疗方法,而说明书告诉你需要把它放在集群的上面或里面。集群在哪里?用FLIR ONE手机红外热像仪拍照即可。”所以,正如你所看到的,FLIR在帮助养蜂人保护蜜蜂健康成长方面发挥了重要作用。被蛇咬后的疼痛反应众所周知,蛇的毒液能够诱发局部炎症和疼痛反应,临床医师在治疗被毒蛇伤害的患者时面临的挑战之一就是缺乏合适的临床工具来精确评估不同毒液引起的局部反应,以便为选择治疗方案提供精确的标准,特别是最有效的抗蛇毒药物。幸好红外成像作为一种临床工具有很大的潜力,因为它是一种无生物副作用的无创技术,不需要镇静或麻醉,并且可以根据需要重复进行测试。在一次临床医学的研究过程中,使用的设备是FLIR T650SC,研究人员利用FLIR T650SC中嵌入的利用的多边形绘图工具,参考解剖学划分出受影响区域,目的是将受影响区域的定量数据与正常或对照区域的定量数据进行比较。利用这些数据,研究人员可以定量地评估毒液影响区域和周围身体区域或身体对侧区域之间的温度不对称性(Δt值)。无论动物或是植物都能在红外世界中捕捉到想要发现它们的另一面拿起手中的红外热像仪寻找其中的奥秘吧~
  • 高考作文题目引争议 显微镜下蝴蝶到底有没有颜色?
    p  蝴蝶到底有没有颜色?随着安徽高考作文题出炉,这一话题迅速成为各界议论的焦点。当大家都在分析如何立意时,昨天下午,网上陆续出现了来自“科学界”的不同声音,“理工男”们通过分析,指出这一命题“不够严谨”。/ppstrong  作文题目回顾:/strong/pp  为了丰富中小学生的课余生活,让同学们领略科技的魅力,过一把尖端科技的瘾,中科院某研究所推出了公众开放日系列科普活动。活动期间,科研人员特地设计了一个有趣的实验,让同学们亲手操作a href="http://www.instrument.com.cn/zc/53.html" target="_self" title=""扫描式电子显微镜/a,观察蝴蝶的翅膀。/pp  通过这台可以看清纳米尺度物体三维结构的显微镜,同学们惊奇地发现:原本色彩斑斓的蝴蝶翅膀竟然失去了色彩,显现出奇妙的凹凸不平的结构。/pp  原来,蝴蝶的翅膀本是无色的,只是因为具有特殊的微观结构,才会在光线的照射下呈现出缤纷的色彩& #823& #823/pp strong “科普文”率先发声引起争论/strong/pp  昨天下午,微信朋友圈里一篇“科普文”被疯狂转发,网友看完纷纷表示“高考作文命题不科学啊”。/pp  “显微镜下蝴蝶没有颜色吗?”文章作者首先对“何为颜色”进行了科普。在其看来,黑色的光谱不在可见光范围内,即为没有颜色。/pp  而作文材料中,老师让学生做实验,在显微镜下看到蝴蝶“失去了色彩”。这位作者认为,材料中所说的“没有颜色”,其实是一团漆黑,并分析了可能造成这种情况的几种可能,同时一一指出了各种“不靠谱”。/pp  不过,也有网友留言,认为这位作者的分析并不靠谱,“ 没有颜色不应该是透明的么,怎么是黑色呢?这也不科学。”/pp strong 瑕疵1:电子显微镜下看不到物体颜色/strong/pp  除了这篇文章,网上陆续还有不少专家发声。昨晚,新安晚报、安徽网记者联系上了其中一位——蝴蝶研究专家、滁州学院生物与食品工程学院教授诸立新。/pp  “是的,我已经关注到了。”听了记者的问题,诸立新笑了笑,他说试题材料中“有两个问题”。/pp  “材料中说,学生们做实验使用的是扫描式电子显微镜。不仅是蝴蝶,任何物体在电子显微镜下都是没有颜色的。”诸立新说,材料中可能并没有弄清楚电子显微镜的成像原理,电子显微镜并不是靠可见光,而是电子束成像,通过扫描产生物体的表现结构,转换成人能看到的图形,并不存在颜色问题。/pp  而任何物体在电子显微镜下都是没有颜色的,“ 包括蝴蝶在内。”诸立新说,而如果用光学显微镜,那么在可见光下,和肉眼一样,能看见蝴蝶翅膀的颜色。/pp  strong瑕疵2:只描述了物理色而忽视化学色/strong/pp  对于研究的“老本行”,诸立新教授认为材料中还有一处不够严谨。/pp  “蝴蝶翅膀的颜色,其实是由化学色和物理色两部分构成。”诸立新说,化学色来自蝴蝶翅膀上鳞片的颜色。假如用显微镜看蝴蝶的翅膀,可以发现成千上万的鳞片,系统地密排在翅膜上,使整个翅膀依种类而呈现一定的色彩,我们称其为化学色或色素色,比如黑色、黄色等深色都是化学色。/pp  另一种则是物理色。这是因为翅膀细微的结构使光线产生反射、折射,表现出来有金属感、闪光的颜色,也称之为结构色。/pp  “材料中所表述的,其实是蝴蝶翅膀颜色的物理性,并不全面。”诸立新认为,无论肉眼还是光学显微镜,在可见光下,都能看到蝴蝶翅膀的物理色与化学色,而作文材料中仅片面地描述其物理性,可能会对大众产生一定程度上的“误导”。“目前大多数种类的蝴蝶都有物理色与化学色。”/pp  显微镜下蝴蝶到底有没有颜色?对此,您有何高见?/pp  请点击论坛帖子参与讨论:span style="color: #0000ff"strongspan style="text-decoration:underline "a href="http://bbs.instrument.com.cn/boardlist/bbs/topic?threadid=5828544"论坛帖子命中2015高考作文题——蝴蝶翅膀颜色/a/span/strong/span/p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制