纳米二氧化锰

仪器信息网纳米二氧化锰专题为您整合纳米二氧化锰相关的最新文章,在纳米二氧化锰专题,您不仅可以免费浏览纳米二氧化锰的资讯, 同时您还可以浏览纳米二氧化锰的相关资料、解决方案,参与社区纳米二氧化锰话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

纳米二氧化锰相关的耗材

  • 二氧化锰 501-060,501-592
    501-060 SAAR060 Manganese Dioxide , 30 CC / 30 ml 二氧化锰501-592 SAAR062 Manganese Dioxide, 250CC 二氧化锰leco碳硫分析仪器耗材
  • 高锰酸银 二氧化锰(氧化剂) 氧化剂
    高锰酸银 二氧化锰 Silver Permanganate, Manganese dioxide产品名称货号规格包装高锰酸银CN022610.2-0.5mm30克二氧化锰CN022510.85-1.7mm10克
  • 二氧化锰
    05000880 SA05000880 Manganese (IV) Oxide 二氧化锰 10g 天津欧捷科技有限公司---进口元素分析耗材供应商 保证质量天津欧捷科技是一家高科技企业,公司集贸易、科研、服务一体化。公司从精密仪器设备及配件、耗材、试剂、标准对照品、实验室常用耗材的销售,到仪器调试、维护、样品的分析测试。实验室耗材 元素分析耗材 色谱分析耗材 质谱耗材样品容器 Labco顶空进样瓶 色谱瓶 石英棉 石英燃烧管 进样隔垫 催化剂 标准品 试剂 玻璃碳产品 仪器配件这些耗材可用在Thermo、Elementar、Agilent、Analytikjena、Sercon、Shimadzu、leco、Varian、Perkin Elmer、waters 、Euro Vector等仪器。

纳米二氧化锰相关的仪器

  • 纳米二氧化硅高速研磨分散机,循环型纳米粉体高速分散机,中剪切高速粉体高速分散混合机,纳米SiO2立式研磨高速分散机,中试小试纳米材料高速分散机,纳米粉体改性高速分散混合机 纳米二氧化硅是及其重要的高科技超微细无机新材料之一,由于其粒径很小,因此比表面积大,表面吸附力强,表面能大,化学纯度高、分散性能好、热阻、电阻等方面具有特异的性能,以其优越的稳定性、补强性、增稠性和触变性,在众多学科及域内独具特性,有着不可取代的作用。纳米二氧化硅俗称“超微细白炭黑”,广泛用于各行业作为添加剂、催化剂载体,石油化工,脱色剂,消光剂,橡胶补强剂,塑料充填剂,油墨增稠剂,金属软性磨光剂,绝缘绝热填充剂,日用化妆品填料及喷涂材料、医药、环保等各种域。并为相关工业域的发展提供了新材料基础和技术保证。由于它在磁性、催化性、光吸收、热阻和熔点等方面与常规材料相比显示出特异功能,因而得到人们的大重视。  使用纳米SiO2的关键是确保其在不饱和聚酯树脂中达到良好的分散,分散越好,则触变指数越大,力学强度越高。【纳米粉体分散的常用设备】  1、超声分散机,超声方式分散,对于小批量的物料还行,但无法放大生产。  2、机械搅拌分散机,这种在工业化分散中比较常见,但是由于自身的结构,转速低,分散有死角,导致终分散效果差,并且分散的效率很低。  3、混合分散机,这种分散机适合高粘度的物料的分散,电机功率大,但是也存在和机械搅拌分散机一样的问题,分散效率低,效果差。  现在市面上纳米SiO2基本都是用化学法和物理法,化学法是将有机硅化合物,氢气与氢气或者空气混合燃烧,有机硅化合物在高温燃烧后,在反应生成的水中进行高位水解,从而制得纳米二氧化硅。 物料法主要是机械粉碎,通过超细粉碎产生的冲击,剪切,摩擦等力的综合作用,对大颗粒二氧化硅进行超细粉碎。然后利用高效分组装置分离不同的粒径的颗粒,从而实现纳米二氧化硅末粒度分布的均匀的与特定化。纳米二氧化硅高速研磨分散机,循环型纳米粉体高速分散机,中剪切高速粉体高速分散混合机,纳米SiO2立式研磨高速分散机,中试小试纳米材料高速分散机,纳米粉体改性高速分散混合机从设备角度分析,影响分散结果的因素有以下几点:1 分散头的形式(批次式和连续式)(连续式比批次好)2 分散头的剪切速率 (越大,效果越好)3 分散头的齿形结构(分为初齿,中齿,细齿,超细齿,约细齿效果越好)4 物料在分散腔体的停留时间,分散时间(可以看作同等的电机,流量越小,效果越好)5 循环次数(越多,效果越好,到设备的期限,就不能再好)【IKN分散机在纳米粉体分散中优势】  1、随着纳米粉体分散的进一步发展,上海IKN研发出的分散设备-研磨分散机。结构为胶体磨头+分散头定转子,先研磨打开团聚体,在瞬时通过分散工作组进行分散,分散效率快,分散效果好。  2、IKN研磨分散机在纳米粉体的分散中有着突出的应用和优势,如纳米氢氧化镁、纳米氢氧化铝、石墨烯、碳纳米管、二氧化硅、纳米树脂、纳米涂料、医药纳米混悬液等都有着成功的经验和案例。  3、IKN研磨分散机的研发初衷就是为了解决纳米物料分散,解决粉体分散到液体中,二次团聚的问题。IKN研磨分散设备该机特别适合于需要研磨分散乳化均质一步到位的物料。我们将三高剪切均质乳化机进行改装,我们将三变更为一,然后在乳化头上面加配了胶体磨磨头,使物料可以先经过胶体磨细化物料,然后再经过乳化机将物料分散乳化均质。IKN研磨分散机由电动机通过皮带传动带动转齿(或称为转子)与相配的定齿(或称为定子)作相对的高速旋转,同时,可将电机能量更有效地转化为尺寸减小力,从而在粉末研磨和精细化学粉碎方面先于其他同行业设备。被加工物料通过本身的重量或外部压力(可由泵产生)加压产生向下的螺旋冲击力,透过胶体磨定、转齿之间的间隙(间隙可调)时受到强大的剪切力、摩擦力、高频振动等物理作用,使物料被有效地乳化、分散和粉碎,达到物料超细粉碎及乳化的效果。纳米二氧化硅研磨分散机设备结构: 第yi由具有精细度递升的三层锯齿突起和凹槽。定子可以无限制的被调整到所需要的与转子之间的距离。在增强的流体湍流下,凹槽在每都可以改变方向。第二由转定子组成。分散头的设计也很好地满足不同粘度的物质以及颗粒粒径的需要。在线式的定子和转子(乳化头)和批次式机器的工作头设计的不同主要是因为 在对输送性的要求方面,特别要引起注意的是:在粗精度、中等精度、细精度和其他一些工作头类型之间的区别不光是转子齿的排列,还有一个很重要的区别是 不同工作头的几何学特征不一样。狭槽数、狭槽宽度以及其他几何学特征都能改变定子和转子工作头的不同功能。根据以往的惯例,依据以的经验选取工作头来满 足一个具体的应用。在大多数情况下,机器的构造是和具体应用相匹配的,因而它对制造出产品是很重要。当不确定一种工作头的构造是否满足预期的应用。纳米二氧化硅高速研磨分散机,循环型纳米粉体高速分散机,中剪切高速粉体高速分散混合机,纳米SiO2立式研磨高速分散机,中试小试纳米材料高速分散机,纳米粉体改性高速分散混合机
    留言咨询
  • 产品特点:可靠的测量值 缩短测量时间 测量结果可重复性 无需预制浆液,减少废液产生 湿法筛分仪VIBLETTE®VBL-F产品综述: 通过旋转喷嘴喷水,分散筛网上的粉体样品。VIBLETTE®配备了震动装置,能够有效协助分散样品,破坏筛网表面形成的液膜,以便实现稳定流畅的筛分。应用:氢氧化镁:阻燃剂 熟石灰:土壤改良 钛白粉:墨水、化妆品 炭黑:墨水、轮胎 颜料:无机颜料、有机颜料 硅微粉:密封剂 钛酸钡:多层陶瓷电容器 超硬颗粒:磨料介质 二氧化锰:电池材料 崩解剂:药片辅料
    留言咨询
  • 泉州海德能水处理设备有限公司打造水处理行业一站式现货采购平台电话: 地址:泉州市鲤城区常泰街道新塘工业区(新园路130号)生产批发:反渗透膜、纳滤膜、超滤膜、膜壳、滤芯、滤壳、树脂、活性炭、玻璃钢罐、阀头、过滤器、阻垢剂、有机玻璃柱、泵、压力表、流量计等所有水处理配件等;包装及用途50kg袋装,塑料编织袋,注:MnO215%就可以消除水中的铁离子。锰砂滤料锰砂滤料是采用国内优质锰砂矿、晶粒致密、机械强度大、化学活性强、不易破碎、不溶于水的天然锰矿砂。经水洗打磨除杂、破碎、干燥、磁选筛分、除尘等工艺加工成砂。再把加工好的锰砂按一定的级配调合而成。它具有水处理滤料 理想的级配比例,使它在单位体积内有 大的比表面积、 强的截污能力、 大的氧化催化作用和 小的反冲洗流失率。锰砂滤料外观黑褐色,近圆形,主要成份是二氧化锰,含量在35%-45%之间。采用锰砂滤料处理地下水,工艺简单,操作方便,工程造价低,长效稳定,服务周期在5年以上,易于管理,不填加任何化学药剂即可达到去除水中铁、锰、砷等有害物质的目的,水质完全达到国家饮用水标准,是非常好的地下水处理滤料。理化指标分析项目 测试数据 分析项目 测试数据密 度 2.66g/cm3 破 碎 率 ≤1.0%堆 密 度 1.85 g/cm3 磨 损 率 ≤1.0%含 泥 量 ≤ 2.5% MnO2 30-40%天然锰砂是一种很强的氧化剂,能对水中二价铁起氧化作用,常用于饮用水除铁、除锰过滤装置,地下水除铁除锰净化水质使用。注意事项锰砂的使用的年限,对含铁浓度高的地下水一般为3~5年,对含铁浓度低的地下水,使用年限更长,有的已逾十年。在有的天然锰砂滤池中,滤层上部的锰砂会逐渐形成球状的“锈砂”,“锈砂”表面有一层“活性滤膜”,仍具有接触催化除铁能力,所以,形成“铁砂”,不是天然锰砂失效的标志。当”锈砂“长大致使滤料粒径过粗而影响除铁效果时,才有必要更换部分滤料。所以,在我们的施工过程中要注意是否有“锈砂”的存在,如果有的话一定要辨别清楚“锈砂”的大小,如果是小的规格,可以继续使用,可以减少我们的工业成本,如果是大的规格,就要换掉,以免影响过滤水质。技术指标项目 鉴定数据 项目 鉴定数据MnO2 35-46% 密度 3.6g/cm3Fe 20%左右 容重 2.3g/cm3SiO2 17-20% MnL2 12-22%破碎率 ≤1.0% 磨损率 ≤3%含泥量 ≤ 3%[1]使用效果在水质软化过程中,首先,由于锰砂软化水的处理时间有限,其次,由于水中有铁单质,三氧化二铁,氧化亚铁等铁的氧化物,各种物质混合,使锰砂的除铁除锰效果,软化水效果大幅度降低,所以为了增加锰砂除铁除锰的效果,就要在锰砂处理工艺前加一道曝气处理工艺,是除铁除锰达到 佳的效果!可根据水质的不同组合形式选用不同比列的厌氧—好氧—兼氧的生物处理工艺,这种工艺不但有优异的脱氮除磷效果,而且能够把大分子量的有机物裂解成易于好氧生物降解的低分子量有机物。 重要的是能够将铁单质,单质锰,氧化亚铁,低价氧化锰,氧化成高价铁的氧化物!这样锰砂的除铁除锰压力就降低了,整体处理效果 佳联系方式泉州海德能水处理设备有限公司电话:网站:地址:泉州市鲤城区常泰街道新塘工业区(新园路130号)
    留言咨询

纳米二氧化锰相关的试剂

纳米二氧化锰相关的方案

纳米二氧化锰相关的论坛

  • 碳载二氧化锰

    本人刚接触电化学现需要做碳载二氧化锰已经做出了几个样可是结果大出意外在空气中-0.3V时有峰可是在氧气保护下时没有了峰这个问题是不是我还没将二氧化锰载到碳上去呢空气中那个峰是杂质所为呀

纳米二氧化锰相关的资料

纳米二氧化锰相关的资讯

  • 中国科大提出纳米胶束电解质新思路并用于高性能水系锌锰二次电池
    近日,中国科学技术大学闫立峰教授课题组通过利用两亲性甲基脲分子,设计了一种新型结构的水基纳米胶束电解质。这一工作打破了以往对于电解质连续溶剂相的认识,通过纳米胶束结构包裹了自由移动的离子,建立了局部/界面相互作用网络,通过金属离子的控制释放,有效地维持了离子的三维扩散形式和有利的界面成核反应,实现了金属枝晶和电极副反应的有效抑制。相关研究成果率先在锌-锰电池体系中得到了证实,并发表于化学专业知名期刊《美国化学会志》(Journal of the American Chemical Society)。   锌离子电池由于锌阳极的高理论比容量(820 mA h g-1)、高储量、成本低、氧化还原电位低(-0.762 V vs. SHE)等优势,被认为是下一代清洁能源存储的有前途的候选者。然而,锌离子电池的寿命受到锌阳极不可逆电化学反应的严重限制,如析氢反应(HER)、“死锌”的持续积累以及不受控制的枝晶生长等。同时,以二氧化锰为正极材料代表的一系列锌离子电池普遍具有低的工作电压(1.5 V)和难以匹配锌阳极的电极容量。如何通过电解质的设计优化来调控锌电池的电化学性能是至关重要的问题。   该文提出了一种独特的纳米胶束电解质设计思路,由ZnSO4、MnSO4和高浓度甲基脲(Mu)分子通过自组装策略构建,水溶剂环境被划分为亲水区和疏水区,阳离子和阴离子则被封装到纳米域中(图1)。纳米胶束阻断了连续的水基体相,打破了水分子之间氢键网络并在胶束内部和胶束/水界面上重构了局部氢键。此外,Mu分子参与了Zn2+/Mn2+离子的溶剂鞘结构,排斥了溶剂化水分子,降低了脱溶剂化能垒,抑制了水分解反应。更重要的是,Zn2+/Mn2+离子可以可控地从胶束团簇中释放出来,以三维扩散方式扩散并在电极表面均匀沉积。此外,在锌阳极表面一种新的固体电解质界面(SEI)保护层Znx(Mu)ySO4∙nH2O得以原位生成,以避免水分子持续渗入造成的锌腐蚀。 图1.胶束电解质的自组装示意图   动态光散射结果表明电解质A3Mu中存在约14nm左右的纳米胶束,核磁结果证实了胶束内部的多重氢键相互作用,DFT计算结果也表明Zn2+/Mn2+和Mu分子上的羰基和具有更强的结合能力,进而有利于进入到胶束内核中,减少溶剂鞘结构中的水分子数(图2)。此外,红外,拉曼光谱结果也识别到了SO42-阴离子扭曲的正四面体结构,可能是由于胶束内部拥挤的空间和电荷-偶极相互作用造成的,这些结果表明了胶束电解质的成功构建。 图2.胶束电解质的核磁,红外,拉曼以及结合能计算表征   得益于胶束电解质内部氢键的重构,电解质和碳布正极界面接触角降低,MnO2/Mn2+成核电位降低,同时由于Mn2+的控制释放特性,生成了反应可逆性更高,结构更加疏松的二氧化锰颗粒。在不同SOC状态下,非原位SEM,XPS,Raman, XRD等测试方法核实了高度可逆的二电子转化反应。利用二电子反应的锌锰电池显示出前所未有的高能量密度800.4 Wh kg-1(基于正极活性材料)以及高达1.87 V的放电电压(图3)。 图3.Zn||Mn 电池的电化学性能   中国科学技术大学化学与材料科学学院博士生邓永琦为该文章的第一作者,闫立峰教授为通讯作者。该研究得到了科技部、国家自然科学基金和中国科学技术大学的经费资助。
  • 赫施曼助力生产环境中纳米二氧化钛粉尘浓度的检测
    纳米二氧化钛是白色疏松粉末,屏蔽紫外线作用强,有良好的分散性和耐候性。可用于化妆品、功能纤维、塑料、涂料、油漆等领域。作为紫外线屏蔽剂,防止紫外线的侵害。也可用于高档汽车面漆,具有随角异色效应。在纳米材料生产环境中,粉尘颗粒面积较大,氧吸附较多,在有粉尘的环境中存在可燃性气体时,会大大增加粉尘爆炸的危险性。另外人体吸入粉尘会引起以肺为主的全身性疾病。根据GB/T 41456-2022,将空气中纳米二氧化钛粉尘采集到捕集液中,形成二氧化钛粉尘分散液。当分散液浊度T≤T0时,用二安替吡啉甲烷分光光度法测定其浓度;当分散液浊度TT0时,用过氧化氢分光光度法测定其浓度。注:分散液浊度T0 :取生产现场的纳米二氧化钛产品配制成1.8 mg/L的分散液,用浊度计测得的浊度值即为T0。以分散液浊度T≤T0为例,测定方法如下:1.配置溶液(1)二安替吡啉甲烷溶液称取25.0g二安替吡啉甲烷于1000mL烧杯中,加入400mL7.4%盐酸(采用37%盐酸配制而成),加热并搅拌至完全溶解,冷却,转移至500mL的容量瓶中,用7.4%盐酸定容至刻度,混匀,保存于棕色瓶中,4℃±2℃下冷藏。使用前1h取出。有效期1个月。(2)消解液向1000mL烧杯中加入350mL浓硫酸和200g硫酸铵,置于电热板上加热至硫酸铵全部溶解,然后自然冷却至室温,转移至500mL广口瓶中。(3)二氧化钛储备液称取500.0 mg二氧化钛产品于100mL烧杯中,加入消解液10mL,置于电热板上,在通风橱中逐渐升温至200℃消解,待溶液变为无色透明时取下,冷却,转移至1000mL容量瓶中,用蒸馏水定容至刻度,混匀。(4)二氧化钛使用液用移液管移取二氧化钛储备液5mL置于250mL容量瓶中,用蒸馏水定容至刻度,混匀。2.工作曲线的绘制(1)取6个50ml容量瓶,分别加入二氧化钛使用液0mL、1.0mL、2.0mL、3.0 mL、4.0mL和5.0mL。(2)向上述6个溶液中均依次加入8.0mL5.9%盐酸、2.0mL10g/L抗坏血酸和10.0mL50g/L二安替吡啉甲烷溶液,用蒸馏水定容至刻度,播匀,得到不同浓度的溶液。(3)分别移取(2)的6个溶液到比色皿中,用紫外-可见分光光度计在波长390nm处,以试剂空白为参比,测试吸光度,每个样品测试3次,计算其平均吸光度。(4)以二氧化钛浓度为横坐标,平均吸光度为纵坐标,绘制工作曲线。工作曲线的直线拟合相关系数R² 应不小于0.999,否则重新绘制。3.分散液中纳米二氧化钛粉尘浓度的测试(1)将分散液样品至少超声5min。(2)用移液管取(1)分散波样品50mL于100mL烧杯中,在80℃条件下烘干。(3)在(2)样品中加入10mL消解液于烧杯中,置于电热板上,在通风橱中逐渐升温至200℃消解,待溶液变成无色透明时取下,冷却,转移至50 mL容量瓶中。(4)在(3)样品中,依次加入8.0mL的5.9%盐酸、2.0mL的10g/L抗坏血酸和10.0mL的50g/L二安替吡啉甲烷溶液,用蒸馏水定容至50mL,摇匀。(5)将(4)溶液转入比色皿中,用紫外-可见分光光度计在波长390nm处,测定吸光度,每个样品测试三次,计算其平均吸光度。最后计算纳米二氧化钛粉尘质量浓度。实验有大量的试剂添加、稀释配液等工作,赫施曼瓶口分配器可高效便捷地进行0.5%精度的液体移取,适合试验中盐酸等的有腐蚀性或挥发性等危险的试剂移取、分配工作。赫施曼的opus稀释配液系统的多体积分液模式,在一个分液程序中可设定10个独立的分液体积,设定好每次分液的体积和间隔时间后,按下分液键就可以进行一组分液,且分液参数(程序)还可保存和调用。可用于毫升级的母液添和稀释液的快速、准确地添加,非常适合做标准曲线和毫升级大批量灌装。
  • Nanologica 新一代纳米孔二氧化硅微球新品即将发布
    Nanologica 已经启动了该公司用于高效制备液相色谱的纳米孔二氧化硅微球NLAB Saga 的一系列发布活动。 作为发布会的一部分,Nanologica 将参加春季在印度、美国和欧洲举行的多个会议。Andreas Bhagwani做大会报告路演的第一站:Purify' 22-Chromatography Purification Conclave。 4月7日, Nanologica参加了在印度海德拉巴举行的色谱纯化会议,Nanologica 的首席执行官 Andreas Bhagwani 受大会邀约就目前制药工业的大趋势和色谱对其产生的基本影响发表了他的看法,Nanologica 的色谱高级副总裁 Katarina Alenäs 就Nanologica即将发布的新品 - 用于多肽纯化的新一代纳米孔二氧化硅微球NLAB Saga,做了详细的介绍。5 月,Nanologica还将参加在美国举行的两个会议,TIDES 和 PREP2022,以及6月在慕尼黑举行的 Analytica。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制