固定相

仪器信息网固定相专题为您整合固定相相关的最新文章,在固定相专题,您不仅可以免费浏览固定相的资讯, 同时您还可以浏览固定相的相关资料、解决方案,参与社区固定相话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

固定相相关的耗材

  • 键合填充柱固定相
    键合填充柱固定相1、键合填充柱固定相 低流失。2、键合填充柱固定相 使用寿命长。3、键合填充柱固定相 老化时间短。 不锈钢柱管 SilcoSmooth 柱管**键合相 长度 外径 内径 长度 外径 内径采用100/120 Silcoport W (英尺) (英寸) (毫米) 货号* (米) (英寸) (毫米) 货号* 3% Rtx-1 6 1/8 2.1 80441- 2 1/8 2.0 80401-10% Rtx-1 6 1/8 2.1 80442- 2 1/8 2.0 80405-20% Rtx-1 6 1/8 2.1 80443- 2 1/8 2.0 80409-3% Rtx-5 6 1/8 2.1 80444- 2 1/8 2.0 80477-10% Rtx-5 6 1/8 2.1 80445- 2 1/8 2.0 80478-20% Rtx-5 6 1/8 2.1 80446- 2 1/8 2.0 80479-5% Rtx-Stabilwax 6 1/8 2.1 80447- 2 1/8 2.0 80415-10% Rtx-Stabilwax 6 1/8 2.1 80448- 2 1/8 2.0 80416-20% Rtx-Stabilwax 6 1/8 2.1 80449- 2 1/8 2.0 80417-Rtx-1 SimDist 2887*** 25" 1/8 2.1 80450- 25" 1/8 2.0 80000-*订购时请在型号后添加色谱柱仪器配置后缀号。注意: 柱子的起始 2英寸管将是空的,用于容纳进样针。订购完全填充的色谱柱(不包括柱头)加后缀 -901。*-810 后缀亦包括位于检测器一侧的1 段1?2"空管。**Siltek技术处理过的不锈钢。***特殊应用的色谱柱。请注意通用填充柱在进样口端设计了一段2英寸空管,用于柱头进样。对于不含空管的柱子构型,部件号加901后缀。
  • 安捷伦HP-17非键合固定相色谱柱
    非键合固定相色谱柱安捷伦建议尽可能使用键合交联聚合物。键合聚合物更耐用,使用寿命更长,并可用溶剂清洗。但是,安捷伦认识到一些方法是用非键合固定相色谱柱开发的,因而保留这些色谱柱以支持已建立的方法。HP-17. 50% 苯基和50% 甲基硅氧烷
  • SGE气相色谱柱 固定相:AC1
    SGE是澳大利亚的色谱耗材生产商,除了被广泛认可的进样针外,还有AC系列经济型气相柱固定相(柱长×内径×膜厚)30m×0.25mm0.25μm价格(柱长×内径×膜厚)30m×0.32mm×0.25μm价格AC105310133730531073373AC505313133730531373373AC1005315133730531573373AC22505318133730531873373

固定相相关的仪器

  • 金属U型钉软组织固定强度试验机试验原理使用单个或多个U型钉,将软组织或替代物固定到骨或骨替代物上。以与钉腿平面垂直的方向对软组织或替代物施加拉力,直至软组织或替代物发生破裂或撕裂,或者U型钉固定失效。可以在常温环境条件下或者在水溶液或生理溶液中(室温或37℃)采用本试验方法进行试验。执行标准YY1781-2021技术参数控制系统:PLC 操作界面:彩色7寸触摸屏,中英文切换;力传感器:0-50kg;夹具:1套;外形尺寸:540*450*820mm用电要求:220V,10A,50hz;夹持装置1 硬组织夹具是指专门用于牢周抓取骨,骨段或骨替代物的夹具,对软组织或替代物施加张力时,可以使材料对U型钉固定部位的影响最小化。此类夹具应能适应不同几何形状的骨,并能在试验期间对骨或骨替代物进行正确定向和对齐;2软组织具是指专门用于在适合的方向上牢固抓取软组织或合成替代物的夹具,并最大限度减少施加张力时的损伤。步骤1 准备U型钉在骨或骨替代物上的固定位置。可能需要预先钻孔,以容纳钉腿而不损伤或破坏骨或替代物;2使用制造商指定的合适的手术器械,以标准化、可重复的方式将U型钉固定在骨或骨替代物中。将软组织或替代物插入钉桥和骨表面之间,U型钉应位于其中部。记录插入方法(手动或机械),U型钉之间的距离(如适用)、U型钉方向和相对于已知标记的位置(如适用)。注:为了减少U型钉手动插入技术的可变性或研究插人参数变化的影响,除了制造商提供的设备之外,还允许使用专用特殊仪器。此类仪器可用于限制U型钉角度、控制插人深度或标准化插人载荷;3将骨或替代物固定在设备夹具中并对齐,以便将拉力施加到软组织或替代物,方向与长轴方向平行。骨的夹持部位与U型钉周定部位距离应适当,以确保U型钉固定部位不受损伤且不受干扰
    留言咨询
  • 日本Narishige大小鼠头部固定器用于脑立体定位仪装置,有多种型号可选。详情介绍:MAG-3小鼠头部固定器(用于慢性实验)允许在显微镜下接近头部颞叶区域。在SR-9M-HT立体定向仪器上将chamber粘贴到小鼠头部后,可将MAG-3转移并置于显微镜或其他实验仪器下进行观察和实验。MAG-3可置于体视显微镜下,适用于在体成像实验。配备的角度调节器可以以更大的角度倾斜,从而接近头部颞叶区域,获取脑部更深处的图像。 技术参数:附件CP-1室板(一个),CP-2室板(一个),乙烯基板尺寸/重量W108 x D152 x H109 – 130 mm, 1.7 kg倾角上限纵向:±15°,侧向:±20°承重能力2 kgMAG-2小鼠头部固定器(用于慢性实验)头部固定装置(带角度调节器/小鼠用)用于在显微镜下深部成像实验在SR-9M-HT立体定位仪上将chamber粘合到小鼠头部后,可将MAG-2转移并放置在显微镜或其他实验仪下进行观察和实验。MAG-2可以放在激光显微镜或体视显微镜下,*适用于在体成像实验。该固定器还配备有角度调节器以获取更深处的图像。 技术参数附件CP-1chamber(1个),CP-2chamber(1个),六角扳手,乙烯基片尺寸/重量W87 x D136 x H58 – 72 mm, 232 g倾角上限纵向 ± 10°,侧向 ± 15°承重能力0.5 kg*chamber框架可根据需求定制。* CFR-1无法连接到MAG-2。MAG-1简易版小鼠头部固定器(用于慢性实验)用于在显微镜下观察小鼠。将chamber粘合到SR-9M-HT立体定位仪器上的小鼠头部后,可以将MAG-1转移并放置在显微镜或其他实验仪器下,以进行观察/实验。MAG-1设计紧凑,可以放在两光子显微镜或体视显微镜下。 *可连接的chamber:CF-10,CP,CP-1,CP-2技术参数包含配件CF-10chamber框架(1个)尺寸/重量约W96×D84×H42mm 102克SR-9AM小鼠头部固定器(用于慢性实验)通过腔室框架的固定,可以在不麻醉状态下重复固定在同一位置SR-9AM是一款头固定装置,专为小鼠的长期实验而设计,可以安装在SR系列立体定位仪上。腔室框架的固定允许在未麻醉状态下重复固定在同一位置,从而使您不仅可以进行急性实验,还可以进行慢性实验而不会对动物造成伤害。无需麻醉,SR-9AM可用于视觉和/或听觉实验。 * SR-9AM适用于已经拥有立体定位仪器的用户。如果没有底板,请获取SR-9M-HT。*还提供专为大鼠设计的SR-10AR。*腔室框架可根据您自己的应用进行定制。请联系我们。技术参数配件EB-3B小鼠耳杆(成对)EB-6小鼠辅助耳杆CF-10箱式支架×5个尺寸/重量宽300×深120×高80?96mm,1.6kgMA-6N小鼠头部固定适配器将小鼠固定夹转换为鼠标固定夹。SR系列的MA-6N鼠标用头部固定适配器用于将大鼠固定夹转换为鼠标固定夹。嘴和鼻夹的位置调节是通过燕尾结构进行的,并且可以用一只手平稳地进行。使用辅助耳杆的夹紧动作也很容易用一只手完成。*可将用于大鼠的耳棒(EB-3A)与用于小鼠的辅助耳棒(EB-5N)相连。*如果没有辅助耳棒,则需要用于小鼠的耳棒(EB-3B)。技术参数包含配件EB-5N *小鼠辅助耳杆尺寸/重量W20×D98×H50?70mm,132克SRP-AM2小鼠头部固定器(兼容MRI)这种兼容MRI测量的头部固定器由塑料制成,可以连接到SR系列固定装置上。连接底座后,该装置可用于立体定位。与底座分离后可进行MRI测量。MRI测量完成后,仪器可恢复固定装置的功能,全程保持动物固定。技术参数:配件六角扳手安装旋钮耳棒嘴/鼻夹尺寸/重量宽300×深120×高85mm,850gSR-AM小鼠头部固定器SR-AM头部固定装置可以连接到SR系列的底座上,使您的立体定位仪可用于小鼠。 技术参数随附配件EB-3B小鼠耳杆(成对)EB-5N *小鼠辅助耳杆(六角扳手安装旋钮)尺寸/重量宽300×深190×高88mm,1.2kg*附件中包括EB-5N小鼠辅助耳棒,将其更改为非破裂型:可根据要求提供EB-6。购买SR-AM时,请要求EB-6。
    留言咨询
  • 动物实验配套手术器械、固定工具、高精度定位装置、动物实验导航软件、适用于大鼠、兔子、比格犬、恒河猴等动物实验。动物实验用立体定向仪和立体定向手术计划系统,术前可以精确选择穿刺靶点,用过导航软件制定优化穿刺路径,穿刺精确度达0.1毫米。
    留言咨询

固定相相关的试剂

固定相相关的方案

固定相相关的论坛

  • 【原创大赛】认识气相色谱固定相(一)——固定相的种类

    【原创大赛】认识气相色谱固定相(一)——固定相的种类

    [b]1、[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相概述 [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相起什么作用?[/b] 色谱分离是基于待测物在流动相和固定相之间的分配平衡而实现的。[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]中流动相为气体,而气体分子间的相互作用力一般忽略不计,因此[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分离中流动相对分离没有热力学上的贡献。于是,固定相就成了[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分离中的关键,不同固定相对待测物有不同的保留能力,保留能力的差异成为了分离的基础。.[b] 什么物质可以做[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相?[/b] 从原理上来说,任何物质都具备做固定相的潜力,因为只要与待测物能够发生分子间的相互作用就能产生保留作用,只要保留作用有差异就能实现分离。但是大部分物质都缺乏实际用作固定相的可操作性,因为[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的固定相必须具备热稳定性和化学稳定性。热稳定性是指固定相必须在使用温度下保持液体状态,既不凝固、又不挥发。固定相凝固将导致分子扩散缓慢,待测物难以达到分配平衡。挥发将导致流动相不断以蒸汽形式流失,这对其寿命是不利的,而且蒸汽与待测物一起流出也使得检测收到影响。化学稳定性是指固定相在使用过程中不会发生化学变化。高温使用过程中,固定相既不能自身发生分解,又不能与待测物发生反应,同时还要保证固定相与仪器中其他有接触的部分(例如载气、管路、载体等)都不会发生反应。另外,固定相还需要容易制备、易于使用、品质稳定,这样才能够被广泛使用。.[b] [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相有哪些种类?[/b] 在[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]发展的早期,曾被尝试用于[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相的物质有千余种。然而实践中发现,过于庞杂的固定相种类并不利于色谱分离方法的开发,因此只有少数性能优异的固定相得到了广泛的认可。早期固定相的代表品种是长链的烃类(角鲨烷、石油脂等)和高沸点酯类(如邻苯二甲酸二壬酯、癸二酸二辛酯等)。后来各种沸点更高的聚合物被广泛使用,例如二乙二醇丁二酸聚酯(DEGS)、新戊二醇己二酸聚酯(NPGA)等聚酯固定相,聚乙二醇、聚丙二醇等聚醚类固定相,甲基硅油、苯基硅油等聚硅氧烷类固定相。随着毛细管柱技术的发展,色谱柱的柱效显著提高,对选择性的要求有所降低,因此固定相的种类又进一步筛选、合并,只保留了主要的几种聚硅氧烷和聚乙二醇固定相。.[b]2、聚硅氧烷固定相2.1 甲基聚硅氧烷[/b][img=,188,153]https://ng1.17img.cn/bbsfiles/images/2019/07/201907051035373744_6865_2204387_3.png!w188x153.jpg[/img] 甲基聚硅氧烷分子结构如图,分子量较低时呈粘稠油状,俗称甲基硅油;分子量较高时呈有弹性的半流动状态,俗称甲基硅橡胶。甲基是完全非极性基团且难以被极化,因此这种固定相是各种聚硅氧烷中极性最弱的品种。这种固定相的代表性型号是OV公司生产的OV-101、通用电气公司生产的SE-30、色谱科公司生产的SP-2100。SE-30是高分子量的橡胶态,使用温度可高达300℃以上;OV-101是低分子量的液体,热稳定性不如SE-30。制备毛细管柱时早期都直接使用这几种固定相进行涂覆,后来各个生产色谱柱的大公司逐渐进行改进,分别开发出了各自公司特有交联型固定相,热稳定性进一步提高,但在选择性方面与这几种传统固定相类似。.[b]2.2 苯基-甲基-聚硅氧烷[/b][img=,188,269]https://ng1.17img.cn/bbsfiles/images/2019/07/201907051037142786_2031_2204387_3.png!w188x269.jpg[/img][img=,366,269]https://ng1.17img.cn/bbsfiles/images/2019/07/201907051142316759_7988_2204387_3.gif!w366x269.jpg[/img][img=,366,377]https://ng1.17img.cn/bbsfiles/images/2019/07/201907051142318471_1910_2204387_3.gif!w366x377.jpg[/img] 苯基-甲基-聚硅氧烷是甲基聚硅氧烷中部分甲基被苯基取代后的产物,取代度等于50%、小于50%、大于50%时对应的分子结构分别如图。其状态也与分子量大小有关,分子量较低时是粘稠液体、分子量较高时是半液体弹性体。苯基取代后偶极矩比甲基更大,而且苯基容易被极化,因此随着苯基取代度的增加,固定相的极性也相应增加,可覆盖弱极性到中等极性的范围。这种固定相的代表型号有通用电气公司的SE-52(取代度5%)、OV公司的OV-11(取代度35%)、OV-17(取代度50%)等多种,另外还有含少量乙烯基但其他性质类似的型号,如SE-54(取代度5%,含1%乙烯基)。毛细管柱生产厂家各自也生产独有的型号,但基本上与上述代表性的型号类似,常用-5、-35、-50(或-17)等类似的编号。 随着苯基取代度的增加,该固定相的热稳定性有所下降,特别是取代度超过50%时热稳定性下降明显。为了改善热稳定性,各大公司也进行了一系列改进,除与甲基聚硅氧烷类似的交联技术外,还有亚芳基改性技术。亚芳基改性是将聚硅氧烷中的Si-O-Si键部分替换为如图所示的亚芳基连接方式,Si-Ph键的连接方式更加稳定,而且不易发生水解,使用温度可比甲基聚硅氧烷更高。这种亚芳基改性的固定相具有高温低流失的特性,很适合用于[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用[/color][/url]这种高灵敏度的检测中。.[b]2.3 三氟丙基-甲基-聚硅氧烷[/b][img=,366,278]https://ng1.17img.cn/bbsfiles/images/2019/07/201907051143507121_9168_2204387_3.gif!w366x278.jpg[/img] 三氟丙基-甲基-聚硅氧烷是甲基聚硅氧烷中部分甲基被三氟丙基取代后的产物,取代度一般小于50%,分子结构分别如图。三氟丙基具有很大的偶极矩,因此这是一种强极性的固定相。而且三氟丙基有很强的极化能力,容易使不饱和化合物产生诱导偶极,在位置异构体和顺反异构体的分离方面有独特的作用。但较强的极性使这种固定相的热稳定性不如甲基聚硅氧烷。这种固定相的代表性型号有OV公司生产的OV-210、OV-215,色谱科公司生产的SP-2401等。毛细管柱生产厂家各自也生产独有的型号,但基本上与上述代表性的型号类似,常用-200、-210等类似的编号,部分厂家也有专用于[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用[/color][/url]的高温低流失型号。.[b]2.4 氰代烷基-甲基-聚硅氧烷[/b][img=,366,335]https://ng1.17img.cn/bbsfiles/images/2019/07/201907051144231591_9048_2204387_3.gif!w366x335.jpg[/img] 氰丙基或者氰乙基是比三氟丙基极性更强的基团,除了极化能力外还具有形成氢键的能力,因此在氰代烷基取代度足够大(超过50%)时,可以获得极性最强的一类固定相。其中取代度最高的产品为OV公司生产的OV-275,以及色谱科公司生产的SP-2560,取代度接近100%。其他还有很多取代度稍低(88%或者90%)的型号,以及取代度50%的型号。即使取代度只有50%,其极性也强于其他常见固定相。顺反异构是最难的分离问题之一,很多时候必须用到这类最高极性的固定相。但这类固定相的热稳定性比较差,最高使用温度通常不超过250度,只有少数厂家掌握了进一步提高其使用温度的技术。.[b]2.5 氰丙基-苯基-甲基-聚硅氧烷[/b][img=,366,388]https://ng1.17img.cn/bbsfiles/images/2019/07/201907051144379829_6445_2204387_3.gif!w366x388.jpg[/img] 氰丙基-苯基-甲基-聚硅氧烷是甲基聚硅氧烷中部分甲基被氰丙基和苯基取代的产物,其中氰丙基与苯基常成对出现。随着取代度不同,可以表现出从弱极性到强极性的不同特性。这种固定相既具有苯基可以被极化的特点,又具有氰丙基产生极化作用的特点,还可以形成一定程度的氢键,因此在很多方面都有应用。常见的型号有取代度6%(氰丙基3%、苯基3%)的OV-1301、取代度14%(氰丙基7%、苯基7%)的OV-1701、取代度50%(氰丙基25%、苯基25%)的OV-225。毛细管柱生产厂家各自也生产独有的型号,但常用的编号与上述类似,部分厂家也有专用于[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用[/color][/url]的高温低流失型号。.[b]3 聚乙二醇类固定相3.1 普通聚乙二醇固定相[/b][img=,321,87]https://ng1.17img.cn/bbsfiles/images/2019/07/201907051040459342_2235_2204387_3.png!w321x87.jpg[/img] 聚乙二醇分子结构如图,也称作聚氧乙烯,实际上具有聚醚的结构,具有较强的极性,并且很容易与醇、胺、酸等待测物形成氢键。随着分子量的增加,其极性略有降低,但热稳定性提高。聚乙二醇简称PEG,常用分子量为2万的品种,其常见型号为PEG-20M或者Carbowax-20M。部分产品中还在聚乙二醇分子中的端基上引入环氧基,使其能够在高温下发生交联,从而进一步提高热稳定性。国外毛细管柱生产厂家通常都是采用具有交联结构的聚乙二醇固定相,编号中通常使用wax表示。.[b]3.2 酸改性聚乙二醇固定相[/b][img=,690,191]https://ng1.17img.cn/bbsfiles/images/2019/07/201907051040574186_5985_2204387_3.png!w690x191.jpg[/img] 将普通聚乙二醇与硝基对苯二甲酸进行缩聚反应可以获得一种酸改性的聚乙二醇固定相,其结构如图。这种固定相最早是为了分离游离脂肪酸而生产的,简称FFAP,也有用OV-351这一型号表示的。国外厂家制备毛细管柱的固定相通常也是在此基础上进一步交联,使用的型号通常也用FFAP表示。.[b]3.3 碱改性聚乙二醇固定相[/b] 这种固定相实际上与普通聚乙二醇固定相相同,但是在制备色谱柱时添加一定量的无机强碱。这种固定相在早期主要是为了防止载体表面的酸性硅羟基促进聚乙二醇分解,现在主要用于测定胺类等碱性物质,应用范围有限。.为了能够简单明了的了解各类固定相,我将各种常见类型和信号整理到了一张表中,以便查找。图片上传被压缩了可能看不清,请下载附件查看。[b]简表(包含固定相的种类和极性,以及USP编号和常见型号)[/b][img=,690,1017]https://ng1.17img.cn/bbsfiles/images/2019/07/201907051123384989_1061_2204387_3.png!w690x1017.jpg[/img][b]详表(包括主要生产厂家的型号对照)[img=,690,487]https://ng1.17img.cn/bbsfiles/images/2019/07/201907051124005102_1401_2204387_3.png!w690x487.jpg[/img][/b]

  • "固定相"的解释

    柱色谱或平板色谱中既起分离作用又不移动的那一相。固定相的的选择对样品的分离起着重要作用,有时甚至是决定性的作用。不同类型的色谱采用不同的固定相,如气-固色谱的固定相为各种具有吸附活性的固体吸附剂;气-液色谱的固定相是载体表面涂渍的固定液,液相色谱中的固定相为各种键合型的硅胶小球,离子交换色谱中的固定相为各种离子交换剂,排阻色谱中的固定相为各种不同类型的凝胶等等。

  • 【原创大赛】认识气相色谱固定相(二)——固定相的适用温度

    【原创大赛】认识气相色谱固定相(二)——固定相的适用温度

    前面的文章已经对常见固定相的种类进行了介绍,详见https://bbs.instrument.com.cn/topic/7247165。本次主要介绍固定相的适用温度范围。.[b][size=12.0pt]1[/size][font=宋体][size=12.0pt]、温度对固定相的影响[/size][/font][/b] [font=宋体]在色谱分析中,柱温是最重要的工作参数之一。我们总是需要通过调节柱温来改善分离效果。但是温度变化对固定相自身的影响常常被忽略。实际上,任何固定相都有一个适用的温度范围,我们在调节柱温时必须要考虑这一范围。如果超出这一范围使用,不仅无法达到预期的效果,还可能对色谱柱造成不可逆的损坏。[/font].[b] [font=宋体]高温对固定相有哪些损害?[/font][/b] [font=宋体]首先是挥发问题。固定相虽然是沸点很高的物质,但是在较高稳定性仍然具有一定的蒸气压,会随载气挥发。因此在检测器中检测到的信号实际上是固定相蒸汽与目标物共同产生的,只有当固定相蒸汽浓度远低于目标物时才能实现准确定量。如果固定相蒸汽浓度太高,就会导致较高的背景信号,噪声也随之增大,此时样品的微弱信号就被淹没在固定相蒸汽产生的背景噪声中,难以识别。[/font] [font=宋体]然后是分解问题。高温下,固定相自身的化学键会发生断裂,随着温度的上升,分解速率呈指数增长。同时样品和载气中的强极性杂质,如水、酸等,都容易与固定相发生反应导致分子链断裂,这种反应也是随温度升高而呈指数增长的。分解产生的气态小分子产物随载气流出,产生的影响与固定相蒸汽类似,都表现为较高的背景信号和较大的噪声,因此统称为“柱流失”或者“固定相流失”。有些分解产物在柱温较低时被保留,随着程序升温过程逐步流出色谱柱,就形成鬼峰,也会干扰测定。[/font] [font=宋体]以上两方面的问题,除了影响低浓度目标物的检测外,同时也是色谱柱寿命损失的主要原因之一。柱流失的直接结果就是使固定相总量减少、色谱柱的容量因子降低。通常容量因子减小[/font]10%[font=宋体]就说明色谱柱已经有明显的损坏了,因为固定相的明显流失意味着柱内壁涂层的破坏,会暴露出活性点从而产生吸附拖尾等问题。而且流失一旦开始,往往会加速发生,因为原有的化学键断裂之后,剩余固定相的稳定性就会越来越差。[/font] [font=宋体]另外,柱流失也是污染检测器的重要原因之一,这在[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用[/color][/url]中尤其突出,在使用其他检测器时也时有发生,比如[/font]FID[font=宋体]的喷嘴积碳、[/font]FID[font=宋体]收集极沉积二氧化硅等。[/font][font=宋体].[/font][b] [font=宋体]低温对固定相有哪些不利影响?[/font][/b] [font=宋体]受传质阻力的限制,固定相一般需要为液态(虽然吸附形固定相是固态的,也需要通过多孔结构来实现传质)。如果液态的固定相在较低温度下凝固,将导致传质阻力显著增加,其结果表现为保留能力显著减弱、峰形严重展宽,因此固定相的使用温度必然存在下限。这一现象在使用聚乙二醇固定相时尤其明显,当柱温低于聚乙二醇的熔点时,样品变得几乎不被保留,峰型也会异常变宽。对于一些粘稠固定相,比如分子量极大的[/font]OV-1[font=宋体]、极性很强的氰丙基硅氧烷、丁二酸二乙二醇聚酯等,在较低温度下即使不凝固,也会因粘度大而产生很大的传质阻力,柱效下降很明显,因此也不适合在较低柱温下使用。[/font] [font=宋体]当然,与高温的影响不同,低温产生的不利影响是可逆的,重新恢复正常柱温后,柱效可以完全恢复,不会造成损坏。因此本文后续主要讨论的是最高适用温度,最低适用温度仅作简要叙述。[/font][font=宋体].[/font][font=宋体][b][size=12.0pt]2[/size][font=宋体][size=12.0pt]、如何评价固定相的适用温度[/size][/font][/b] [font=宋体]能用或者不能用,看似很简单的问题,实际上要做出完全客观的判断却不容易。目前关于固定相使用温度的数据极为混乱,各类文献手册和产品资料给出的数据差别极大,究其原因就是缺少一个客观同一的评价标准。[/font] [font=宋体]早期进行的固定相探索实验中,最高使用温度往往通过主观感受来评价。比如有学者使用[/font]FFAP[font=宋体]固定相测定了游离脂肪酸,柱温最高达到[/font]250[font=宋体]度,于是后续文献就说[/font]FFAP[font=宋体]固定相的最高使用温度可达[/font]250[font=宋体]度。但是这种固定相在[/font]250[font=宋体]度使用的效果到底如何呢?是使用数百小时性能没有下降,还是使用一天后就明显变差了?使用时噪声很大,还是小到可忽略不计?这些问题实际上都没有体现出来,因此这个最高使用温度可达[/font]250[font=宋体]度的说法实际上是完全没有意义的。[/font] [font=宋体]又例如最经典的[/font]SE-30[font=宋体]固定相,有的文献报道最高使用温度可达[/font]350[font=宋体]度,在[/font]350[font=宋体]度的柱温下用[/font]TCD[font=宋体]检测器测定聚氧乙烯脂肪醇醚可以获得很好的效果。又有文献认为其最高使用温度不应超过[/font]300[font=宋体]度,在[/font]300[font=宋体]度的柱温下用[/font]FID[font=宋体]检测器测定邻苯二甲酸酯时就已经表现出比较大的流失和噪声了。这种矛盾的报道也是标准不统一引起的,因为[/font]FID[font=宋体]的灵敏度比[/font]TCD[font=宋体]高得多,使用高灵敏度的检测器时对固定相流失敏感得多。[/font] [font=宋体]到了毛细管柱普及的时代,这种不统一也是非常常见的。例如平时经常使用的[/font]PEG[font=宋体]柱([/font]wax[font=宋体]柱),不同厂家标称的最高适用温度从[/font]200[font=宋体]度到[/font]290[font=宋体]度都有,这里面有产品质量的差异,但是更多的是因为质量标准不同得出了不同的指标。而处于商业利益和技术保密等方面的考虑,很多厂家根本没有公开质量标准,这使得各种商业宣传的指标更加扑朔迷离,甚至到了信口开河的地步。[/font][/font][font=宋体] [font=宋体]作为曾经的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]技术标杆,瓦里安在这方面做得是比较好的,以下是截取的瓦里安毛细管柱关于最高适用温度的质量标准,指标能够被客观的量化。[/font][/font][font=宋体][font=宋体][img=,685,989]https://ng1.17img.cn/bbsfiles/images/2020/06/202006301757436366_4857_2204387_3.png!w685x989.jpg[/img][/font][/font][font=宋体][font=宋体].[/font][/font][font=宋体][font=宋体] [font=宋体]上述质量标准都是根据固定相在高温下流失的程度来定义最高适用温度范围的。一方面是从固定相的总量方面考虑,连续使用[/font]6[font=宋体]个月后固定相流失一半的温度作为普通色谱柱的最高适用温度。也就是说该色谱柱在标称的最高恒温操作温度下连续工作[/font]4[font=宋体]千小时,固定相就会损失一半。显然,固定相损失到这种程度是肯定无法使用的。前面已经说过,固定相损失的程度可以通过容量因子降低的程度反映出来。一般实践表明,固定相损失[/font]10%[font=宋体]的时候柱子的性能就已经有明显缺陷了,需要及时更换,也就是说在标称的最高恒温操作温度下,色谱柱能够稳定工作的时间其实不到[/font]1000[font=宋体]小时。[/font] [font=宋体]另一方面是从固定相流失到载气中的浓度来考虑的。质谱、[/font]ECD[font=宋体]等高灵敏度的检测器对柱流失极为敏感,即使色谱柱的寿命没有受到明显影响,当流失的固定相蒸汽浓度增大到一定程度后,检测器噪声会显著增加,这对于微量物质的分析是不能允许的。因此,这类色谱柱(主要是低流失柱或者称作[/font]MS[font=宋体]柱)的最高恒温操作温度是柱流失水平不超过某一规定值的温度。在这一温度下固定相流失非常微小,色谱柱的寿命很长,连续使用数千小时后固定相总量也不会有显著的减少。柱流失水平一般是在[/font]FID[font=宋体]上测定基流随温度的变化而反映出来的。因为流失的固定相是有机蒸汽,进入[/font]FID[font=宋体]之后会使信号增加,增加的程度与流失的浓度几乎是成正比的。对于[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用[/color][/url]分析,通常要求柱流失对应的基流在几个[/font]pA[font=宋体]以内。以下是不同色谱柱高温流失产生的基流变化示意图,摘自安捷伦应用资料。[/font][/font][/font][font=宋体][font=宋体][font=宋体][img=,690,366]https://ng1.17img.cn/bbsfiles/images/2020/06/202006301758528671_6760_2204387_3.png!w690x366.jpg[/img][/font][/font][/font][font=宋体][font=宋体][font=宋体].[/font][/font][/font][font=宋体][font=宋体][font=宋体] 以上所列的瓦里安色谱柱的评价标准在行业内几乎是最为严格的。其他厂家的评价标准往往要宽松很多,因此在使用过程中经常会遇到产品标称适用温度很高,但是在低于标称温度的时候流失就已经很明显了。或者有时候遇到A厂产品标称温度比B厂产品高,但是实际使用时A的流失却比B更加明显。因此在比较不同色谱柱热稳定性时不能仅仅看标称的数值,而要在统一的标准下对比。[/font][/font][/font][font=宋体][font=宋体][font=宋体]. 实际应用中应以什么标准来判断色谱柱的适用温度范围? 从以上讨论可以看到,即使按瓦里安比较严格的量化标准,也会出现多个不同的最高适用温度。那么实际应用中要按那个指标进行判断呢?根据我的经验和习惯,倾向于采用最严格的标准,也就是低流失柱(质谱柱)的最高操作温度定义方式。因为,即使在适用FID进行普通的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析时,固定相流失带来的较大的基线抬升和噪声增加也都是非常不利的,应该尽可能避免。而且,按连续工作6个月后固定相损失50%来定义的最高操作温度也并不适用于实际操作,因为这个温度下固定相已经在显著分解,色谱柱可以稳定工作的时间实际上不足1000小时(容量因子变化在10%以内),只有在比这个温度低20度左右使用才能获得长期稳定的使用效果。 其实日常应用中,很多人已经不自觉的在使用这个标准了,我们在询问色谱柱最高可以多少度用的时候,经常会听到这样的回答:比标称的比较低的那个数值再低20度使用。但是需要注意,前提是这个标称的数值一定不能是虚标的。然而遗憾的是,目前各个厂家虚标的现象非常普遍,即使没有恶意虚标,也有不少通过较为宽松的质量标准得到的虚高指标。因此,我在下面对一些常用固定相的适用温度范围进行了大致的整理,并简要归纳了变化规律。给出的温度数值不可能很精确,只能作为大致的参考,但是其基本规律在判断厂家标称的参数是否合理时可以作为佐证依据。.3、聚硅氧烷固定相的适用温度范围 聚硅氧烷固定相的最高适用温度普遍比较高,其影响因素包括分子量、取代基,以及交联情况等方面。 甲基聚硅氧烷的分子链是最为稳定的,因此其耐热性一般是最好的。但是随分子量不同,其性质有明显差异,适用温度也明显不同。低分子量的是油状液体,俗称甲基硅油,适用温度通常在200度左右。高分子量的是黏弹态橡胶状固体,俗称甲基硅酮胶,适用温度可达300度以上,例如OV-1固定相的标称适用温度为350度,是常规固定相中适用温度最高的一种,实践也表明这种固定相确实能在350度柱温下使用一定的时间。但是这种高分子量的固定相在接近室温时粘度非常大,只有柱温较高时才能获得较高的柱效,柱温太低时无法使用。分子量适中的表现为半流态弹性体,以SE-30固定相为代表,最高适用温度约为280~300度,随杂质含量不同略有差异。 对于其他取代基的聚硅氧烷,分子量变化也有类似的影响规律,但考虑到粘度的影响,除苯基取代的聚硅氧烷外,一般只使用分子量中等偏低的型号,因为其他极性取代基会导致粘度的进一步增加,分子量太高不利于使用。除少量苯基取代外,其他强极性的取代基都会使聚硅氧烷的热稳定性减弱,适用温度随极性的增强而降低。5%苯基取代的聚硅氧烷,如SE-52、SE-54、OV-73等,适用温度也可以达到280~300度,而高苯基取代度的聚硅氧烷,如OV-61、OV-17等,适用温度降低较为明显,通常只有250~260度左右。三氟丙基、氰丙基等强极性基团会使聚硅氧烷的热稳定性显著降低,取代度不太高的品种,例如OV-1301、OV-1701等,最高适用温度约为250度,取代度高的时候,适用温度降低更明显。例如OV-210一般在240度以下使用才能比较保险,OV-225、OV-275等品种的最高适用温度大约不超过220度。只有Xe-60这种分子量非常大的固定相才能在更高温度下使用,但通常也不能超过250度。另外,氰丙基取代度高的聚硅氧烷由于极性强、粘度大,因此在低温下柱效较低,最好在100度或者更高的柱温下使用。 总的来说,对于聚硅氧烷这一类固定相,最高适用温度至少应该符合两个规律:一是分子量大的挥发弱,适用温度应该更高;二是极性强的稳定性差,适用温度应该更低。明显偏离这个规律的数据肯定是值得怀疑的。. 这里必须指出,早期文献使用填充柱研究固定相性质,填充柱中固定相总量较大,少量流失也不至于明显损坏;而且当时的色谱仪灵敏度普遍不如现在高,因此对于固定相的流失不甚敏感;这两个因素导致的结果就是,报道的固定相适用温度普遍偏高,我们在查阅早期文献和手册需十分注意。而目前普遍使用了毛细管柱,负载的固定相总量少得多,少量流失就有损坏的可能,同时现在还普遍采用高灵敏度的检测器进行微量分析,对固定相流失问题必须有更加严格的要求。 而且早期文献年代久远,以讹传讹的现象层出不穷,例如著名的OV-17固定相,早期给出的最高适用温度是275度,而之后该数据多次转载,最后讹传成了375度并载入了各大专著和手册的数据表中。要知道,同类固定相的毛细管柱在近十几年才实现了350度左右的使用温度,难道色谱固定相技术开了几十年的倒车?这个显著错误数据在各大专著和手册中堂而皇之的存在几十年却无人指出,实在令人深思。其实这一问题在Walter Jennings的《玻璃毛细管柱[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]》专著中早就有所提及,作者也的指出OV-17固定相用于毛细管柱的最高使用温度实际上约为250度,但是仍然没有明确指出固定相表格中数据的错误。 还比如有的文献中给出的OV系列各种固定相的最高适用温度都是350度,甚至连OV-351这种聚乙二醇类的固定相也标称最高适用温度是350度,这显然也是不合理的。究其原因,可能是不经思考的采纳了产品宣传资料,因为在OV公司的产品介绍中有提到OV系列固定相的最高适用温度可达350度,其言下之意是只这一系列产品中最高的那一种可以达到350度的适用温度,而几经转载就变成了所有的品种都是350度的适用温度。 国产上试厂的固定相也出现过类似的以讹传讹的问题。最典型的是上试产的硅油(III)固定相,其实际使用温度上限为180度,但不知何时被弄错成了280度。为了对这一问题进行验证,我曾经买过数瓶不同批次的该产品进行实验,明确证明280度这一数据是错误的。但是这一错误数据还是一直被收入在《分析化学手册第五分册》和企业标准中,出厂的产品上也一直堂而皇之的写着“最高使用温度280℃,流失实验合格”。. 二十世纪八十年代以来,毛细管柱的一个重大技术进步是固定相的交联键合技术。这一技术使传统的直链聚合物固定相交联为网状聚合物固定相,不仅分子量成指数增加,分子链的锚固点也变得更多,稳定性大大增强。这一技术使原有固定相的最高适用温度普遍提高了20~30度左右。进入二十一世纪以来,各大厂商又基于亚芳基改性、碳硼烷改性等技术生产了低流失色谱柱(MS柱),使原有同类固定相的适用温度又进一步提高了20度以上。其中特别是含有35%亚芳基的固定相,其结构处于稳定性最佳的状态,适用温度提高最为明显,达到340度以上。在瓦里安被安捷伦收购之后,其他厂家也没有停止开发耐高温、低流失固定相的脚步,也纷纷推出了相应的产品,各种固定相的最高适用温度还在继续提高,例如Restek公司的Rxi系列,SGE公司的BPX系列,Phenomenex公司的ZB-plus系列,等。 下表列出了一些常见固定相型号的最高适用温度,温度的判断均以可长期连续使用、且不会检测到明显的柱流失这两个条件同时满足为标准,数据大部分来自于本人或者同行的操作实践,可能存在一定的上下偏差,但应该没有重大差错,可供实践使用中参考。.4、聚乙二醇固定相的适用温度范围 聚乙二醇固定相的适用温度范围一般来说比聚硅氧烷小得多,并且受到自身分子量大小和杂质含量的影响很大。常用的PEG-20M是分子量2万的品种,最高适用温度可达200度以上,少数质量好的甚至可以在220度稳定使用很久,但是有些质量较差的却远达不到这么高的适用温度。同时要注意,分子量2万的聚乙二醇在55度时会凝固并逐渐结晶,因此其最低适用温度通常不低于60度。分子量小一些的聚乙二醇品种具有更低的凝固温度,但是最高适用温度也明显降低,因此使用不多。微量的酸性杂质和金属离子都会催化聚乙二醇链的断裂,这是纯度低的产品适用温度难以提高的主要原因,而向其中添加强碱则是提高其热稳定性的重要方法。 聚乙二醇与硝基对苯二甲酸发生酯化反应生成的缩聚物是针对游离脂肪酸分析的一种固定相,简称FFAP。由于缩聚使分子量进成倍增加,因此这种固定相的热稳定性更好,通常能在220度长期稳定使用。与聚乙二醇一样,FFAP固定相在较低温度下会凝固,最低适用温度约为60度。 交联键合技术在聚乙二醇固定相的毛细管柱中同样有广泛应用,实现交联后,最高适用温度提高了20度以上,达到240度左右。虽然在更高的柱温下也能短时间使用,但是聚乙二醇链断裂的问题是难以克服的,高温导致的寿命减少非常明显。交联限制了分子链的移动与重排,对抑制聚乙二醇在低温下结晶有一定作用,因此交联型的聚乙二醇固定相的最低适用温度也有不同程度的降低,不同产品在20~50度范围内不等。 近十几年在低流失的聚乙二醇柱方面也取得了技术进展,能在250度甚至更高温度下长期稳定使用的聚乙二醇柱已有好几个不同的型号,例如瓦里安的VF-WAXms、安捷伦的DB-HeavyWax等。还有一些厂家也声称开发了耐高温低流失的聚乙二醇固定相型号,但是尚未见到详细的流失测试和寿命测试报告,对其性能还需观望。.5、关于固定相最高适用温度,其他需要说明的问题 以上简要讨论的固定相的最高适用温度,给出了各种固定相的推荐值。但是实际应用中问题还要复杂得多,不能简单套用表中的数值。. 不同厂家的产品质量差异明显 固定相都是高分子材料,其分子量分布和微量杂质对性能影响很明显,不同厂家的产品看似接近,实际使用中却会显著不同。比如前面提到的聚乙二醇固定相,同样是分子量2万的产品,如果用普通分析纯试剂的聚乙二醇来当固定相使用,通常使用温度只能达到160~180℃,再升温就会很快分解殆尽,而使用专门色谱固定相级别的产品则可以在200℃稳定使用。又比如SE-30本来是一种工业硅油产品,低分子量杂质较多,后来有厂家对其进行了纯化得到专用的色谱固定相级别的产品,最高使用温度就有了显著的提高。对于键合固定相和低流失固定相也有类似的问题,不同厂家的同类产品,在同样温度下的流失水平有显著差异。以我自身使用的经验为例,同属5%苯基聚硅氧烷的MS固定相,VF-5ms、HP-5ms、RTX-5ms三者在同样温度下进行比较,VF-5ms的流失比另外两种要低很多。即使同一厂家的产品,不同系列之间也有明显差异。例如同属安捷伦,HP-5的流失明显比DB-5要高不少;又例如SGE公司的产品,AC系列的质量低于BP系列,最高适用温度相应的也会低一些。. 不能只看宣传资料上的数字 浮夸风、放卫星不是中国独有的,卖东西的人都有王婆卖瓜的习惯,因此选择色谱柱的时候一定不能只看宣传资料上的片面之词。还是以我使用过的VF-5ms与RTX-5ms为例,前者标称温度为325/350℃、后者标称温度为330/350℃,看似后者的指标更高,然而实际使用中后者的流失要比前者高数倍。再例如同属安捷伦旗下的HP-innowax和DB-wax,柱规格均为30m*0.32mm*0.25μm的情况下,前者标称温度为260/270℃,比后者高了10度,然而根据我实际使用的情况,二者的热稳定性不相上下,同温度下DB-wax的流失甚至还稍微低一些,而且实践证明HP-innowax想要长期稳定工作且不产生显著的基线噪声,柱温不宜超过230℃,比标称数值更低VF-WAXms还要差很多。那么这个标称的“260/270℃”算不算虚假宣传呢?这个确实很难判定,因为厂家只说可以用,没说能用多久,用三天就报废也算可以用啊(手动滑稽. 要注意柱规格产生的差异 前面讨论的是固定相的适用温度,但固定相都是做成色谱柱来使用的,因此我们更加关心色谱柱的最高适用温度。同样的固定相,只做的色谱柱长度、内径、膜厚不同,最高适用温度会有不少的差异。影响最显著的是膜厚,其他条件不变、膜厚加倍时,固定相的流失水平会增加一到二倍不等。而且膜厚太大的色谱柱制备更困难、容易出现交联不完全的问题。因此使用厚液膜(1.0μm或者更厚)的色谱柱时,允许的最高温度一般要降低10~20℃。柱内径增加、柱长增加时,固定相的流失也会有一定的增加,所以在使用大口径柱(0.53mm)、长柱(60m或者以上)时,也要注意将允许的最高温度适当降低。[/font][/font][/font]

固定相相关的资料

固定相相关的资讯

  • 关于气相色谱柱的固定相,你真正了解吗?
    嗨,大家好,小编又和大家见面了。在前期的内容中,小编为大家分享了气相色谱柱的一些基本小知识,主要包括毛细管柱的分类,固定相的种类,色谱柱的柱长、内径、液膜厚度参数,以及色谱柱的使用温度限。今天呢,我们就针对其固定相,来一探究竟!不管是气相色谱,还是液相色谱,待测样品组分的吸附保留主要取决于固定相。其基本分离原理主要是通过样品分子与固定相之间作用力类型以及作用强度的不同,进而实现组分的分离。不同的结构的固定相,其极性和与分子间的作用力也不相同。关于气相色谱,目前使用最多的是气-液分配模式,气-液色谱固定相在常规分析温度下也呈现液态,所以常被称为固定液,常见的固定液主要有以下几种:01甲基聚硅氧烷类固定液甲基聚硅氧烷固定液的结构图如下:从其结构图可以看出,是由多个硅氧烷聚合而成,骨架上的每个硅原子可以与两个官能团相连接。当其官能团均为甲基时,即是我们所说的百分之一百二甲基聚硅氧烷;“二”代表着硅原子上连接两个特定取代基团,当取代基团完全相同时,也可以省略这种叫法,即百分之一百二甲基聚硅氧烷也称为百分之一百甲基聚硅氧烷。在结构图中,聚合度n值的不同,所形成的固定液在形态上也会有所区别。当聚合度n值较小,固定液分子量较小时,称之为二甲基硅油,呈黏稠状的液态,如美国OhioValley(OV公司)研制的OV-101固定相;分子量比较大时,可以称为二甲基硅脂及橡胶,如美国GeneralElectric(通用电气)生产的SE-30。甲基聚硅氧烷类固定液属于非极性固定相,具有很宽的沸点范围,适用于分析烃类以及含有其他官能团的化合物,非常适合对于未知样品的分析。02其他不同基团取代的聚硅氧烷类固定液硅氧烷骨架硅原子上取代基团的数量和种类不同,影响着固定相的极性和热稳定性。一般而言,极性取代基团的含量越高,固定液极性越强,所耐受的温度限也越低。常见的取代基团如下图:关于取代基团含量的描述通常是以百分含量表示,下图为5%二苯基95%二甲基聚硅氧烷和50%三氟丙基50%甲基聚硅氧烷(或称之为百分之一百三氟丙基甲基聚硅氧烷)的结构图。对于不同基团取代的百分含量表述,在这以14%氰丙基苯基86%二甲基聚硅氧烷为例,代表着其含有7%的氰丙基、7%的苯基、86%的甲基,因为硅原子上同时连接氰丙基和苯基,14%是一种加和的表示方法(如下图)。不同取代基团的作用:● 在甲基聚硅氧烷中引入苯基,由于结构相似性,可以增强对芳香烃类化合物的吸附保留。● 氰基的引入可使固定液具有中等极性或强极性,此类固定相对含芳基、烯基的化合物具有较强的保留作用,适用于分离不饱和烃、芳烃,以及不饱和脂肪酸。● 三氟丙基具有较强的给质子能力,适合吸附保留羰基化合物。● 在聚硅氧烷骨架中引入亚芳基,可以增强固定相的热稳定性,降低柱流失。03聚乙二醇类固定液这是一种强极性的固定相,主要是以形成氢键为主,对醇、酸、酚、伯/仲胺等有较强的保留。在使用这类固定液的色谱柱时,需要注意分析温度、载气纯度等相关问题,因为聚乙二醇极性较强,所能承受的温度限较低,高温条件下载气中的氧、水等都会引起固定相的分解。常规聚乙二醇类固定液结构如下图:聚乙二醇简称PEG,聚合度n值不同,其分子量也不相同;目前使用最多的是分子量20000左右的聚乙二醇,常见的名称为PEG-20M、INOWAX等。为了分析不同类型的化合物,可以通过对色谱柱表层和固定液进行改性来实现不同性质化合物的分离。主要包括以下几种:● 碱改性聚乙二醇固定液:在制药行业中,药物分析通常以偏碱性为主,在分析这些物质时,经常出现馒头峰或者峰拖尾等现象。为了改善对这类化合物的峰形问题,可以采用KOH将色谱柱表层处理成碱性表面,然后再涂渍聚乙二醇类固定液,来实现对偏碱性化合物的分析。● 酸改性聚乙二醇固定液:是由聚乙二醇与不同酸反应而成的酯类固定液,使用最多的是FFAP(硝基对苯二甲酸改性的聚乙二醇),主要用于分析小分子的有机酸、挥发性脂肪酸和酚类化合物等。
  • 专家教您如何选择液相色谱固定相
    pspan style="FONT-FAMILY: times new roman"  反相液相色谱可供选择的固定相种类繁多令人眼花缭乱,即使是某一种固定相(例如Csub18/sub)的可选择种类也是很多的。/span/ppspan style="FONT-FAMILY: times new roman"  老实说,我们的很多方法开发都是在尝试和错误中进行,这些都是基于我们喜爱的供应商提供的成熟的或者新兴的固定相。即使是先进的含有仔细考量的正交化及电脑优先洗脱设计的“筛选”平台,有时也不得不采取“色谱的本能”。/span/ppspan style="FONT-FAMILY: times new roman"  反相色谱中的保留是基于被分析物、流动相、键合相以及键合了配体的硅胶表面的活性和其可接触性之间的平衡。 想要搞清楚影响分离效果的保留机理,就要考虑并明确化学键合相、活性硅胶表面的处理、硅胶表面的可接触性等因素,这些都将影响色谱柱的原始选择性及方法开发的优化。/span/ppspan style="FONT-FAMILY: times new roman"  在大多数反相分离中色散作用是起主要作用的,尤其是那些使用未改性的烷基配体(Csub18/sub、Csub8/sub、Csub4/sub),其保留能力是与被分析物的疏水性成正比的。含有芳香基团或不饱和基团的固定相或被分析物进行分析时,电荷转移(或& #960 -& #960 )作用是起主要作用的。偶极-氢键相互作用对于极性化合物的保留是很重要的,含有“氰基”的固定相会增强对极性化合物的保留。被分析物的电离部分与硅胶表面之间存在静电作用力,这是由于硅胶表面有残留的可离子化的硅醇基。/span/ppspan style="FONT-FAMILY: times new roman"  当前有许多色谱柱分类系统存在,这些系统都是基于对已知化学探针物质的检测,从而/spanspan style="FONT-FAMILY: times new roman"来描述固定相的独特特性。一个非常有用的例子就是美国药典(USP)网站中的产品质量研究数据库(也就是PQRI系统),网址是:http://www.usp.org/app/USPNF/columnsDB.html。该数据库采用保留(1,2)的疏水减法模型来描述固定相的疏水性(H),判断疏水性类似而有不同形状或流体力学体积的被分析物的空间结构选择性参数(S),在pH值为7.0和2.8时的氢键(作为路易斯酸或路易斯碱)和静电作用参数(C)。pH值为7.0时硅醇基活性很强,pH为2.8时具有酸性的硅醇基将会与极性或可离子化的被分析物发生作用产生拖尾。独特的或正交的固定相一般会有较大的S、B和C(7.0)值。这些大型的数据库对于比较固定相的特点是很有用的,“雷达图”也是另一种比较固定相特点的有用方式。/span/ppspan style="FONT-FAMILY: times new roman"  表一总结了一些当前常用固定相的分类及其相关应用领域。/span/pp style="TEXT-ALIGN: center"span style="FONT-SIZE: 14px"strongspan style="FONT-FAMILY: times new roman COLOR: #002060"表一:一些主要固定相分类及其主要应用/span/strong/span/pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman"img title="表1.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/540303f9-dcc8-49c2-b339-34be938e95ae.jpg"/ /span/pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman" img title="43d7b645-f3ad-4b00-aae0-cb2a4184812a_副本.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/e6eb5d10-9666-4d69-9589-97922871dea7.jpg"//span/pp style="TEXT-ALIGN: center"span style="FONT-SIZE: 14px"strongspan style="FONT-FAMILY: times new roman COLOR: #002060 FONT-SIZE: 14px"图一:一些常用的反相键合相的保留机理以及键合在硅胶表面的键合相的结构示意图/span/strong/span/ppspan style="FONT-SIZE: 14px"strongspan style="FONT-FAMILY: times new roman COLOR: #002060 FONT-SIZE: 14px"   /span/strong/spanp style="TEXT-ALIGN: center"span style="FONT-SIZE: 14px"strongspan style="FONT-FAMILY: times new roman COLOR: #002060 FONT-SIZE: 14px" img title="b4ba0ffd-2ab4-4076-b350-4d81d805f81b_副本.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/79bc34f2-1396-4cd7-81c9-f95ab840db8e.jpg"//span/strong/span/pp style="TEXT-ALIGN: center"span style="FONT-SIZE: 14px"strongspan style="FONT-FAMILY: times new roman COLOR: #002060 FONT-SIZE: 14px"  图二:左图是根据PQRI数据库中相似固定相制得的雷达图,右图是根据PQRI数据库中正交固定相制得的雷达图,也就是根据固定相的疏水性来预测其选择性的相似区域。/span/strong/span/ppspan style="FONT-FAMILY: times new roman"strong参考文献/strong/span/ppspan style="FONT-FAMILY: times new roman"  (1) L.R. Snyder, J.W. Dolan, and P.W. Carr, J. Chromatogr. A 1060, 77–116 (2004)./span/ppspan style="FONT-FAMILY: times new roman"  (2) L.R. Snyder, J.W. Dolan, and P.W. Carr, Anal. Chem. 79, 3255–3261 (2007)./span/pp /pp style="TEXT-ALIGN: right"strong原文作者:Tony Taylor /strong/pp style="TEXT-ALIGN: right"strong翻译/strongstrong稿件来源:LCGC战略合作伙伴——月旭科技/strong/pp /pp /pp /pp /pp/p/p
  • 月旭科技-专家讲座系列之色谱固定相的形貌与特征
    本期“月旭科技-专家讲座”的嘉宾是华东理工大学特聘教授,也是我们月旭科技分离纯化技术中心总工——张维冰教授。本周六上午,张维冰教授将与大家分享讨论“色谱固定相的形貌与特征”的相关内容。我们的讲座分为两大部分,zui后有互动答疑环节,来跟大家交流相关主题的内容,解决大家的实际问题,敬请关注!一、主讲人简介现为华东理工大学特聘教授,南昌大学、齐齐哈尔大学讲座教授。月旭科技分离纯化技术中心总工。主要从事包括色谱、毛细管电泳的理论与实践研究工作。张维冰教授师承张玉奎院士,于1999年在中国科学院大连化学物理研究所获理学博士学位,并在台湾中兴大学进行博士后研究工作,后赴德国Max Planck Institute for Dynamics of Complex Technical Systems作访问学者。已发表学术论文600余篇,著作七部,申请及授权专利百余项。负责或参加完成国家自然科学基金 、“973”、“863”及国家“攻关”、“支撑计划”等项目多项。二、讲座主题《色谱固定相的形貌与特征》内容摘要1、对色谱分离介质的基本要求;2、固定相的制备;3、月旭固定相基质的特征;4、创新固定相修饰技术;5、特殊固定相的应用。三、讲座时间2021年12月18日(周六) 10:00-11:00《色谱固定相的形貌与特征》主题讲座 11:00-12:00 专家互动答疑环节四、参与方式关注月旭科技视频号,点击卡片“预约”,届时进入月旭科技视频号直播间观看即可。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制