纳米光子学

仪器信息网纳米光子学专题为您整合纳米光子学相关的最新文章,在纳米光子学专题,您不仅可以免费浏览纳米光子学的资讯, 同时您还可以浏览纳米光子学的相关资料、解决方案,参与社区纳米光子学话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

纳米光子学相关的耗材

  • 线性硅纳米印章(纳米图案硅片)
    LightSmyth提供了大量的纳米加工单晶硅衬底,为工业和学术机构提供了一个低成本的纳米光子学研究入口。基底可用于光学、光子学、生物学、化学、物理学(如中子散射)、聚合物研究、纳米印迹、微流体学等领域。如果需要,基板可以涂上金属或介质涂层。大多数地表特征具有略微梯形的横截面轮廓,具有直线平行的台地和沟渠。晶格状结构也可用。提供了许多特征尺寸和沟槽深度。基板的扫描电镜图像可以在装运前拍摄,以验证准确的轮廓。产品特点Nanopatterned Silicon StampsII-VI offers a large variety of nanomachined single crystal silicon substrates providing a low-cost entry into nanophotonics research for industry and academic institutions. The substrates may be used in a variety of applications in optics, photonics, biology, chemistry, physics (e.g. neutron scattering), polymer research, nanoimprinting, microfluidics and others. If desired, the substrates can be coated with metallic or dielectric coating. Most of the surface features have slightly trapezoidal cross-section profiles with straight parallel mesas and trenches. Lattice-like structures are available as well. A number of feature sizes and trench depth is available. SEM images of the substrates may be taken prior to shipment to verify the exact profile.Dimensions shown in the table represent target value. Period has accuracy better than 0.5% while groove depth and the width of line and space may differ from the target values by 15%. SEM are given for illustration purposes. If more precise dimensional information is required, we may provide an SEM of the specific piece of nanostamp you order as an optional service通用参数(LightSmyth Nanopatterned Silicon Stamps 纳米图案硅片)描述数据基材宽度高度误差标准公差±0.2 mm净孔径(CA)距基板边缘0.5 mm(图案可延伸至基板边缘)基底厚度0.675 ± 0.050 mmCA的表面质量P/N以“p”结尾:划痕/挖:最大划痕宽度,最大最大直径。可提供高达20/10的规格CA的表面质量P/N以“-S”结尾:由于表面质量而打折的等级。至少有80%的可用面积。可能出现80/100划痕/挖痕/颗粒和不规则基底形状CA外表面质量无要求Material材料单晶硅,反应离子刻蚀2D NanostampsPart Number周期Period(nm)晶体类型Lattice Type槽深Groove Depth(nm)特征宽度Feature Width(nm)Size(mm)S2D-18B2-0808-350-P600Rect Post3502758.0 x 8.3S2D-18B3-0808-350-P700Rect Post3503508.0 x 8.3S2D-18C2-0808-350-P600Hex Post3502408.0 x 8.3S2D-18C3-0808-150-P700Hex Post1502908.0 x 8.3S2D-18C3-0808-350-P700Hex Post3502908.0 x 8.3S2D-18D3-0808-350-P700Hex Hole3502008.0 x 8.3S2D-24B2-0808-150-P600Rect Post 1501958.0 x 8.3S2D-24B2-0808-350-P600Rect Post 3501958.0 x 8.3S2D-24B3-0808-150-P700Rect Post 1502608.0 x 8.3S2D-24B3-0808-350-P700Rect Post 3502608.0 x 8.3S2D-24C2-0808-150-P600Hex Post1501658.0 x 8.3S2D-24C2-0808-350-P600Hex Post3501658.0 x 8.3S2D-24C3-0808-150-P700Hex Post1502208.0 x 8.3S2D-24D2-0808-150-P600Hex Hole1501808.0 x 8.3S2D-24D2-0808-350-P600Hex Hole3501808.0 x 8.3S2D-24D3-0808-150-P700Hex Hole1502908.0 x 8.3S2D-24D3-0808-350-P700Hex Hole3502908.0 x 8.3
  • 纳米单晶硅衬底2D线性纳米棒LIGHTSMYTH
    纳米单晶硅衬底2D线性纳米棒LIGHTSMYTH屹持光电提供各种纳米单晶硅衬底2D线性纳米棒,为工业和科研提供低成本的纳米光子学研究。基板可用于光学、生物学、化学、物理学(例如中子散射)、聚合物研究、纳米压印、微流体等各种应用。如果需要,可以用金属或介电涂层涂覆基底。大多数表面特征具有略微梯形的横截面轮廓,具有直平行台面和沟槽。也可以使用格状结构。提供多种特征尺寸和沟槽深度。可以在发货之前拍摄基板的SEM图像以验证确切的轮廓。表中显示的尺寸代表目标值。周期的精度优于0.5%,而沟槽深度和线和空间的宽度可能与目标值相差15%。SEM用于说明目的。可定制更精确尺寸信息。纳米单晶硅衬底2D线性纳米棒LIGHTSMYTH规格描述值基材宽度和高度公差标准公差±0.2 mm通光孔径(CA)距基板边缘0.5 mm(图案可延伸至基板边缘)基材厚度0.675±0.050mmCA表面质量P / N “-P”:60/40,最高20/10CA表面质量P / N “-S”:80/100CA外表面质量无要求材料单晶硅,反应离子蚀刻1、线性纳米棒(线+间隔)P/N周期(nm)凹槽深度(nm)工作周期1线宽度2(nm尺寸3(mm)SNS-C72-1212-50-P1395050%69.512.5×12.5×0.7SNS-C72-2525-50-P1395050%69.525×25×0.75SNS-C36-1212-110-P27811050%13912.5×12.5×0.7SNS-C24-1212-110-P416.611050%20812.5×12.5×0.7SNS-C20-0808-150-D45-P50015044%2208×8.3×0.7SNS-C20-0808-350-D45-P50035044%2208×8.3×0.7SNS-C20-0808-150-D60-P50015060%3008×8.3×0.7SNS-C20-0808-350-D60-P50035060%3008×8.3×0.7SNS-C18-2009-110-D50-P555.511050%27820×9×0.7SNS-C18-2009-140-D50-P555.514050%27820×9×0.7SNS-C18-2009-110-D29-P555.511029%15820×9×0.7SNS-C18-2009-140-D29-P555.514029%15820×9×0.7SNS-C16.7-0808-150-D45-P60015043%2608×8.3×0.7SNS-C16.7-0808-350-D45-P60035043%2608×8.3×0.7SNS-C16.7-0808-150-D55-P60015055%3308×8.3×0.7SNS-C16.7-0808-350-D55-P60035055%3308×8.3×0.7SNS-C16.5-2912-190-P60619050%30329×12×0.7SNS-C16.5-2912-190-S460619050%30329×12×0.7SNS-C16.5-2924-190-P60619050%30329×24.2×0.75SNS-C14.8-2410-170-P67517032%21824×10×0.7SNS-C14.8-2430-170-P67517032%21824×30.4×0.75SNS-C14.3-0808-150-D45-P70015047%3308×8.3×0.7SNS-C14.3-0808-350-D45-P70035047%3308×8.3×0.7SNS-C14.3-0808-150-D55-P70015055%3758×8.3×0.7SNS-C14.3-0808-150-D55-P70015055%3758×8.3×0.7SNS-C12-1212-200-P833.320050%41612.5×12.5×0.7SNS-C12-2525-200-P833.320050%41625×25×0.75SNS-C11.7-1212-200-P85520050%42812.5×12.5×0.7SNS-C11.7-2525-200-P85520050%42825×25×0.75纳米单晶硅衬底2D线性纳米棒LIGHTSMYTH1 占空比表示线(台面)宽度与周期的比率。2 表示台面的宽度值。3 第二维对应于凹槽长度。4 以“-S”结尾的是“科研”等级。它至少有80%的可用面积。可能存在高达80/100表面质量值。5 可提供更大的自定义尺寸2、2D纳米图案(矩形和六边形网格)P/N周期(nm)格子类型凹槽深度特征宽度(nm)尺寸(mm)S2D-24B3-0808-150-P700矩形1502608×8.3×0.7S2D-24B3-0808-350-P700矩形3502608×8.3×0.7S2D-18B3-0808-150-P700矩形1503508×8.3×0.7S2D-18B3-0808-350-P700矩形3503508×8.3×0.7S2D-24C2-0808-150-P600六角1501658×8.3×0.7S2D-24C2-0808-350-P600六角3501658×8.3×0.7S2D-18C2-0808-150-P600六角1502408×8.3×0.7S2D-18C2-0808-350-P600六角3502408×8.3×0.7S2D-24C3-0808-150-P700六角1502208×8.3×0.7S2D-24C3-0808-350-P700六角3502208×8.3×0.7S2D-18C3-0808-150-P700六角1502908×8.3×0.7S2D-18C3-0808-350-P700六角3502908×8.3×0.7S2D-24D2-0808-150-P600六角孔1501808×8.3×0.7S2D-24D2-0808-350-P600六角孔3501808×8.3×0.7S2D-18D3-0808-150-P700六角孔1502008×8.3×0.7S2D-18D3-0808-350-P700六角孔3502008×8.3×0.7S2D-24D3-0808-150-P700六角孔1502908×8.3×0.7S2D-24D3-0808-350-P700六角孔3502908×8.3×0.7rect posthex posthex hole相关产品:脉冲压缩透射光栅高功率光束组合光谱衍射光栅光通信透射衍射光栅纳米单晶硅衬底2D线性纳米棒
  • 上转换发光纳米粒子
    上转换发光纳米粒子主要是由氧化物、氟化物、卤氧化物等基质掺杂三价稀土离子(如Er3+ , Eu3+ , Yb3+ , Tm3+ , Ho3+等)得到,通过多光子机制将红外光转换成可见光,为反Stokes发光;具有发射谱线窄,寿命长,发光稳定性好,不易受环境影响,生物毒性低,化学稳定性高等优点;广泛应用于生物荧光标记和成像、激光器、太阳能电池、防伪技术等领域。成分:NaYF4(Er/Tm, Yb)/NaYF4核壳结构激发波长:980 nm/ 808 nm发射峰:365 nm、475 nm、545 nm、655 nm、800 nm半峰宽:10 nm溶剂:溶于有机溶剂或水我们可根据客户需求,提供不同质量、膜尺寸的上转换高分子复合膜。由于此款产品为定制款,标价为参考价,具体价格请联系在线客服发射峰 & 吸收峰TEM测试图

纳米光子学相关的仪器

  • 多通道超导纳米线单光子探测系统赋同量子生产的SNSPD系统由超导纳米线单光子探测器、低温恒温系统和电子学模块三个部分组成,该系统具有以下特点:●采用小冷量风冷GM制冷机,无需液氦;●7×24小时不间断运行; ●高可靠性,已通过各种应用场合长期证; ●专业高效的技术支持; ●机柜式或桌面式集成。 参数细节探测通道数目:1-32;光学接口:FC/PC;电子学接口:SMA;工作环境:温度4℃-38℃;湿度≤60%;系统漏率:<1E-10Pam3/s;重量:约100 kg;电源:单相220-230 V,50 Hz;功耗:≤ 1.3 kW;
    留言咨询
  • QE85%超导纳米线单光子探测器所属类别: ? 探测器/光子计数器 ? 单光子计数器 产品简介QE85%超导纳米线单光子探测器 高量子效率85%,低暗计数10cps,高计数率20MHz 很新的超高效率超导纳米线单光子探测器,其在600nm-2300nm内达到高量子效率85%,暗计数10cps,同时zui高计数率20MHz,是目前市场上性能良好的超导单光子探测器,此型号超导纳米线单光子探测器可提供zui多8通道同时运行 超导单光子探测器, SSPD,SNSPD超导纳米线单光子探测器,单光子计数器, Superconducting Nanotechnology,红外单光子计数器,高灵敏度单光子计数器 技术指标:l 量子效率: ≥ 80 %l 时间抖动: ≤ 45 ps (20 ps on request)l 暗计数: ≤ 10 cps (0.01 cps on request)l 光谱范围: 0.6 ÷ 2.3 μml 无后脉冲l 光纤耦合l 连续模式 一般参数:l 探测通道数: 1-8l 光纤类型: SMF-28e l 原始输出电压: ≤ 150 mVl 输出信号类型: TTL, ECL, LVDSl 驱动接口: USB, LabVIEW 应用领域:l 光量子计算l 光子相关性测量l 量子密码和QKDl CMOS缺陷分析l α,β粒子探测l TCSPCl 单分子荧光光谱l 弹道成像l 单等离子体检测l 自由空间通信l LIDARl 时间分辨荧光测量l 单量子点荧光光谱l 片上量子光学l 单线态/三线态氧荧光探测l 皮秒集成电路分析l 单电子探测 相关产品 超低暗计数(0.01cps)超导单光子探测器 超高速(500MHz)超导单光子探测器 超快(120MHz)近红外单光子计数OEM模块 符合计数单光子计数系统
    留言咨询
  • 双光子聚合激光直写3D纳米光刻机MicroFAB-3D双光子聚合3D纳米光刻机是一款超紧凑、超高分辨率交钥匙型3D打印机。双光子聚合3D纳米光刻机基于双光子聚合(TPP)激光直写技术,兼容多种高分子材料,包括生物材料。MicroFAB-3D 3D纳米光刻机帮助您以亚微米的分辨率生产出前所未有的复杂的微部件,MicroFAB-3D的zui小特征尺寸可低至0.2um宽,为微流体、微光学、细胞培养、微机器人或元材料领域开辟了新的前景。MicroFAB-3D具有开放性和适应性,可以满足您的个性需求。双光子聚合激光直写3D纳米光刻机关键特性:较高的直写精度和分辨率(可达0.2um)(已有客户使用此设备实现低至67nm分辨率的结构)直写速度快兼容任何CAD模型和文件兼容广泛的聚合物,以及生物材料紧凑的设计适用于层流架适用于无菌、无尘室以及工业环境双光子聚合激光直写3D纳米光刻机核心优势:新的TPP切片工具复杂的3D结构下高直写速度三维微零件无形状限制适用于微部件、微流体、超材料、细胞培养、微机器人、微力学、组织工程、表面结构或任何你可能拥有的微制造理念的技术。双光子聚合激光直写3D纳米光刻机规格指标:双光子聚合激光直写3D纳米光刻机适用材料:我们为我们的双光子聚合激光直写3D纳米光刻机提供了10种zhuanli光刻胶,这些树脂的各种性能允许您探索许多应用领域。我们的系统可与各种商业上可用的光刻胶兼容,如Ormocomp, SU8, FormLabs树脂,NOA-line树脂,甚至水凝胶或蛋白质等。这些光刻胶可能是生物兼容的,甚至已被认证实现微型医疗设备。如果您想使用定制的、自制的聚合物,我们也可以帮助您调整系统以适应您的工艺。关于昊量光电昊量光电 您的光电超市!上海昊量光电设备有限公司致 力于引 进国 外创 新性的光电技术与可 靠产品!与来自美国、欧洲、日本等众多知 名光电产品制造商建立了紧 密的合作关系。代理品牌均处于相关领域的发展前 沿,产品包括各类激光器、光电调制器、光学测量设备、精 密光学元件等,所涉足的领域涵盖了材料加工、光通讯、生物医疗、科学研究、国 防及前沿的细分市场比如为量 子光学、生物显微、物联传感、精 密加工、激光制造等。我们的技术支持团队可以为国内前 沿科研与工业领域提 供完 整的设备安装,培训,硬件开发,软件开发,系统集成等优 质服务,助力中国智 造与中国创 造! 为客户提供适合的产品和提 供完 善的服务是我们始终秉承的理念!
    留言咨询

纳米光子学相关的试剂

纳米光子学相关的方案

纳米光子学相关的论坛

  • 【分享】新型纳米装置将光子变为机械能

    【分享】新型纳米装置将光子变为机械能

    新型纳米装置将光子变为机械能[img]http://ng1.17img.cn/bbsfiles/images/2009/05/200905231039_151503_1644912_3.jpg[/img]一个名为拉链空穴的小装置能够将激光变为机械能。(图片提供:Matt Eichenfield,Jasper Chan/《自然》)研究人员日前研制出一种纳米装置,能够在遭遇激光时产生振动。这种设备非常灵敏,甚至能够感知单个光子的能量。研究人员相信,它将加速光学通讯系统的发展,同时帮助科学家更为精密地探知物质的一些基本属性。 据美国《科学》杂志在线新闻报道,偏振光束似乎没有实现机械功的能力(这是因为光子作为光波的载体是没有质量的),但是它们在原子水平上却能够达到一个惊人的数量。例如,科学家目前已经能够利用激光捕捉、控制及操作单个的原子。现在的问题是相同的原理是否能够作用于纳米量级——其成分要比原子水平大得多,但在大小上仍然仅相当于一米的十亿分之一。 这也正是美国帕萨迪纳市加利福尼亚州理工学院(Caltech)的一个研究小组试图要解决的问题。首先,研究人员制造了一对外部覆盖着硅微芯片材料的厚度仅为几百纳米的支架。随后,他们利用化学手段在每个支架的表面腐蚀了一连串的小洞。研究小组将这一装置称为“拉链空穴”,这是因为它与一个拉链看起来很像。研究人员在5月14日出版的《自然》杂志上报告说,这些小洞能够引导和捕捉激光束的能量,同时使装置产生振动。而振动的频率取决于激光轰击支架的强度,参与该项研究的Caltech的物理学家Oskar Painter这样表示。 这一装置的表现就像是一部音频扬声器,后者隔膜的振动取决于放大器传送的电子信号的强度。相反,像扩音器一样,拉链空穴能够通过自身的振动改变光的强度。Painter指出,总体而言,这些功能使得拉链空穴能够扮演一部完全由光控制的微型无线电发射机和接收机的角色,但它同时要比类似大小的电子装置拥有更大的操作范围。 德国加兴市马普学会量子光学研究所的物理学家Tobias Kippenberg表示,科学家可以利用这种纳米量级的装置探究物质在量子范围的属性,而这是普通电子装置无法实现的。Painter解释说,由于这种装置的振动发生频率在每秒钟1000万次到1.5亿次之间,因此能够极大地改善原子力显微镜的分辨能力。用这种装置来研究分子和原子,每秒钟可以完成数千次操作。Kippenberg表示:“这种装置在基础研究和新应用上都具有光明的前景。”(

  • 用于光子相关纳米粒度仪的数字相关器

    用于光子相关纳米粒度仪的数字相关器

    用于光子相关纳米粒度仪的数字相关器动态光散射原理(光子相关普法PCS和光子交叉相关普法pccs)的纳米激光粒度仪的关键技术是提取悬浮液在溶液中的纳米颗粒的散射光的自相关函数或互相关函数,计算纳米颗粒的扩散系数,从而分析颗粒粒度。数字相关器是基于动态光的散射原理(光子相关光谱法PCS和光子交叉相关普法pccs)的粒度测试技术中提取散射光信号的自相关函数和互相关函数的装置。目前,国内应用较多此类装置主要是进口美国Brookhaven公司BI-9000AT、BI-9010AT和Turbocorr数字相关器,这些装置只能完成自相关运算而无法进行互相关运算,因此只适合用于pcs法测试纳米颗粒粒度,而无法适用于PCCS法测试纳米颗粒粒度,从而对测试环境、所测样品浓度以及测试稳定性等方面具有较大的局限性,只有制作专用大规模集成电路(ASIC),或基于DSP技术,或多片芯片及联组成,不但有很大的局限性,而且价格昂贵。另外,国内有人尝试采用软件的方式实现数字相关器,即先用光子计数器将散射光光子计数并储存在存储器中,然后根据计算计算机软件将其数据从存储器中读出进而进行相关运算,虽然这样能计算出散射光强的相关函数,但由于软件所需的处理时间内的光子丢失造成计算的相关函数偏差较大。因此,采用软件的数字相关器实时性很差,不能满足颗粒粒度分析的要求。微纳专利的用于光子相关纳米激光粒度仪的数字相关器,是一种基于动态光散射原理测试纳米及亚微米颗粒粒度测试技术中用于获得散射光信号自相关函数和互相关函数的数字相关器。本专利发明实现了光子脉冲技术、自相关运算、互相关运算以及与计算机通讯功能,具有采样速度快、延迟时间范围广、相关通道多的特点,完全满足纳米颗粒粒度测试中获取高速变化的动态散射光信号的自相关函数和互相关函数的高难度需求。 winner802 纳米激光粒度仪http://ng1.17img.cn/bbsfiles/images/2015/12/201512030937_576113_3050076_3.jpg产品简介:Winner802是我公司最新推出的基于动态光散射原理的纳米激光粒度仪,同时也是国内首款采用数字相关器的纳米激光粒度仪。本款仪器采用我公司自主研制的高速数字相关器和高性能光电倍增管为核心部件,具有操作简便、测试快捷、分辨率高等特点。适用范围:Winner802适用于各种纳米级、亚微米级固体颗粒与乳液。技术参数:规格型号Winner802执行标准 GB/T 19627-2005/ISO 13321:1996 GB/T 29022-2012/ISO 22412:2008测试范围1-10000nm(与样品有关)浓度范围0.1mg/ml--100mg/ml(与样品有关)准确度误差1%(国家标准样品D50值)重复性误差1%(国家标准样品D50值)激光光源光纤半导体激光器,λ= 532nm, 探测器光电倍增管(PMT)散射角90o样品池体积4mL温控范围5-40 ℃(精确到0.1℃)测试速度5 Min体积480mm×270mm×170mm重量12Kg数字相关器主要参数自相关通道:256 基线通道:4最小分辨时间:6ns 延迟时间:100ns-10ms(可调) 运算速度:162M/S产品特点和优势:先进的测试原理采用动态光散射原理和光子相关光谱技术,根据颗粒在液体中的布朗运动速度测定颗粒大小。大小颗粒运动速度不同,激光照射这些颗粒,不同大小的颗粒将使散射光发生快慢不同的涨落起伏。光子相关光谱法就根据特定方向的光子涨落起伏分析其颗粒大小。 极高的分辨能力使用PCS技术测定纳米级颗粒大小,必须能够分辨纳秒级信号起伏。本仪器的核心部件采用我公司研制的CR256数字相关器,具有识别8ns的极高分辨能力和极高的信号处理速度。 高灵敏度和信噪比采用专业级高性能光电倍增管(PMT),对光子信号具有极高的灵敏度和信噪比。 超强的运算能力采用自行研制的高速数字相关器CR256进行数据采集与实时相关运算,其数据处理速度高达162M,从而实时有效地反映颗粒的动态光散射信息。Winner802光子相关纳米激光粒度仪是国家科技型中小企业创新基金的项目成果,也是过内首款采用动态光散射原理的纳米粒度仪。其测量原理建立在液体颗粒布朗运动基础之上,颗粒越小,运动速度越大,运动速度越慢。它采用HAMAMATSU高性能光电倍增管和由微纳自主研发的高速数字相关器作为核心部件,通过测试某一角度的散射光的变化并求出自相关函数(即扩散系数),根据Stokes-Einstein方程计算出颗粒粒径及分布,它具有快速、高分辨率、重复及准确等特点,同时还是纳米颗粒粒度测试的首先产品。

  • 模仿蝴蝶翅膀的微观结构 科学家开发出纳米尺度光子晶体

    科技日报讯 据物理学家组织网9月3日(北京时间)报道,澳大利亚斯威本科技大学和德国埃尔朗根-纽伦堡弗里德里希·亚历山大大学(FAU)的一个国际研究团队,通过模仿蝴蝶翅膀的微观结构,开发出一种小于人类头发丝宽度的纳米级光子晶体设备,能同时适用于线性和圆形偏振光,使光通信更迅捷更安全。 该光子晶体可以同时分割左、右圆形偏振光,其设计灵感来自于卡灰蝶,也称为黄星绿小灰蝶。它的翅膀里具有三维纳米结构,赋予其充满活力的绿色。其他昆虫也有可提供色彩的纳米结构,但卡灰蝶却有着一个重要的不同。斯威本大学的马克·特纳博士说:“这种蝴蝶的翅膀包含一个互连的纳米级螺旋弹簧巨大阵列,形成了独特的光学材料。我们用这个概念来开发光子晶体装置。” 光子晶体相当于微型偏振分光镜。偏振分光镜用于现代技术,如电信、显微镜和多媒体。但天然晶体只适用于线性偏振光,不能用于圆形偏振光。研究人员利用三维激光纳米技术,使得该光子晶体具有了天然光子晶体没有的特性,从而能适用于圆偏振光。这种微型设备包含了超过75万个微小的聚合物纳米棒。 斯威本大学微光电中心主任顾敏(音译)教授说:“我们相信已经创建了第一个纳米尺度的光子晶体手性分光镜。它有可能成为开发集成光子电路的一种有用的电子元件,在光通信、影像学、计算机信息处理技术和传感中发挥重要作用。该技术为转向纳米光子器件提供了新的可能性,使我们朝着开发可以克服超高速光网络带宽瓶颈的光学芯片更近了一步。” 该研究成果已经发表在最新一期的《自然·光子学》杂志上。(记者华凌) 总编辑圈点 自然比人的想象更丰富。看似无奇的绿光,来自一种光学装置设计者从未见过的复杂结构。卡灰蝶翅膀里的天下无双的怪异阵列,是纯属偶然的基因变异数亿年积累的产物。而有想象力的科学家,在它的启发下,制造出地球上从未存在过的光学奇观。模仿自然的美,是人类创造的原动力。 《科技日报》(2013-09-04 一版)

纳米光子学相关的资料

纳米光子学相关的资讯

  • 化学所“纳米光子学测试仪的研制与推广”专项通过初步验收
    2016年12月23日,中国科学院条件保障与财务局组织专家对化学所姚建年院士主持的科技部国家重大科学仪器设备开发专项“纳米光子学测试仪的研制与推广”项目进行了初步验收。国家科技部资源配置与管理司刘春晓副处长,中国科学院条件保障与财务局曹凝副局长、科技条件处牟乾辉处长、姜言彬副处长,中科院化学所张德清所长、毛兰群副所长、科技处何圣贵处长、科研条件办公室郭晴主任、财务资产处罗可处长,以及项目监理组、项目组成员等共40余人参加了初步验收会。  刘春晓副处长介绍了科技部仪器专项项目背景及验收要求,曹凝副局长宣布专家名单,并依照科技部验收实施细则提出了科学院初步验收要求。  专家组在听取了赵永生研究员的项目总体完成报告与各子任务执行报告后,实地考察了纳米光子学测试仪的现场,进行了技术指标的测试及演示。  “纳米光子学测试仪的研制与推广”项目由中科院化学所主持,清华大学、中科院物理所、中科院福建物构所、北京维信诺科技有限公司、金保利(泉州)科技实业有限公司等科研院校及公司共同承担。经过三年努力,项目完成了任务所要求的各项指标,完成了实验室样机向工程化、产业化的转化目标。项目执行期间总共发表SCI论文154项,出版专著1本,申请国内专利69项,授权国内专利21项,完成行业标准2项,获得计算机软件著作权登记证书3项。基于该项目开发的“纳米光子学测试新技术”获得了中国分析测试协会科技技术一等奖。  专家组经过认真审议和充分讨论,认为该项目考核指标基本完成,组织管理规范,档案资料齐全,一致同意通过院初步验收。  化学所张德清所长及项目负责人姚建年院士先后对科技部和科学院的支持及专家组的辛勤工作表示感谢。曹凝副局长在祝贺项目完成的同时,希望项目团队继续推进相关研究,进一步拓展仪器功能及使用范围,会同企业切实推进仪器的产业化。  科技处 光化学院重点实验室  2016年12月30日
  • 化学所“纳米光子学测试仪的研制与推广”项目获批
    2013年1月11日,国家重大科学仪器设备开发专项“纳米光子学测试仪的研制与推广”项目启动会在化学所启动。国家科技部条财司吴学梯副司长、条财司条件处孙增奇处长、郑健副处长,中科院计划财务局曹凝副局长、科技条件处杨为进处长、基础局综合规划处燕琳处长,化学所张德清所长、毛兰群副所长、科技处郭晴副处长,项目专家组成员、用户委员会成员和项目组成员代表等共30余人参加了启动会。  会议由毛兰群副所长主持。项目负责人姚建年院士对到会的领导、专家及项目组成员表示感谢。科技部吴学梯副司长首先祝贺项目启动,并指出在项目执行中,要做好知识产权保护,认真落实法人机制,做好管理和监督工作。他同时也强调要严格执行国家各项规定,加强经费管理。中科院计财局曹凝副局长要求项目要把握好定位,充分做好对知识产权的保护。张德清所长在致辞中首先对科技部、科学院及各位专家在百忙之中的莅临指导表示感谢。他表示,化学所会高度关注此项目,为项目的实施提供支持,争取把该项目做成示范项目。  最后,化学所赵永生研究员介绍了项目总体情况、计划安排和管理要求,专家组对项目的实施以及产业化等相关内容进行了深入讨论,并提出了建设性的意见。
  • 纳米光子与生物光子学联合研究中心成立
    国际纳米光子学与生物光子学联合研究中心日前在长春成立。这是长春理工大学与美国纽约州立大学在光学领域共同搭建的一个合作平台。  纳米制造技术是21世纪的关键技术之一,生命科学是当今世界科技发展的热点之一。随着激光技术、光谱技术、显微技术以及光纤技术的飞速发展,由光学、纳米、生物领域融合而成的新学科――生物光子学和纳米光子学已经成为本世纪的关键科研方向。  美国纽约州立大学布法罗分校在纳米学、生物光子学领域享有极高的国际声誉,而光学学科是长春理工大学的特色优势学科。经过多年发展建设,在人才储备和科学研究等方面积淀了雄厚的基础。两所高校成立联合研究中心,是双方在合作模式、人才培养、信息互动等方面的有益探索和尝试。据了解,该中心拟成立5个研究室,将长春理工大学鲜明的光电特色和布法罗分校激光、生物光子学与纳米光子学先进的研究理念结合起来,广泛地开展激光、能源、光子、纳米光子和生物光子等领域的研究。联合研究中心计划在5年至10年建成具有国际影响的国家级重点实验室,成为具有国际先进水平的研究开发中心。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制