藤壶幼虫

仪器信息网藤壶幼虫专题为您整合藤壶幼虫相关的最新文章,在藤壶幼虫专题,您不仅可以免费浏览藤壶幼虫的资讯, 同时您还可以浏览藤壶幼虫的相关资料、解决方案,参与社区藤壶幼虫话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

藤壶幼虫相关的耗材

  • 斑马鱼显微注射模具Zebrafish Microinjection & Transplantation Kit
    斑马鱼是发育与神经生物学研究的常用模型,科学家经常采用微注射方式将吗啡啉、质粒、RNA或蛋白质等物质引入早期胚胎。这种技术虽然相对简单,但时间是非常关键的要素。研究人员经常遇到小障碍延迟实验,导致胚胎发育超出预期阶段。虽然掌握显微注射需要练习和技巧,但使用以下工具,可以显著提高成功概率。这里介绍几个塑料模具,它们是专门为斑马鱼的研究而设计的。模具灌胶后翻转放在液体琼脂糖凝胶中。一旦琼脂糖凝固,手柄可以很容易地从琼脂糖中去除。胚胎很容易被移液到琼脂糖凝胶模具的凹槽中。通过“下降和倾斜”,将胚胎加入水中,然后去除多余的水。重复这个步骤,直到凹槽中充满了胚胎。模具的宽度和结构使胚胎能够自然对齐。模具套装:DJ-21模具---注射许多胚胎-多达1000。由琼脂糖凝胶中的模具制造的凹槽将使胚胎能够自对齐。KIT-79模具--幼虫注射。倾斜的脊在琼脂糖凝胶中形成完美的角度,然后使幼虫的微注射更容易进行。KAS-21--这个模具是为了降低微注射的速度而设计的,通过在你做微注射时转动培养皿。ET-21模具--卵裂球移植。产品选购:货号产品描述包装ZF-9000斑马鱼显微注射模具Zebrafish Microinjection & Transplantation Kit套
  • SP-PST3
    SP-PST3传感器点是非侵入式光学氧传感器中最通用的版本。它们可以附着在任何透明玻璃或塑料容器的内表面,例如摇瓶和旋转瓶、管子、培养皿或培养袋。通过透明血管壁以非侵入性和非破坏性方式测量氧气。SP-PSt3-YAU 的测量范围为 0 – 100% 溶解相或气相氧。氧敏涂层固定在1mm玻璃支架上,可以高压灭菌(+ 130°C,1.5个大气压)。 通过容器壁进行非接触式测量 无需耗氧 信号与流速无关 测量液体和气相中的氧气 可高压灭菌应用生物工艺开发:摇瓶中的氧气监测O2供应是好氧生物培育的主要问题之一。摇瓶培养物广泛应用于学术和工业生物工艺开发。由于缺乏对溶解氧进行实际监测的适当方法,足够的 O2通常假设供应。摇瓶中的非侵入式氧传感器现在可确保氧气供应,并为代谢活动提供新的见解。呼吸与光合作用:玻璃瓶中的氧气监测呼吸活性的测定通常用于水生物,如无脊椎动物、幼虫阶段或卵,也适用于细菌、细胞培养物、酵母或真菌。对于藻类来说,光合活性的测量是非常有意义的。使用带有集成传感器条带的 20 mL 传感器瓶,可以同时测量液体样品和顶空中的氧气。可高压灭菌传感器样品瓶可用于搅拌和非搅拌应用。
  • BTR-15藤仓光纤熔接机电池
    BTR-15电池容量:6380mAh,满电状态下可以熔接加热300次。BTR-15藤仓光纤熔接机电池适用机型:87S+, 87C+, FSM-87S, FSM-87C+, FSM-88S, 66S+.BTR-15藤仓光纤熔接机电池使用方法:电池充满电后直接插入光纤熔接机卡槽即可使用。电池使用前注意事项如果能注意几个要点,电池的使用寿命以及电池为客户持有的熔接机的服务时间都会变长。重要的一点是避免电池在阳光下暴晒,或者放在发热的机动车里(包括夏天把电池放在车的后备箱里)。 热源能使电池性能快速衰减。 电池使用寿命 (充电次数) “电池容量”指熔接机能够在一次充电后使用的次数。 “电池使用寿命”指电池可以使用的总充放电次数。总充放电次数的推算基准是满充电后,电池容量仍维持在原始容量的70%以上。 电池的使用寿命受使用方法、环境、设定和其他因素影响。 按照要求规定使用电池 为了延长电池的使用寿命并保持电池指示灯的准确性,应该至少每三个月满充电一次, 然后再放空电量。 如果长时间不使用熔接机,请把电池从熔接机中取出保管

藤壶幼虫相关的仪器

  • 优云谱昆虫呼吸速率测定仪YP-KC10动物呼吸代谢测定仪产品介绍:昆虫呼吸代谢测量系统通过精确测量昆虫等动物呼出二氧化碳量及耗氧量等,以研究测量其能量代谢水平,并可计算呼吸商。广泛应用于昆虫代谢生态学研究、果蝇等实验动物生物医学和遗传学研究、病虫害防治、预防医学研究实验、昆虫生态学研究、土壤动物学研究、生态毒理学与污染生态学研究、生物检测等。系统由二氧化碳分析仪、氧气分析仪、气流控制器、数据采集器及程序软件、呼吸室等组成。测量对象:果蝇、蚜虫等细小昆虫到中大型昆虫如蜜蜂、蚱蜢、鳞翅目昆虫或其蛹和幼虫等,或土壤无脊椎动物如线虫、蜘蛛等。可选择同时测量CO2、O2、H2O
    留言咨询
  • 斑马鱼幼体高通量图像采集自动操作系统VAST BioImager™ Platform VAST BioImager系统是专门为2-7天幼体斑马鱼的高通量图像采集而设计。该系统是在美国麻省理工学院Yanik实验室开发的技术的基础上发展而来。VAST BioImager在采集图像之前自动完成斑马鱼幼体装载、定位、旋转等操作,避免了在进行高通量图像采集时对斑马鱼幼体人工操作的时间损耗和冗长的步骤。同时它也是一个组装式和可拓展的平台,能安装在多种直立复式显微镜或者立体显微镜上进行高分辨率、细胞水平上的图像采集。型号:VAST BioImager产品特点: 适用于高通量&高内涵筛选 可安装在多种直立复式显微镜或者立体显微镜上 可安装在荧光显微镜上进行荧光图像采集 配合高阶分析软件,可实现对斑马鱼的高精度定位和高分辨率成像 可选配LP Sampler自动加样器,可实现从96孔板中取样,传送斑马鱼幼体到VAST系统进行图像采集主要功能: 专为模式生物研究而设是斑马鱼研究的有力工具 自动处理图像采集前斑马鱼幼体的各种操作 避免人工操作的时间损耗和冗长的步骤 在软件上点击“Load one Fish”,VAST就会装载好一个斑马鱼幼体 系统可将斑马鱼幼体进行360°旋转定位,从侧面、背面或者其他方向进行图像采集高分辨率显微镜载物台和安装套件VAST配合实验室的显微镜一起使用,一旦使用机载摄像头定位幼虫,VAST内部光源就会关闭,并且可以使用显微镜的光学器件和摄像头捕获高分辨率图像;在配备荧光功能的显微镜上安装 VAST 可以收集荧光图像;多角度成像将斑马鱼幼体进行360°旋转定位,操作者可根据自己的意愿选择方向,侧面、背面或者其他方向进行图像采集高阶版 VAStomography™ 软件能够在几分钟内生成3D光学投影断层扫描 (OPT)选定感兴趣区域的体积、形状和位置数据集使用 VolView/ParaView 进行 3D 可视化使用 MATLAB/Python 进行数据处理从用 Col2-H2a-mCherry 标记的 4 dpf 斑马鱼幼虫的荧光图像构建断层扫描A 腹面观,B 侧视图,C 用VASTomography 软件对同一条鱼进行3D断层扫描手动加样器手持式流通式移液器通过单击按钮,将斑马鱼装载到 VAST中LP Sampler自动进样器能够实现对多孔板样品的自动化加样完整的图像采集系统VAST斑马鱼高通量图像采集系统可配合LP Sampler组成一套更加完整的高通量拍照平台能够实现从多孔板自动进样到显微镜成像平台VAST BioImager的部分文章:Nature Methods, 2010, 7 600-601 and 634-636, Carlos Pardo-Martin, Tsung-Yao Chang, Bryan Kyo Koo, Cody L Gilleland, Steven C Wasserman and Mehmet Fatih YanikLab Chip, 2012, 12 711-716, Tsung-Yao Chang, Carlos Pardo-Martin, Amin Allalou, Carolina Wählby and Mehmet Fatih YanikNature Communications, 4, Article number:1467, doi:10.1038/ncomms2475, Carlos Pardo-Martin, Amin Allalou, Jaime Medina, Peter M. Eimon, Carolina Wählby, Mehmet Fatih Yanik更多信息,敬请来电咨询。请关注玉研仪器的更多相关产品。如对产品细节和价格感兴趣,敬请来电咨询!
    留言咨询
  • 卤虫孵化培养器 400-860-5168转2703
    名称:卤虫孵化培养器型号:AB1000产地:欧洲介绍:卤虫卵的孵化培养装置,单次孵化最多可获得2,000,000只卤虫。本产品也可用于培养卤虫幼虫,大约两周时间便可长大为成虫。卤虫是一种广泛分布且耐高盐的小型甲壳类动物,其卵和幼体富含营养,是水产养殖鱼、虾、贝类幼体的优质饵料,当前世界上85%以上的水产养殖动物的育苗均以卤虫作为饵料来源。卤虫作为饵料生物具有重要的研究价值。技术参数容积:1L内径:80mm长度:45cm管接口:6mm
    留言咨询

藤壶幼虫相关的方案

藤壶幼虫相关的论坛

  • 幼虫表皮提取

    我做幼虫的表皮提取,提取时间的不同,做的气相峰就相差很大,我照着外文的实验步骤做的,结果却相差很大,请问哪位老师同学做过?谢谢

  • 【转帖】科学》发表我国科学家关于果蝇幼虫光偏好行为成果

    人类有爱有恨,有欢喜有厌恶,儿童爱不释手的玩具可能被成人不屑一顾。然而,这种喜好并不是人类的专利,低等动物同样会有抉择。成语“飞蛾扑火”诠释了昆虫为求光明甚至不惜牺牲,然而,昆虫幼虫恰恰喜欢茫茫黑暗却往往不为人知。近日,中国科学院生物物理研究所研究员刘力、副研究员龚哲峰等初步揭示了果蝇幼虫中央脑的两对神经元足以调节果蝇幼虫对于不同光强条件的偏好行为的研究成果。这一成果日前在美国《科学》杂志在线发表。来自纽约大学的NinaVogt博士和Desplan博士对此给予了高度评价,认为这项发现“增进了人们对动物大脑解析视觉的理解”,同时也使人们“向全面理解环境和内在生理因素影响本能行为的神经基础迈进了一步”。成功,些许“运气”“这篇文章得以发表,我们运气不错。”龚哲峰这样强调。“运气”是从确定课题方向开始的。在国外时,龚哲峰就常常会想起一个有意思的现象:当很多人经历匆匆岁月,偶然邂逅少年时代的初恋情人时,却发现完全找不到之前的感觉。而这种变化的神经基础却并未被人所知。然而,它虽然是有趣的课题,但人脑的复杂性使这样的研究很难简单实现。一次意外发现却给了龚哲峰启示:果蝇的幼虫伴随着自身的发育,会从年幼时喜欢黑暗变得逐渐热爱光线充足的地方。这不正是与人类的偏好性类似的生物模型吗?龚哲峰深入思考后,毅然确定了自己回国后的研究方向。龚哲峰回到中科院生物物理所工作后,该项研究得到了课题组组长刘力的强力支持。于是龚哲峰着手订购了1000余个缺陷品系果蝇,希望能发现不怕光的果蝇幼虫,获得实验材料。订购来的果蝇要获得缺陷表型,必须经过进一步杂交,龚哲峰和合作者开始了上千次显微镜下的杂交、繁殖,上万次的筛选。在每天工作14小时以上、不间断杂交筛选大半年后,终于发现了不怕光的品系。“我们运气不错。本以为果蝇失去避光性就是成功,可就在筛选工作进行了一年多、即将结束的时候,我们居然发现了一个品系的果蝇幼虫喜欢光。”龚哲峰兴奋地说。这个发现让该品系的果蝇顿时成了“宝贝”。NP394神经元的失活,并不仅仅使得该品系的果蝇幼虫从“惧怕光”变得对光“无所谓”,而是180度的大转弯,直接“爱上光”了。接着,课题组研究人员证明了NP394神经元控制着果蝇避光/趋光的“开关”:抑制该神经元,即使年幼的幼虫也会变得“喜欢光”;激活该神经元,则年长的幼虫同样将变得“害怕光”。“我们通过分段表达绿色荧光蛋白,第一次在果蝇中成功检测到了该技术的应用,证明了PDF神经元和NP394神经元的上下游关系。”龚哲峰指出。要证明两个神经元之间的关系,首先要确定它们的突触距离是否足够近。而在果蝇不同的神经元中分段表达绿色荧光蛋白成了瓶颈。此时,国外的研究也首次报道在果蝇中应用了该项技术,和龚哲峰的体系颇有相似之处。“他们没有得到阳性结果,我们得到了。”龚哲峰平静地说。通过改造实验器材,他们在国内首次实现果蝇中功能钙成像技术的成功应用,佐证了两对神经元的上下游关系。凭借着四年多的“运气”,刘力、龚哲峰等最终发现并提出NP394神经元的开关作用,并首次将偏好行为神经元回路从第一级延伸到第三级神经元,得到了国际同行的认可和高度评价。“可能运气好吧。”回顾四年多来的艰辛付出,龚哲峰付之一笑,“这些结果还不足以阐述人类的喜好变化。不过,只要继续坚持做下去,它终会给我们带来惊喜。”果蝇,又见果蝇人们可能没有想到,嗡嗡作响、令人生厌的果蝇于20世纪初被遗传学大师摩尔带入实验室后,竟已成就了7位诺贝尔奖获得者。在中国,以果蝇为研究工具,神经生物学家们同样取得了令人关注的成果。被人称为“果蝇院士”的中科院院士郭爱克,是刘力和龚哲峰学生时代的共同导师。作为新中国第一位留德博士,郭爱克近年来已经连续3次在《科学》杂志上发表文章。2001年,郭爱克研究小组首次发现了果蝇具有简单抉择能力,并且“蘑菇体”参与其中;2005年,该小组继续深入“两难抉择”研究,发现了果蝇跨视觉和嗅觉记忆的“共赢机制”;2007年,他们则聚焦于面临冲突环境时果蝇价值抉择的神经环路机制。名师出高徒。刘力也曾两次在英国《自然》杂志发表文章。2006年,他在中科院生物物理所的研究小组从基因、细胞、脑结构以及行为等多个层面,第一次精确定位了果蝇视觉学习记忆的脑功能区——扇形体。这些喜欢环绕着腐败水果飞行的小家伙,为什么会被生命科学家宠爱至极,并且占据生命科学研究舞台百年之久呢?“果蝇是人类窥见自己复杂神经的一扇窗口。它结构简单,繁殖快速,易于改造,非常适宜做神经生物学的研究模型。”面对记者的疑问,龚哲峰道出了果蝇的妙处。果蝇容易饲养,平均一年30代的繁殖速度,使科学家们能够在较短的时间内培养出大量的特定种系。随着2000年果蝇基因组的测序完成,研究者更是可以准确、迅速地对其进行改造。此外,小小果蝇的神经系统和人类也颇具相似之处,在人类的大脑中,活跃着大约1000亿个神经元,而果蝇只相当于人类的万分之一。因此,果蝇也已成为研究神经结构和定位记忆方面最好的生物模型。物体进入人们的眼中,大脑会对图像分类后加以储存,从而构建出思维与情感,或者发出指令。那么,果蝇眼睛中的刺激传到脑中,又是如何学习和记忆的呢?在刘力的实验室里,记者见到了一套为果蝇量身打造的“飞行装置”。该装置可以呈现出不同的视觉图案——正T和倒T字母,主要作用是教导果蝇“学习”。果蝇在明亮的圆筒形空间向眼前的视觉目标飞去,如果它总是飞向倒T字母,电脑就会立即发出指令,烫它的屁股。慢慢地,果蝇学会了“吃一堑,长一智”,认识到倒T字母是危险的,而自觉地转向正T字母。通过这套设备,就可以模拟出果蝇的学习过程,建立视觉、神经和行为之间的动态神经回路。“总之,上述研究成果的获得,小家伙们功不可没。果蝇和人类大脑在基本功能上有着相似性,探究果蝇视觉行为的深入机理,对我们自己大脑的解读颇有启示。”龚哲峰说。(转自科学时报)

藤壶幼虫相关的资料

藤壶幼虫相关的资讯

  • 满洲里质检局“谷斑皮蠹幼虫识别与鉴定”能力通过验证
    近日,满洲里检验检疫局技术中心林木实验室获得了国家认监委颁发的“谷斑皮蠹幼虫识别与鉴定”能力验证满意证书。2009年9月,满洲里局技术中心林木实验室申请参加了国家认监委组织的“CNCA- 09-B03谷斑皮蠹幼虫识别与鉴定”能力验证,满洲里局技术中心工作人员对提供的9个样本认真地进行了玻片制作和鉴定,结果全部正确,2010年1月,国家认证认可监督管理委员会实验室与检测监管部为满洲里检验检疫局技术中心颁发了能力验证合格实验室证书。这再一次证明满洲里局技术中心的检验检疫工作能力和水平在不断增强。  我国许多口岸都有截获谷斑皮蠹幼虫的报道,谷斑皮蠹疑似种一旦在口岸发现后,由于疫情较重大,一般没有时间等待将幼虫养成成虫后再鉴定,所以相关部门必须根据幼虫给出准确、及时的鉴定结果。而谷斑皮蠹的近似种类较多且外部形态变化小,要准确鉴定其种类,只凭幼虫的大小、长短、体色等外部特征是远远不够的,必须经过实验室玻片制作,在显微镜下观察其主要的鉴定特征。  为此,满洲里局技术中心林木实验室工作人员经过反复尝试,制作出了完整、清晰的、显微特征明显的谷斑皮蠹幼虫标本。从而确保了林木实验室顺利通过了该项能力验证工作,并为今后快速检疫鉴定谷斑皮蠹幼虫工作奠定了基础。同时,此次能力验证工作的圆满完成对于满洲里口岸谷斑皮蠹幼虫检疫鉴定工作具有重要意义。  谷斑皮蠹是仓库害虫中最为危险的种类,也是世界上最重要的检疫性害虫之一。由于其危害严重,耐热、耐寒、耐干性强,并对许多药剂都有抗性,因此防除十分困难。谷斑皮蠹以幼虫取食危害,幼虫贪食,除直接取食外,还有粉碎食物的习性,对谷物造成的损失一般为5%~30%,有时高达73%甚至100%。据记载谷斑皮蠹幼虫期可达26~87天,休眠幼虫期甚至可达数年,但成虫期仅10天左右,正是由于幼虫期长,其体型显著大于成虫,因此在检疫过程中发现的基本都是幼虫。
  • 大理检验检疫局通过谷斑皮蠹幼虫识别与鉴定能力验证
    大理局通过谷斑皮蠹幼虫识别与鉴定能力验证  参加能力验证,是锻炼和提高实验室人员检测能力的很好途径,也是衡量实验室检测技术能力综合水平的主要手段。近日,大理局综合技术中心收到CNCA《能力验证合格实验室证书》,确定该局综合技术中心报名参加的由国家认监委组织实施的“CNCA-09-B03谷斑皮蠹幼虫识别与鉴定能力验证”项目已获得通过,9份测试样品中鉴定结果全部正确,实验室能力验证结果为“满意”,作为能力验证判定参考依据的种类鉴定结果也与指定目标完全一致。  2007年以来,大理局综合技术中心积极报名参加CNAS、CNCA以及云南局组织的实验室检测能力验证活动。参加“CN?鄄CA-09-B03谷斑皮蠹幼虫识别与鉴定能力验证”项目是该局综合技术中心第八次参加能力验证计划,也是第二次参加国家认证认可机构组织的植物检疫领域的能力验证计划。这次顺利通过能力验证,表明该局综合技术中心在相关领域的检测能力水平符合要求,也将进一步坚定该局加快技术中心检测能力建设的信心和决心。
  • 院士呼吁加强农作物病虫害监测预报
    p  “去年6月粘虫高发时,一盏探照灯一个晚上可以捕获1万只,整个华北向东北迁飞的粘虫超过1000万只。”19日,在南京农业大学举行的第四十期全国农作物病虫测报技术培训班上,迁飞性害虫的数据令人触目惊心,中国工程院院士吴孔明、康振生等专家呼吁,应建立昆虫雷达、高空灯、地面灯、食诱剂等结合的联防联治网络,从化学防控向绿色防控转变。/pp  与本地害虫相比,迁飞性害虫对农业生产的威胁更大,监测预警难度更高。南京农业大学植保学院书记吴益东表示,如果天公作美,害虫乘风而行,一夜之间就可以迁移几百公里。传统的害虫监测依靠人力进行,效率低、准确度差,应采用智能化无人值守的监测网络,运用昆虫雷达进行实时监测。/pp  “要实现农药零增长与绿色防控,病虫害的测报最关键。”中国工程院院士、西北农林科技大学康振生教授认为,我国农业生产防治病虫害过度依赖化学用药,应当破除防虫就是打药的观念,进一步了解害虫发生规律。/pp  吴孔明院士团队在我国渤海、南海设立了两个昆虫迁飞观测站,根据十多年来的观测研究表明,至少有26科106种害虫在我们的头顶上大范围的迁飞。/pp  “一只成虫至少繁殖10倍后代。”吴孔明建议,迁飞害虫的防治目标应从幼虫转向成虫,根据害虫迁飞规律在全国划定若干重点地区,建立昆虫雷达、高空灯、地面灯、食诱剂等结合的联防联治网络,从而减少虫源地的起飞数量、封锁重要迁飞过境通道、控制中途降落再起飞种群、消灭迁入区降落定居成虫。/ppbr//p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制