细微缺陷

仪器信息网细微缺陷专题为您整合细微缺陷相关的最新文章,在细微缺陷专题,您不仅可以免费浏览细微缺陷的资讯, 同时您还可以浏览细微缺陷的相关资料、解决方案,参与社区细微缺陷话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

细微缺陷相关的耗材

  • FM 100孟塞尔色觉测试
    FM 100孟塞尔色觉测试您分辨颜色的能力如何?FM 100孟塞尔色觉测试将会告诉您答案。每天有成千上万的专业人员评估并交流颜色一即使他们中将近10%的人存在颜色视觉方面的缺陷……他们本人却对此毫不知情!无论您从事设计、生产或质量评估工作,良好的色觉对于做出精确的判断是必不可少的但是您要怎样才能确定您的色觉正常或者存在缺陷呢?爱色丽下属孟塞尔颜色实验室生产的FM 100色相色觉测试是用于确定颜色分辨能力和确认颜色缺陷的行业标准。该测试操作方便,只需巧分钟即可完成 它能够测试出您辨别颜色的准确程度。使用方便的计分软件可以显示您的色觉缺陷程度,例如色盲。另外,该软件还包括一个数据库,它可以跟踪您的颜色评估能力。您可以为那些作出关键颜色选择的人建立并维护标准。此外,您可以 ●对评估人员作出的颜色选择抱有更高的信心 ●长时间跟踪和比较颜色评估人员的准确度 ●满足iso和其它质量体系的要求。测试操作很简单在可控照明*条件下,按照从一种色相到另一种色相的顺序正确排列四组色棋。犯错越少,表示颜色分辨能力越强。色棋之间有着细微的差别,因此每次放错色棋位置都表示一种不同的色觉缺陷类型。全新软件提供即时测试结果。FM 100色觉测试包括多语言的用户友好型计分软件。使用图表可以对您的色觉能力作出大体的判断。为了作进一步的深度分析,该软件包括一个可以存储每个人视觉颜色评估能力的数据库。测试反映什么?测试的结果表示:1.将显示您分辨不同颜色程度的数字分数参照正常的色觉划分为低、中、高三个级别。2.如果您存在色觉缺陷,该软件会确定您混淆颜色的区域。例如,如果区分红色困难,测试结果显示为“红色弱” 如果区分绿色困难,那么分数显示为“绿色弱”。3.测试结果还可以图形化,帮助显示发生错误的颜色区域。与其它机构、供应商和顾客共享数据。您的色觉能力是可以分享的一个竞争优势。该软件可以在网络环境中使用,所以无论您是管理全球范围内员工的颜色交流能力或者满足供应商要求的色觉测试,您都可以在局域网或者广域网上获得需要的数据符合颜色流程和包括iso在内的质量体系的要求。由于要求供应商遵循颜色控制流程作为开展业务的前提,许多一流的零售商和品牌会指定要求色觉测试。FM 100色觉测试能满足并超出多数的测试要求。实际上,该测试50多年的历史证实它已成为测试颜色辨别能力的权威标准。使用自动更新维持测试认证。包含的软件将自动提醒您什么时候更新色棋一在正常使用情况下更新时间大约为两年。您还将收到一份适用于iso和其它质量系统文档要求的产品认证。您知道吗男性比女性更容易患色觉缺陷。每12名男性中便有一名患有某种形式的色觉缺陷,而255名女性中才有一名。有色觉缺陷并不表示是色盲。色弱有不同的程度 有些人可能根本就不存在色盲问题。与那些对色彩较敏感的人相比,他们只是在辨认不同色调时较为困难一些。色觉可反映出某种健康状况。在色彩判断至关重要的行业中,FM 100色觉测试是广泛采用的测试之一。多年来,这个测试方法被用于临床实践中,用来研究眼科疾病和其它健康状况,如糖尿病和帕金森症。它还被用于判断药物对于色觉的影响。FM 100色觉测试在美国实验与材料协会((ASTM)E 1499“监测员挑选、评价和训练指南”,美国纺织化学与染色家协会(AATCC )“评估规定9”以及各种行业的领先企业内部规程中均有指定。FM 100色觉测试由爱色丽下属的孟塞尔颜色实验室生产。孟塞尔颜色实验室生产的FM 100色觉测试可以追溯到美国国家技术与标准研究院(NIST)。所有孟塞尔产品的制造均严格遵照以上认证和相关的惯例以及规程。系统要求●MAC OS X, Windows 98, Windows XP或者Windows2000●450 MHz或者更高的兼容PentiumⅢ的CPU●64 MB可用RAM●2GB硬盘,最低可用硬盘空间为50 MB●分辨率为1024 x 768像素的彩色显示器FM 100色觉测试包括:●四个托盘,尺寸为20" x1.75" x1.25"●耐用的保护性手提箱21.5" x6.12" x2.5"●方便计分的编号色棋,棋子直径为7/16"
  • Defects Engineered CVD Grown 2D layers CVD缺陷生长二维层
    Newly acquired ion implantation accelerator unit allows 2Dsemiconductors USA to create desired amounts of defects by alpha particle irradiation process at select amount of doses. Please contact us for details and pricing.
  • 工业射线底片评片灯TH-100A
    工业射线底片评片灯TH-100A 1 冷光源高亮度:内置二只特制的长寿命大功率冷光源强光灯管,每只最大功率为85W观察屏处亮度均匀,且200000LUX,(黑度D4.5)。 2 亮度可调:采用无级(原为:三档)电子调光,根据需要任意调节。内置散热风扇 及独特的散热系统,使得连续工作12小时升温45摄氏度。 3 启动方式为脚踏开关式和全通式,灯管启动快(0.1秒/次). 4 附加装置齐全 5 灯上装有可移动的放大镜便于缺陷的辨认。 6 镜下方附有可上下左右移动的评片尺。便于条状缺陷测长和圆形缺陷的评定。(上述附加装置不用时可翻至评片上方待用)。 7 屏面板两侧附有GB4730.1-.6-2005标准供查阅。特殊的均光薄膜,使之散光更加均匀。最大观察屏面积为65*260mm 8 安全可靠无噪声:只要旋开紧固螺栓,便可更换灯管或清洁内部。 技术指标 黑度:D4.5 亮度:200000LUX 电源:50-60Hz 220V± 20% 功耗:168W 放大镜:放大倍数2倍, 有效面积130*90mm 外形尺寸:450*200mm 重量:4.5kg

细微缺陷相关的仪器

  • 钢研纳克钢管视觉表面缺陷自动检测系统:由高速CCD相机系统、同步成像光源系统、存储及图形分析服务器系统、景深自动调节的检测平台系统及软件等组成,可实现二维+三维表面缺陷连续自动检测、分类评级和记录。可以快速且有效检测裂纹、凹坑、折叠、压痕、结疤等各类缺陷,能够适应于复杂的现代钢铁工业生产环境,能够完美替代目视检测,达到无人化生产的水平。 图1 钢管视觉表检系统 图2 CCD高速相机系统1.特点独特二维+三维成像技术:二维+三维集成成像,不仅能准确检测开口缺陷深度,而且深度很浅的细小缺陷也能有效检测。二维、三维结合技术解决了目前三维检测系统只能检出有一定深度缺陷、无法检测表面深度较浅但危害性较大的缺陷的问题。相机景深自动调整技术:能够对不同规格的工件进行自动调整,实现大景深变化背景下的高清成像。卷积神经网络缺陷算法:基于深度学习的表面缺陷检测算法,能够在复杂背景下有效地减少计算时间快速的采集缺陷特征,具有领先的缺陷检出率及分类准确率。2.主要功能在线缺陷实时检测:系统在线检测折叠、凹坑、裂纹等钢管外表面常见自然缺陷缺陷高速识别:快速分析获取缺陷数量、大小、位置(在长度、宽度方向上位置)、类型等信息,显示宽度缺陷模式缺陷分类统计:可按缺陷种类、长度、深度、位置、面积、等进行分类及合格率统计。实时图像拍照:实时过钢图像以及每根钢管记录的图像的“回放”功能,可进行多个终端显示图像回放。机器自学习:系统检出的缺陷和人工核对后,进行对应缺陷的样本训练,形成机器自学习,提高同类缺陷的识别准确率3.检测效果图3 图软件主界面图4 系统分析界面图5 缺陷样本自动标注常见缺陷 划伤 辊印 结疤 裂纹图6 检测到的常见表面缺陷目前该产品已在钢管生产线投入使用,解决了长期困扰客户的表面缺陷实时检测的难题。详情可咨询钢研纳克无损检测,电话: 手机:,E-mail:
    留言咨询
  • 如何使用影像亮度色度计进行 FPD 自动光学检测在产线上及产线的最终检测中,主要有三种方法可对高速生产过程中的平板显示屏 (FPD) 进行光学检测: 1) 人工检测 —— 轻松处理比较复杂的测试要求。但与电子测试方法相比,它相对缓慢,变化较大2) 基于机器视觉的检测 —— 非常快捷,测试简单。但很多测试不能反映出人的视觉体验3) 基于影像亮度色度计的检测 —— 在速度上介于上述两种方法之间。能够像人那样进行“目测”,而且具有高度的可靠性和可重复性 使用影像亮度色度计系统和相关分析软件,可以评估 FPD 的亮度、色彩均匀度和对比度,并识别 FPD 上的缺陷,这种用途已经被广为接受。影像亮度色度计和机器视觉之间的基本差别在于:影像亮度色度计可以精确地匹配人类视觉感知,包括对光线和色彩均匀度 (以及不均匀性 )的感知。 在本文中,我们将描述如何在全自动测试系统中使用影像亮度色度计,在高速度、大批量的生产环境中识别和量化缺陷。本文内容涵盖测试设置,以及可以执行的测试范围 – 从简单的点缺陷检测到复杂的 Mura检测和评估。测量挑战影像亮度色度计系统是基于 CCD 的影像系统,经过校准之后,它对光线、亮度和色彩的反应与 CIE 模型定义的标准人工观察者相同。可精确地同时测量亮度、色彩及其空间关系。测试时,系统会生成数据,并可随时使用这些数据来确定显示屏均匀性和对比度性能。此外,还可对均匀度差异进行分析,以识别和定位潜在的显示屏缺陷。显示屏测量和分析面临的三大重要挑战是: 1) 识别与人类视觉感知具有高度关联性的缺陷2) 量化缺陷的严重程度3) 快速执行高重复度的分析 缺陷的分析和量化可以作为依据,帮助我们确定导致缺陷的显示屏组件,以及接下来采取的行动 – 例如废弃显示屏或返回进行修理 – 从而提高质量测试的效率,还可以降低成本。与人工视觉检测相比,使用影像亮度色度计的测试更加快捷和灵活,重复度更高,另外它在匹配人类视觉感知方面的精确度高于机器视觉。 影像亮度色度计可以精确地捕获 FPD 上的光线和色彩变化的空间关系,这一优点使得这种测试方法非常适用于评估视觉性能。测量组件和测试通过指定适当的自动测试序列,影像亮度色度计可用于获取广泛、精确的高分辨率数据,以描述特定显示屏的性能。对于典型测试序列,此类测量数据通常可在几秒钟至一分钟之内获取,具体时间取决于显示屏技术和分辨率。使用新的 Mura缺陷分析技术,这些影像可用于确定与物理原因直接相关的各种缺陷之间的细微差异。 要使用影像亮度色度计进行显示屏的自动测量和分析,需要使用组合测量控制和分析软件。我们针对此应用开发的系统整体结构如图 1 所示。该系统的主要组件包括:(1) 科研级影像亮度色度计系统;(2) 基于 PC 的测量控制软件,它不仅控制影像亮度色度计,还控制待测试设备上的测试影像显示;以及 (3) 一套能够运行各种测试的影响分析函数。因此,该系统可针对各种显示屏缺陷 (例如点缺陷、线缺陷和 Mura)提供量化自动检测。 实施的部分测试包括:图 1. FPD AOI 测试设置,影像亮度色度计处在自动软件控制下显示屏缺陷检测应用显示屏缺陷分为很多类型,例如像素缺陷和行缺陷、屏幕制造的物理疵点 (例如脱层 )、屏幕损坏 (例如划痕 )、影像均匀度的疵点 (例如 Mura)。利用对视觉感知的最新研究,我们可以根据人工观察者发现这些缺陷的明显程度 (或者是否明显 ),通过数字方式对这些缺陷进行分类。这个分析过程速度很快,而且重复度很高。它适用于多种显示屏技术,包括液晶、等离子、OLED 和投影显示屏。 在本文中,我们通过分析多个显示屏,演示这些缺陷检测和分类方法。图 2 显示了存在行缺陷的显示屏的光学测量,分析软件在显示屏影像上识别和指示这个缺陷,如图 3 所示。行缺陷是一种比较容易确定根源的缺陷;其起因是液晶屏故障。 图 2.存在可视行缺陷的显示屏屏幕的光学测量。 图 3.行缺陷是由影像亮度色度计 AOI 软件识别的;屏幕上为用户指明了缺陷位置。 图 4 显示了存在点缺陷的显示屏的光学测量;分析软件在显示屏影像上识别和指示这个缺陷,如图 5 所示。如果分析确定该故障的起因是液晶屏像素停滞,则可将点缺陷归类为像素故障。但是,从单个角度直视并不能区分死像素与显示屏玻璃背面微粒之间的差异。在此情况下,需要进行第二道检验以识别故障原因。 图 4.存在点缺陷的显示屏的光学测量 – 您能看到吗? 图 5.点缺陷是由影像亮度色度计 AOI 软件识别的,并在显示屏屏幕上标记,我们放大了该点,让它更容易看到。Mura的检测和分类可能比较复杂。 Mura通常是亮度和色彩的不均匀性,覆盖较大的不规则区域。如果发现亮度和色彩对比度超过了可感知的阈值,则表示检测出 Mura。但是,由于人工感知这些对比度取决于多个因素,包括视距、空间频率和方向,因此我们无法通过查看对比度的简单绝对值,来识别相关 Mura。 在对显示屏缺陷的人类视觉感知建模方面,我们最近取得了进展,这使我们能够从“最小可觉差”(JND)的角度来量化 Mura。基于人工观察员的采样,我们定义了 JND 标度,如果 JND 差异为 1,则从统计上无法察觉;在绝对标度上,JND 为 0,表示没有可视的空间对比度,JND 绝对值为 1,表示第一个可察觉空间对比度 – 这样就能针对各种显示屏技术对显示缺陷进行分级。因此,我们可以处理亮度和色彩的空间分配的影像亮度色度计测量,以创建影像的 JND 映射,其中 Mura缺陷在与人类视觉感知直接关联的前提下进行了分级。图 6 显示了存在 Mura缺陷的显示屏,经过分析后,我们在显示屏影像上识别了该缺陷,如图 7 所示。 图 6.对存在 Mura缺陷的显示屏进行影像亮度色度计测 量,您能够找到这个缺陷吗?图 7.该 Mura缺陷是由影像亮度色度计 AOI 软件在显示屏上识别的。它的范围与 JND 值一同显示。图 8 和图 9 显示了识别 Mura的步骤。作为中间步骤,它会生成一个差异影像,显示相对于参考影像的亮度偏差。然后计算显示屏的 JND 映射。请注意,图 7 所示的 Mura测试有意忽略了 JND 影像中的明显边缘效应。这些效应可以简单地单独识别和分类。识别 Mura缺陷并不是基于各区域之间的对比度计算的简单数学计算。首先, Mura区域的大小和形状各不相同。其次,人工感知 Mura的能力受到其他一些因素的制约 – 视频、空间频率和色彩。 图 8.差异图片显示了相对于计算参考影像的偏离。Mura的位置突出显示。图 9.显示了显示屏 JND 映射的“伪彩色图像”。显示屏边缘的漏光和明显 Mura缺陷标识为较大的 JND 值。基于影像亮度色度计的 AOI 测试系统可以快速可靠地识别和量化显示屏缺陷。为确定或分类缺陷根源,从而确定显示屏的状态,有时需要人工检测。很多情况下,例如图 3 所示的行缺陷,识别的缺陷及其起因之间存在一对一关系。在这些情况下,我们可以即时对缺陷进行分类,而且无需人工检测。而在其他一些情况下,例如某些 Mura缺陷,缺陷可能有多种原因,因此我们需要更多信息帮助进行分类。执行这种分类的一种高效方法是让人工操作员确定哪种原因是正确的。当需要人工分类时,为了提高效率,TrueTest 会向操作员指示需要进一步检验的缺陷的位置和详细信息。可以在人工判断基础上进行加速,例如专门针对需要分类的缺陷,以及提供适当的细节。 对于图 4 和 图 5 中所示的点缺陷,操作员可以知道暗点的准确位置和相关信息,从而快速确定该缺陷是死像素,还是显示屏玻璃背面的微粒。 总结本文档所述的影像亮度色度计 AOI 测试方法可以应用于多种显示屏技术, FPD(液晶、等离子、OLED)和投影显示屏均可使用。这些方法提供与人工视频感知相关的快速可重复测量,能够通过数字方式标识缺陷特征,因而不仅可以识别显示屏缺陷,还能够按原因对缺陷进行分类。这使我们能够在制造应用中对显示屏进行一致测量,并根据用户定义的标准,自动确定显示屏是否通过测试。更加重要的是,它还可以自动确定修补措施 (例如返工或废弃 )。
    留言咨询
  • 【药瓶包装缺陷检测】基本说明  药瓶包装外观缺陷检测系统主要针对口服液玻璃药瓶、塑料瓶及塑料容器进行快速、可靠的检测,项目有飞边、污渍、缺料、瓶口圆度、杂质物、孔洞、薄壁区域检测等,医药包装的检测方法除人工检测外便是更智能化自动化视觉检测设备,引用机器视觉检测,不仅可以提高药品的检测效率和准确性,更为企业降低了人工成本。药瓶机器视觉缺陷检测在制药过程中主要运用药品的生产、包装、封盒/封口、贴标、喷码、装箱等。  【药瓶包装缺陷检测】产品功能  不良处理缺陷检测、异物缺陷检测、瓶体尺寸缺陷检测、瓶液位判断、瓶身轧盖外观检、测贴标缺陷检测  【药瓶包装缺陷检测】产品特点  1.操作简单:快速建模,向导设置,直观的用户界面  2.检测精度高:可针对不同区域设置不同的精度等X  3.误报率低:检测误报率低  4.检测速度:X快速度20000pcs/小时(检测不同的产品速度不同)  5.不良存档:检测到的缺陷及不良图片存档到制定文件夹,可供操作人员针对不良追溯。  【药瓶包装缺陷检测】适用范围  药瓶包装外观缺陷检测系统可应用于口服液玻璃瓶体、塑料瓶及塑料容器、饮料瓶等瓶体外观缺陷在线检测。  【药瓶包装缺陷检测】产品参数  检测速度:250瓶/分钟--500瓶/分钟(可调)  检测项目:(玻璃屑、金属屑、纤维、黑点、白点)、液位、轧盖、瓶盖表面印刷等  电 压:AC3~380V 50HZ  设备容量:14KW  工作台高度:980mm  适用范围:20ml~60ml口服液  【药瓶包装缺陷检测】企业介绍  杭州国辰机器人科技有限公司(浙江智能机器人省级重点企业研究院,简称“浙江智能机器人研究院”)成立于2015年7月,位于杭州钱塘江畔的萧山国家经济技术开发区内,是一家以机器人核心关键技术开发与应用、机器人自动化系统集成、机器人教育以及机器人多元化产业发展,并重点致力于智能服务机器人研发与产品化的企业实体。国辰服务机器人产品可应用于小区,门岗,酒店,景区,讲解,营业厅,厂房,仓库,机房,实验室等多种场景,可提供智能机器人,服务机器人,巡检机器人,喷涂机器人,迎宾机器人,管家机器人,酒店机器人,景区机器人,讲解机器人,仓库机器人,布匹缺陷视觉检测,agv叉车,无人搬运机器人,导游机器人以及营业厅机器人等多种智能服务机器人产品。
    留言咨询

细微缺陷相关的方案

细微缺陷相关的论坛

  • 锌合金缺陷分析方法

    锌合金缺陷分析方法 1.1状态分析 缺陷出现的频率:1.经常出现;2.偶然出现. 缺陷的位置:1.固定在铸件的某一位置上;2.不固定某一位置,游离状. 对于有时出现,大多数时候不出现的缺陷,可能是属于状态不稳定.如:1.料温偏高或偏低;2.模温波动;3.手动操作:喷涂料、取件、生产周期不当;4.压铸机故障. 对于属状态不稳而产生的缺陷,主要是加强生产现场的管理和规范操作,可通过现场监测工艺参数进行分析. 1.2化学成分分析 采用光谱仪、原子吸收仪等先进的检验手段,分析锌合金成分中有效元素及杂质元素的含量,来分析其对压铸件性能的影响,对铸件质量的影响. 判断:1.合金料有没有问题?2.熔炼工艺有没有问题? 1.3金相分析 对缺陷部位切开,在显微镜下检验压铸件的组织结构,先判断缺陷的种类:如铸件的表面有孔洞,是气孔?缩孔?渣孔?在显微镜下可能准确判断出是哪一种缺陷,再进一步分析产生缺陷的原因. 1.4浇注系统分析 金属液在浇道中能否平衡流动并避免卷气,[/siz

  • 【分享】利用原子力显微镜研究晶体缺陷

    [color=#DC143C][size=4][font=隶书]资料免费共享:利用原子力显微镜研究晶体缺陷[/font][/size][/color][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=152283]利用原子力显微镜研究晶体缺陷[/url]

细微缺陷相关的资料

细微缺陷相关的资讯

  • 材料中缺陷/氧空位的常用表征方法
    一、X射线光电子能谱(XPS)缺陷会导致材料结构中配位数低的原子,为氧物种化学吸附提供配位的不饱和位点。X射线光电子能谱(XPS)是最广泛使用的表面分析方法之一,可以提供材料表面的化学状态和有价值的定量信息。应用于大多数的固体材料。它可以从表面获得约10 nm深度的信息。材料中的缺陷会改变键合能量,这可以从移位的峰或新出现的峰中观察到。因此,XPS可以作为一种有效的方法来检测材料中的氧空位与缺陷位点。经查阅文献可知,通过低频超声波制备含有氧空位的BiOI,并发现富含缺陷的BiOI(R-BiOI)纳米片表现出优异的光催化性能。富有缺陷的BiOI的O 1s XPS光谱证实了氧空位的存在,如图5所示。529.5 eV的峰可以说是晶格氧,而531.5 eV的峰则是由氧空位的化学吸附产生的。这也表明,氧空位被吸附的氧物种所稳定,这是富缺陷氧化物的一个典型特征。这种现象也可以在其他缺陷金属氧化物(O 1s XPS)中看到,如W18O49、CeO2-X、TiO2-X和缺陷的ZnO。图1. 高分辨率的O 1s XPS光谱二、拉曼光谱分析拉曼光谱是研究分子结构的一种分析工具,可以得到分子振动和旋转的信息。不同的化学键有不同的振动模式,决定了它们之间能量水平的变化。分子振动水平的变化引起了拉曼位移。因此,拉曼位移与晶格振动模式有一定的相关性,它可以被用来研究材料的结构特征。材料中的缺陷,特别是金属氧化物会影响振动模式,导致拉曼位移或出现新的峰值。研究表明,拉曼光谱揭示了在掺杂了Eu的 CeO2纳米片的结构中存在氧空位。与CeO2纳米片相比,掺杂了Eu的CeO2纳米片在600 cm -1处出现了一个峰值,这表明由于Ce 3p和Eu 3p的存在,产生了氧空位。此外,也有研究表明通过掺入IO3,设计了有缺陷的氧碘化铋。通过拉曼光谱显示在98cm -1处出现了一个新的峰值,它与Bi振动模式有关,这表明由于氧空位的存在,Bi的价态发生了变化。图2. CeO2和有缺陷的CeO2纳米片的拉曼光谱。三、扫描透射电子显微镜(STEM)STEM已被用于表征纳米材料的结构,它直接对原子结构进行成像。通过STEM可以观察到晶体结构中的原子序数和每个原子的排列方式,使其在科学研究领域的广泛应用上发挥了重要作用,如表面科学、材料科学、生命科学。然而,这种技术只能观察材料表面的局部区域。对于研究材料的整体缺陷来说,它是非常有限的,并且本身对样品要求较高。2000年,研究人员通过扫描隧道显微镜发现,表面氧空位可以作为反应位点,在这里可以吸收一氧化碳并转化为二氧化碳。后来,Samuel S. Mao等人用STEM研究了RuO2的原子尺度结构,发现了材料表面的缺陷(图7)。图3. 被CO覆盖的RuO2(110)表面的STM图像四、密度函数理论(DFT)计算密度函数理论(DFT)是研究材料电子结构的计算方法。它是通过量子力学模型来研究原子、分子和电子密度。因此,DFT是用于物理学、计算化学和材料的通用方法。Zhao等人利用DFT计算揭示了Vo-MnO2的结构模型,与非缺陷MnO2相比,Vo-MnO2的总态密度和部分态密度都接近费米水平,表明材料中存在氧空位。计算结果与实验结果一致,说明DFT可以用来辅助识别氧空位的存在。尽管DFT计算可以提出材料的电子结构,但它只能作为一种辅助手段。并且,结合实验和计算结果可以提供更有效的数据和证据。但是,使用DFT来描述以下情况仍有困难:分子间的相互作用、过渡状态、激发态等。过渡状态,电荷转移的激发,以及具有铁磁性的材料。五、其他方法由于OV的特殊性质,许多其他方法也可以用来进一步确定OV的存在,如热重分析(TG)。这种方法提供了关于物理现象的信息,包括吸收和分解。氧空位可以被氧气重新填充,特别是在高温下,这表明样品的质量会发生变化。这种细微的质量变化可以在TG曲线中显示出来。例如,大块的Bi2MoO6样品表现出急剧的重量损失,而超薄的Bi2MoO6纳米片在氧气环境下随着温度的升高而缓慢地失去重量。这是由于超薄Bi2MoO6纳米片中的氧空位与氧气反应,缓解了其下降的程度。此外,温度程序还原(TPR)也被用来描述固体材料的表面特性。与无缺陷的材料相比,有缺陷的材料明显增强了对表面晶格氧物种的吸附。参考文献:[1] Ye K , Li K , Lu Y , et al. An overview of advanced methods for the characterization of oxygen vacancies in materials[J]. TrAC Trends in Analytical Chemistry, 2019, 116.
  • 藏匿缺陷,显露无遗!全聚焦方式成像功能,就是这么牛!
    当检测人员检测工件以找到缺陷时,很容易陷入自我怀疑的误区。检测人员的判断失误会在时间和金钱上造成重大损失。在进行缺陷表征时,如果高估了缺陷的严重性,就可能会花费昂贵的成本进行不必要的挖掘和维修工作。如果低估了缺陷的严重性,则可能会导致灾难性故障的发生。毋庸置疑,准确评估缺陷的压力像一座大山一样沉重地压在检测人员的肩头。全聚焦方式(TFM)处理包络功能OmniScan X3探伤仪鲜明清晰的图像可以呈现明确的检测数据。借助这种图像,检测人员可以更加充满信心地对缺陷指示做出正确的判读。得益于OmniScan X3探伤仪的全矩阵捕获(FMC)和全聚焦方式(TFM)技术,检测人员不仅可以更清晰地看到缺陷,而且还可以了解缺陷在工件中更准确的位置。这款仪器中一个被称为“包络”的高级功能进一步提升了已经非常强大的全聚焦方式(TFM)处理性能。启用了包络功能后,OmniScan X3仪器在使用包络功能进行探测之前,仪器软件的全聚焦方式(TFM)算法既会提取信号的真实分量,也会提取信号的理论分量,并将两者结合起来完成计算。这种处理方式有助于确保不丢失数据,可清除噪声和伪影,还可以对图像进行微调。在所生成的图像中,缺陷的聚焦程度更高,因而更容易对缺陷的形状和大小进行表征。包络功能关闭时,在缺陷信号上可以看到重建伪影包络功能开启时,所获得的全聚焦方式(TFM)重建图像更清晰、更鲜明,波幅增加了,且没有丢失数据。如果全聚焦方式(TFM)包络图像这么好,为什么还要将其关闭? 了解到包络功能可以这么大幅提升OmniScan X3仪器图像的质量,您可能想知道为什么检测人员有时候还会选择关闭这个功能?这里有两个主要原因,其中的一个比另一个更容易理解。第一个原因与检测性能相关。通过启用包络功能而获得高质量图像所需的处理能力,会消耗仪器的脉冲重复频率(PRF),换句话说,会降低仪器发射和接收超声信号的速度。采集速率降低会减慢仪器的扫查速度。不过,对此有一个解决办法。通过对全聚焦方式(TFM)栅格分辨率和每个波长的点数(纵波的“pts/λL”参数,横波的 “pts/λT”参数)设置进行几次细微的调整,就可以提高采集速率,甚至可使其比以前更快。通过包络功能保持优质的图像而无需降低采集速率由于包络处理功能非常强大,因此,与标准的全聚焦方式(TFM)图像相比,栅格分辨率的降低(变得较差)不会对包络图像的质量有太大的影响。当栅格分辨率降低时,每个波长的点数(pts/λ)也会相应降低。由于分辨率降低,所需的处理能量也会减少,因此反而会使采集速率回升,在某些情况下,采集速率还会增加一倍以上。包络功能启用时,使用较粗的栅格分辨率设置:此全聚焦方式(TFM)栅格的点数为2.9 pts/λL。结果是增加了脉冲重复频率(PRF),或采集速率,但是图像却没有明显的失真现象。通常,在超声检测中,每个波长的点数越高,分辨率越好,因而图像质量越好,但是全聚焦方式(TFM)包络的性能颠覆了这一概念。即使在降低了分辨率和每个波长的点数(pts/λ)后,包络功能依然可以继续提供高质量的图像。全聚焦方式(TFM)包络对波幅保真度和栅格分辨率的影响每个波长的点数(pts/λ)是保持可接受的波幅保真值的一个重要因素。检测规范,如:ASME新添的全聚焦方式(TFM)附录,要求波幅保真值保持在约2 dB或更低的稳定水平。如果不使用包络,要保持能获得细栅格分辨率的2分贝波幅保真值,需要大约7 pts/λ的比率。但是如果启用了包络功能,则确保可以探测到缺陷的最小波幅保真值所需的安全比率可降为2 pts/λ。但是,为了持续获得与包络相关的高质量图像,通常需要设置大约3 pts/λ的比率。在启用包络功能时,可以使用更粗的栅格分辨率,因为处理算法使用实际信号和理论信号两种分量进行计算。可以通过阅读应用注释:“OmniScan X3探伤仪通过使用波幅保真值确定全聚焦方式(TFM)栅格分辨率的方法”,了解更详细的信息。随着经验的增加,操作人员会对全聚焦方式包络功能更有信心 对栅格分辨率稍做调整,就可以使用包络功能,而且还可以获得较高的采集速率。不过,仍有一个障碍需要克服,这也是一些检测人员可能不会选择使用包络功能的第二个原因:全聚焦方式(TFM)是一项较新的技术,他们对这项技术可能还不太熟悉,而包络功能是在TFM之后开发的一项更新的技术。操作人员可能需要多次亲自尝试使用包络功能之后,才会最终相信包络功能的强大性能。请一定要记住,包络功能不会丢失数据信息。相反,得益于包络功能的重建效应,来自缺陷的信号响应反而会得到加强。全聚焦方式(TFM)包络功能可以持续提供更清晰的缺陷图像 在我们自己的实验性检测中,再一次证明了包络功能可以增强全聚焦方式(TFM)图像的效果:图中的缺陷更加清晰鲜明。要探测到那些通过标准相控阵技术通常难以发现和表征的微小缺陷,这个功能具有显著的优势,如:高温氢致缺陷(HTHA)。OmniScan X3探伤仪在启用了包络处理功能时采集到的早期高温氢致缺陷的全聚焦方式图像的示例高温氢致缺陷(HTHA)是一种隐藏性很强的腐蚀缺陷,高温下的钢材料如果接触到氢元素就可能逐渐生发出这种缺陷,如:炼油厂或石化厂的箱罐或管道。使用全聚焦方式(TFM)成像功能,检测人员可以确认他们对存在早期高温氢致缺陷的怀疑是否正确,从而可以采取措施,避免故障的发生。正如大多数创新性技术一样,图像说话,眼见为实,也是全聚焦方式包络功能的目标 检测人员使用包络功能可以看到实际被测工件的动态包络图像,而图像中所呈现的实证性检测数据不容质疑。人们只有亲眼见证,才能打消疑虑,这也是许多非凡的创新技术得以问世的驱动力。
  • 全国产品缺陷与安全管理标准化技术委员会成立
    12月24日,全国产品缺陷与安全管理标准化技术委员会正式成立。该委员会主要负责产品缺陷与安全管理等领域的标准化工作,与国际标准化组织消费者政策委员会产品安全工作组相对口关联。  记者从成立大会上获悉,目前很多发达国家很早就建立了产品缺陷与安全管理标准体系,并有专门的行政部门或第三方机构进行贯彻和实施。而在我国的标准体系中,涉及产品缺陷与安全管理的标准不足40个,直接涉及产品召回管理的标准尚属空白。  据了解,按照该技术委员会的设想,我国产品缺陷与安全管理国家标准体系框架包括缺陷预防标准体系、缺陷信息收集标准体系、缺陷调查与认定标准体系、缺陷处理标准体系、产品召回管理标准体系。  在成立大会上,技术委员会还对《产品缺陷防范导则》(草案)和《产品缺陷风险评估指南》(草案)进行了研讨。记者从《产品缺陷防范导则》(草案)中看到,生产制造商应在产品说明书上标注缺陷产品召回的相关提示,包括在产品有缺陷的情况下,可以从哪里获得服务;产品召回程序和政策等等。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制