脊椎动物内耳

仪器信息网脊椎动物内耳专题为您整合脊椎动物内耳相关的最新文章,在脊椎动物内耳专题,您不仅可以免费浏览脊椎动物内耳的资讯, 同时您还可以浏览脊椎动物内耳的相关资料、解决方案,参与社区脊椎动物内耳话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

脊椎动物内耳相关的耗材

  • 新型冠状病毒试剂盒
    【产品名称】新型冠状病毒2019-nCoV核酸检测试剂盒(数字PCR法)【包装规格】24人份/盒【预期用途】冠状病毒是一类具有囊膜、基因组为线性单股正链的RNA病毒,直径约80-120nm,目前只感染人、鼠、猪、猫、犬、禽类脊椎动物。新型冠状病毒(2019-nCoV)经确认为新的变种,可引起病毒性肺炎,轻者发热干咳,重者呼吸困难甚至休克。本试剂盒用于新型冠状病毒(2019-nCoV)的核酸检测,结果可用于新型冠状病毒感染患者或疑似新型冠状病毒感染患者的辅助诊断,为感染患者提供分子诊断依据。本试剂盒检测结果仅供临床参考,不得作为临床诊断的唯*一标准。建议结合患者临床表现和其他实验室检测对病情进行综合分析。【检验原理】本试剂盒利用液滴式数字PCR技术结合Taqman荧光探针技术,对新型冠状病毒(2019-nCoV)进行定性检测。通过数字PCR芯片,将样本随机分配到生成的数万个油包水液滴中,将液滴进行PCR反应,PCR反应结束后读取每个液滴的荧光信号,并利用泊松分布原理进行统计与分析,从而实现对新型冠状病毒(2019-nCoV)特异性基因拷贝的精*准检测。
  • SP-PST3
    SP-PST3传感器点是非侵入式光学氧传感器中最通用的版本。它们可以附着在任何透明玻璃或塑料容器的内表面,例如摇瓶和旋转瓶、管子、培养皿或培养袋。通过透明血管壁以非侵入性和非破坏性方式测量氧气。SP-PSt3-YAU 的测量范围为 0 – 100% 溶解相或气相氧。氧敏涂层固定在1mm玻璃支架上,可以高压灭菌(+ 130°C,1.5个大气压)。 通过容器壁进行非接触式测量 无需耗氧 信号与流速无关 测量液体和气相中的氧气 可高压灭菌应用生物工艺开发:摇瓶中的氧气监测O2供应是好氧生物培育的主要问题之一。摇瓶培养物广泛应用于学术和工业生物工艺开发。由于缺乏对溶解氧进行实际监测的适当方法,足够的 O2通常假设供应。摇瓶中的非侵入式氧传感器现在可确保氧气供应,并为代谢活动提供新的见解。呼吸与光合作用:玻璃瓶中的氧气监测呼吸活性的测定通常用于水生物,如无脊椎动物、幼虫阶段或卵,也适用于细菌、细胞培养物、酵母或真菌。对于藻类来说,光合活性的测量是非常有意义的。使用带有集成传感器条带的 20 mL 传感器瓶,可以同时测量液体样品和顶空中的氧气。可高压灭菌传感器样品瓶可用于搅拌和非搅拌应用。
  • 动物麻醉机管路
    Harvard Apparatus的动物麻醉机以其品种多、精度高和出色的可靠性而享誉世界.由于Harvard动物麻醉机的型号及附件众多,不能一一罗列。若要进一步了解动物麻醉机相关产品信息,请与香港友诚生物科技有限公司联系。Harvard动物麻醉机管路分为三种:Modified Jackson Rees 非再呼吸循环管路,啮齿动物麻醉管路和通用麻醉机管路 F-Circuit.Modified Jackson Rees 非再呼吸循环管路 Specifications723073723075723074Bag Size Metric0.5 L0.25 L*na L 啮齿动物麻醉管路: Specifications723026723027723028723029723030Diameter English9/16 in*na in7/16 in9/16 in3/4 inInlet Tubing ID English0.25 in0.25 in0.25 in0.25 in*na inInlet Tubing ID Metric6.25 mm6.25 mm6.25 mm6.25 mm*na mmMaterialSilicone TubingSilicone TubingSilicone TubingSilicone TubingSilicone TubingOutlet Respiratory Fitting English0.866 in0.866 in0.866 in0.866 in*na inOutlet Respiratory Fitting Metric22 mm22 mm22 mm22 mm*na mm 通用麻醉机管路 F-Circuit Specifications723071723072723082F-Circuit Length English40 in60 in*na inMaximum Animal Weight English200 lbs200 lbs200 lbs

脊椎动物内耳相关的仪器

  • 鱼类及水生无脊椎动物呼吸代谢测量系统是由丹麦哥本哈根大学和奥尔堡大学研制的世界上著名的、广泛应用的水生动物特别是鱼类的呼吸测量仪器,主要用于鱼类、水生无脊椎动物、鱼卵及其胚胎乃至浮游生物的耗氧量测量。广泛应用于海洋淡水鱼类等水生生物生态学、水体环境毒理学、水产养殖、鱼类行为生理生态、水生动物发育生态及水族箱等研究。 鱼类及水生无脊椎动物呼吸代谢测量系统采用了“间歇式”呼吸测量法,集合了“开放式”呼吸测量法测量时间长和“封闭式”呼吸测量法简易的优点,同时克服了“开放式”时间解析度差、“封闭式”不能连续长时间测量的缺点。“间歇式”测量的呼吸室放置在水浴槽(周边水体)内,与两个潜水泵——一个循环泵和一个交换泵相连。循环泵可以确保呼吸室内水体的均一且保证有足量的水流经传感器,而交换泵可以使周边水体与呼吸室内水体进行交换。测量时交换泵关闭,此时呼吸室类似于“封闭式”,然后由计算机控制开启交换泵,周边水体被泵入呼吸室从而使氧气水平达到测量前的水平。整个过程分成3个步骤:测量、水体交换、等待,测量时循环泵开启、水体交换时交换泵开启循环泵关闭,等待时交换泵关闭循环泵开启,每10分钟即可测量1次。如此以来,像“开放式”呼吸测量一样,实验可以无限期地进行下去,从而进行长时间的实验分析测量。并且“间歇式”呼吸测量法有很高的时间解析度,可以反映突然的耗氧量变化。如下图为幼体虹鳟鱼的呼吸代谢测量,可以看出:在开始时由于处理鱼时造成的应激反应,耗氧率很高,随后即达到一个较低的平稳水平——相当于基础代谢率。 在每个测量期,由于动物的呼吸耗氧,溶解氧浓度随着测量时间的延长而降低并呈直线相关关系。动物耗氧率(每小时每公斤体重消耗的毫克氧气)等于相关曲线的斜率乘以呼吸室的净体积除以动物的体重。 功能特点 l “间歇式”呼吸测量法,集合了“开放式”呼吸测量法测量时间长和“封闭式”呼吸测量法简易的优点,同时克服了“开放式”时间解析度差、“封闭式”不能连续长时间测量的缺点;l 溶解氧测量采用荧光光纤氧气测量技术,测量精度高、稳定性强、无氧耗;l 呼吸测量室有静态呼吸室和动态呼吸室/游泳室,分别用于测量标准代谢(SMR)和不同游泳速度的活动代谢(AMR);l 全自动化控制、记录及分析数据,简单易用;潜水泵开闭的控制及氧气信号的获取均通过蓝牙的方式,远程无线传输能够有效避免多通道线缆连接的繁琐和潜水泵工作时产生的噪音对使用者的影响。l 呼吸室高度定制,可根据水生动物的形态、大小定制各种形状(如水平、立式)、各种尺寸的呼吸室。 配置方案 系统主要包括多通道荧光光纤氧气测量主机及传感器、静态呼吸室、AutoResp自动控制及分析软件、水环境控制模块及其他配件或备选件。根据需求,有单通道、四通道、八通道及更多通道测量系统,可以同时连接多个呼吸室以测量多个斑马鱼的呼吸代谢情况。u 单通道系统:由单通道荧光光纤氧气测量系统、1个呼吸室、两个潜水泵、管路等配件组成。可选配游泳室及其他配件用于不同游泳速度下的活动代谢研究,还可选配温度及氧气监测控制模块。 u 四通道系统:由四通道荧光光纤氧气测量系统、4个呼吸室、8个潜水泵等配件组成,可选配游泳室及其他配件用于不同游泳速度下的活动代谢研究,还可选配温度及氧气监测控制模块。u 八通道系统:由两个四通道荧光光纤氧气测量系统、8个呼吸室等组成,可选配游泳室及其他配件用于不同游泳速度下的活动代谢研究,还可选配温度、氧气监测控制模块。 技术指标 ? 荧光光纤氧气测量系统:包括四通道测量主机、粘贴式氧气传感器及温度传感器。高时空分辨率,蓝牙通讯,可在线测量水体和空气中的氧气,可长期在线监测,零氧耗、稳定性极强。a. 氧气测量范围0 – 100%或0 – 45ppm;b. 检测极限0.03%或15ppb;c. 温度、盐度、气压实时补偿,不受电磁信号干扰、实时记录、显示呼吸室内氧气随时间的变化。? AutoResp自动控制及软件:自动计算显示耗氧率、相关系数R2,实时记录、显示耗氧率随时间的变化;实时记录、显示温度随时间的变化,测量数据自动存储成Excel格式文档,原始数据自动存储成Txt格式文档。a. 即时切换测量方法和调整间歇式呼吸测量法的测量/交换时间;b. 数据后分析:自动计算SMR、Pcrit等参数,显示计算图表;c. 自动设置:提供预设的系统配置供使用者选择。 ? 水环境控制模块:包括温度监测控制模块和溶解氧监测控制模块。可单独调控CO2/pH。a. 温度监测控制模块包括温度传感器、潜水泵、不锈钢散热管等。温度传感器Pt1000测量范围-50℃~180℃,精度±0.15℃;b. 氧气监测控制模块包括荧光光纤氧气传感器、电磁阀、气石等,模块通过控制电磁阀加氧或者加氮以控制水体处于过氧或者缺氧状态。c. CO2/pH监测控制模块包括控制器主机、pH计及探头、电磁阀、气石及CapCTRL调控软件等,通过监测pH值间接确定水中CO2含量并调节控制水的pH和CO2含量并实时监测,pH值测量范围0~14,分辨率0.01。? 呼吸室:丙烯酸或者硼硅玻璃,内径分别62 – 240mm或者9 – 45mm可选,长度可选(主要根据水生动物的长度和体积)。还可根据动物形状及用户具体要求定制其他各种类型的呼吸室,如斑马鱼呼吸室,适用于螃蟹、蚌等其他水生动物的呼吸室等。 ? 潜水泵:静态游泳室有5L/min和10L/min两种流速可选,与呼吸室的容积相匹配。? 游泳室:包括外部水浴池、活动室、马达、潜水泵等,不同型号技术指标如下表: 应用案例 1. 加拿大麦克马斯特大学(McMaster University)的Du等人使用鱼类呼吸代谢测量系统测量了污水处理厂下游两处(50m和830m)的蓝腮太阳鱼的耗氧率。发现受污染区域蓝腮太阳鱼的标准代谢率相较于无污染的参照区域较高,即代谢成本升高。但代谢成本升高也伴随着氧气吸收、传递和利用等方面的生理补偿性调整,如鳃表面积扩大,血氧亲和力降低,离体肝线粒体氧化磷酸化能力增强等等。该论文发表在2018年的《Environmental Science & Technology》(1区,IF = 6.653@ 2017-2018)杂志上。题目为《Metabolic costs of exposure to wastewater effluent lead to compensatory adjustments in respiratory physiology in bluegill sunfish》。2. 捷克科学院脊椎动物生物研究所Reichard等人使用鱼类呼吸代谢测量系统测量了存在干旱梯度的假鳃鳉属8个自然种群的静态代谢率和最大代谢率,并以此计算代谢范围,用以研究其寿命与老化的种内差异。该论文发表于2016年的《Evolution》(2区,IF = 3.818@ 2017-2018)杂志,题目为《Repeated intraspecific divergence in life span and aging of African annual fishes along an aridity gradient》。
    留言咨询
  • 为响应对髋关节和脊柱植入物不良反应测试不断增长的需求,设计和开发出了髋关节及脊椎植入物磨损模拟器。与一家独立的法国磨损检测室CRITT MDTR一起合作,PROSIM开发出髋关节及脊椎磨损模拟器,主要目的为:* 设计并建造一个模拟器,符合 ISO 14242-1 (2012)和 ISO 18192-1 (2011)* 严格遵循应用解剖加载,通过髋臼杯(髋关节)* 严格遵循应用解剖运动,通过股骨头(髋关节)* 提供精确的、准确的和可重复的微分离(髋关节)PROSIM髋关节及脊椎磨损模拟器是一种多站机器,为髋关节和脊柱植入物提供可靠的且可重复的试验,为更换髋关节和椎间盘的设计者和开发者提供具有成本效益并准确的方法,在逼真的体内模拟条件下产生磨损和摩擦的数据。PROSIM髋关节及脊椎磨损模拟器的所有轴都是机电驱动,将电机、驱动器和齿轮箱组合。这样模拟器能够紧紧跟踪任何复杂的波形。在过去的十五年中,我们的模拟器产生的经验数据支持以下说法:在PROSIM髋关节植入物磨损模拟器中测试的髋关节植入物的磨损形状准确反映了经过人类多年使用的植入物的磨损度。PROSIM髋关节及脊椎磨损模拟器能够支持多达6个植入物同时进行测试,以及两个植入物的负载浸泡,以准确模拟在体内的髋关节和脊椎椎间盘运动和磨损。 PROSIM髋关节及脊椎磨损模拟器拥有许多功能和优势:* 能够同时测试多达六个髋关节或脊柱植入物* 可以负载浸泡多达两个髋关节或脊柱植入物* 轴向加载到5kN* 屈伸范围为+ / -60°* 外张 - 内收运动范围+ / - 20°* 内部 - 外部旋转范围+ / -30°* 能够同时进行力矩和位移控制* 髋臼杯的微分离位移可达5mm(髋关节)* 可编程的工作频率高达2.0Hz* 每个站配备一个六轴负载传感器* 各站配备XY工作台以进行旋转中心对准* 每个站都有专用的加热系统,用以将血清温度维持在37°C + / - 2°C* 能够运行包含步行、慢跑和一段时间的休息的编程序列* 易于使用的Windows操作屏幕* 位置和负载的实时记录可即时验证测试周期* 临床和生理上有代表性的试验PROSIM能够提供定制的模拟器,以满足客户的特定试验要求。
    留言咨询
  • 优云谱昆虫呼吸速率测定仪YP-KC10动物呼吸代谢测定仪产品介绍:昆虫呼吸代谢测量系统通过精确测量昆虫等动物呼出二氧化碳量及耗氧量等,以研究测量其能量代谢水平,并可计算呼吸商。广泛应用于昆虫代谢生态学研究、果蝇等实验动物生物医学和遗传学研究、病虫害防治、预防医学研究实验、昆虫生态学研究、土壤动物学研究、生态毒理学与污染生态学研究、生物检测等。系统由二氧化碳分析仪、氧气分析仪、气流控制器、数据采集器及程序软件、呼吸室等组成。测量对象:果蝇、蚜虫等细小昆虫到中大型昆虫如蜜蜂、蚱蜢、鳞翅目昆虫或其蛹和幼虫等,或土壤无脊椎动物如线虫、蜘蛛等。可选择同时测量CO2、O2、H2O
    留言咨询

脊椎动物内耳相关的方案

  • 耳石薄截面的制备与分析
    耳石(脊椎动物内耳)的显微组织分析对于研究鱼的生长模式和年龄是一个重要的工具。这一信息可进一步用于总的鱼群、物种动态特性、以及了解环境变化的影响等更大范围的研究。 鱼的年龄通常是通过检查和计数鳞片上的生长环或是在耳石(内耳的小骨)上看到的环状组织来确定的。这些环对应于环境的季节变化并可以与树干的年轮相比较。如果这些环生长迅速,它们的间隔就比较宽;当环与环之间的间隔比较窄时,就表明生长比较缓慢。耳石共有三对,最常分别称为耳沙(内耳囊状物部分的一种石状物)、扁平石(多数鱼的两个耳石中较大的一个)、和星状耳石。它们的所在位置、功能、尺寸、形状、以及超微结构方面均不相同。这些差异会影响到制备方案的确定,例如抛光面以及所必需的制备量。尺寸具有特殊的重要性,因为较大耳石具一般有较大的三维深度和不规则性,从而限制了显微组织的外观观察。另一方面,对于较小的耳石,有可能不经切割或抛光就可以观察其显微组织。大多数情况下,需将耳石清洁而准确地切割成非常薄的截面。这样就可以看到环状组织。对于厚度大于100μ m的耳石,将试样抛光可能会更好些。这样做在观察环状组织时将使分辨率得到改善。为了能继续增进对鱼群动态特性的了解,很好地确定耳石的分离、制备、和分析技术并适当侧重质量控制十分重要。许多情况下,研究者已经拟订出针对某一物种的特定方法。这里所介绍的方法还是属于相当一般性的。
  • 脊椎化学特征能否用于区分墨西哥湾北部幼年黑尖鲨(Carcharhinus limbatus)的育苗区?(英文原文)
    识别和保护鲨鱼育苗区是重建过度捕捞种群常规策略,然而,我们对幼年和成年种群之间的联系知之甚少。通过分析鲨鱼锥软骨微量元素的组成,根据育苗区特有的化学特征可以推断它们的出生地。为了评估该方法的有效性,我们在2012年,2013年从墨西哥湾的四个区域采集了幼年黑尖鲨脊椎骨,并利用LA-ICP-MS进行分析。我们发现六种元素存在显著的区域差异,Ca元素2012年和2013年的比例。多元素化学特征在地区间和年龄段有显着性差异。尽管2012年没有从所有四个区域获得样本,通过年龄特异性对区域分类的准确性在2012为81%,在2013年为85%。从而证明了这种方法的有效性。这些结果是鼓舞人心的,但是也突出了需要更多的研究来更好地评估脊椎化学在研究elasmobranch种群的相关性。
  • 卡尔费休水分仪加热进样测定骨蛋白中的水分
    骨形态发生蛋白质(BMP),指从脊椎动物骨骼基质中分离提纯的蛋白质。具有内肽酶(含锌离子)活性、表皮生长因子模体,同源二聚体之间以二硫键相连,属于转化生长因子-β 家族,能诱导骨与软骨形成。本试验采用AKF-3N卡氏加热进样测定骨蛋白中的水分含量。

脊椎动物内耳相关的论坛

  • 北京市生态环境局关于公开征求北京市地方标准《大型底栖无脊椎动物环境DNA 监测技术规范》(征求意见稿)意见的函

    各有关单位:  根据北京市市场监督管理局《2023年北京市地方标准制修订项目计划》,我局组织起草了北京市地方标准《大型底栖无脊椎动物环境DNA监测技术规范》(征求意见稿)。按照《北京市地方标准管理办法》要求,现公开征求意见,欢迎机关、科研单位、企业、社会组织等机构和个人提出意见。  请将意见填入意见反馈表(见附件4),于2023年11月20日前,以电子邮件和书面方式反馈我局。涉及修改重要技术指标时,应附上必要的技术数据。书面征求意见单位,如无意见也请复函说明,逾期未复函的视为无意见。  专此函达。  附件:1.[url=https://sthjj.beijing.gov.cn/bjhrb/index/xxgk69/sthjlyzwg/yjzj77/325959262/436259106/2023102516441444130.doc]书面征求意见单位名单[/url]  2.[url=https://sthjj.beijing.gov.cn/bjhrb/index/xxgk69/sthjlyzwg/yjzj77/325959262/436259106/2023102516441482058.docx]《大型底栖无脊椎动物环境DNA监测技术规范》(征求意见稿)[/url]  3.[url=https://sthjj.beijing.gov.cn/bjhrb/index/xxgk69/sthjlyzwg/yjzj77/325959262/436259106/2023102516441427823.docx]《大型底栖无脊椎动物环境DNA监测技术规范》(征求意见稿)编制说明[/url]  4.[url=https://sthjj.beijing.gov.cn/bjhrb/index/xxgk69/sthjlyzwg/yjzj77/325959262/436259106/2023102516441425596.doc]北京市地方标准意见反馈表[/url][align=right]  北京市生态环境局 [/align][align=right]  2023年10月24日 [/align]  [联系人:程念亮、高喜超;联系电话:010-88420547、010-68481537(工作日:9:00-11:30;13:30-18:00);传真:010-68471038、010-88423743;E-mail:jiancechu@sthjj.beijing.gov.cn,kjchu@sthjj.beijing.gov.cn]

  • 【分享】最新研究表明金属氧化物纳米材料对两栖类动物会产生毒性

    美国科学家的一项最新研究表明,某些金属氧化物的纳米材料如氧化锌,二氧化钛,氧化铁和氧化铜会对两栖类动物产生毒性。根据之前的研究,金属氧化物的纳米材料已经表现出了对水生生物的毒性,尤其对微生物和无脊椎动物。迄今为止,很少有研究评估金属氧化物纳米材料对水生脊椎动物的毒性。该项研究发表在《Chemosphere》上。研究结果表明,实验的纳米材料在两栖动物的生长发育过程中可能产生负面的影响。另外,研究表明为了确保人类和环境安全,评估纳米材料对脊椎动物的暴露情况对于日常生活用品中纳米材料的安全生产是非常必要的。

  • 【分享】查资料时看到的小常识,分享一下:)

    查资料时看到的小常识,分享一下:)[em31] 动物血液的颜色   各类动物的血液由于组成成分及其生理状态的差异而在颜色上也有所不同,如绝大多数脊椎动物的血液是红色的,无脊椎动物的血液则有的呈蓝色,有的呈紫红色、绿色等。   那么,动物血液的颜色到底是由什么决定的呢?有人认为血液的颜色取决于所含某种离子的颜色,如认为脊椎动物和蚯蚓等的血液呈红色是由于铁离子的存在;蓝色血液是由于铜离子的存在等[事实上Fe2+在水溶液中为浅绿色,Fe3+一般为黄色;Cu2+只有在Cu(H2O)2+4状态呈蓝色,其余均为无色]。笔者认为,诸如这些说法都是不正确的,因为这些离子一方面并不显示该种动物血液的颜色,否则像脊椎动物的动脉血为鲜红色而静脉血为暗红色的这种颜色的变化就无法解释了,因为动脉血和静脉血中铁离子并没有发生化合价的变化。另一方面,这些离子在血液中并不是孤立存在的,如Fe2+存在于血红蛋白的辅基--血红素中,原卟啉与Fe2+形成四配位体螯合的络合物,其外围被血红素分子的珠蛋白链的氨基酸残基包围着以提供飞机型低介电的环境保护Fe2+不被氧化为Fe3+。同样,有些动物血液中的Cu2+也是和蛋白质结合在一起的,所以动物血液的颜色不一定就呈现某种离子的颜色。   动物血液呈现什么颜色,要看血液中生色物质所吸收的光是哪些可见光,如果吸收的某种或某些可见光,则显示出的颜色就是这些颜色的互补色,或者说对哪种光不吸收或吸收的较少则显示出该种颜色,正如叶绿素对绿色光几乎不吸收而使其呈现绿色一样。血红蛋白的血红素分子有11个双键,共轭双键所吸收的可见光使得血红蛋白呈红色。然而,血红蛋白在氧合状态和脱氧状态下由于构象的变化使得它们的吸收光谱也有所不同。所以,氧合血红蛋白最终呈现的颜色是红色,脱氧血红蛋白的颜色是紫蓝色。因此,脊椎动物血液中氧合血红蛋白和脱氧血红蛋白所占的比例就决定了动脉血和静脉血的颜色。在一些无脊椎动物中,多数动物的血液不含血红蛋白,如软体动物(头足动物和石鳖属等)以及节肢动物(虾、蟹及肢口纲的鲎)所含的是血蓝蛋白。血蓝蛋白分子由Cu2+和1个约200个以上氨基酸的肽链结合而成,和血红蛋白一样,该呼吸色素的颜色也与其状态有关,在氧和状态下为蓝色,在非氧和状态下则为无色或白色。有些多毛虫(如帚毛虫科、绿血虫科)的血液中含有血绿蛋白,钙蛋白也含有铁离子,化学性质与血红蛋白相似,氧合时呈红色,而非氧和状态下却呈绿色;另外,像星虫、多毛虫纲的长沙蚕属及腕足动物中的血液中也有一种含 铁的蛋白叫血褐蛋白,该蛋白不含卟啉结构,氧和状态下显紫红色,而非氧和状态下为褐色。

脊椎动物内耳相关的资料

脊椎动物内耳相关的资讯

  • 华大基因加盟“万种脊椎动物基因组计划”
    深圳华大基因研究院与&ldquo 万种脊椎动物基因组计划&rdquo 联盟(G10KCOS)的科学家联合宣布启动万种脊椎动物基因组一期计划。该计划将依托华大基因先进的新一代测序技术平台、前沿的信息分析和数据处理能力,在未来两年内完成对101种脊椎动物的全基因组测序,解析其遗传密码。  &ldquo 万种脊椎动物基因组计划&rdquo 拟绘制万种脊椎动物基因组图谱,建立哺乳类、鸟类、爬行类、两栖类和鱼类等10000种脊椎动物的遗传信息数据库,研究生物多样性和动物进化的机制,为生命科学和全球动物保护提供前所未有的基础资源。该计划现有来自全球的43个研究机构和68位科学家参与其中。  据介绍,全球已公布的正在测序的脊椎动物物种已达120种。华大基因与G10KCOS的各物种的研究委员会(哺乳类、鸟类、爬行类、两栖类和鱼类)选择并启动了101种新物种的测序工作。筛选这些物种所依据的重要因素包括物种的特殊进化地位及其系统发育的多样性、是否具有与人类有密切相关的生物学特性、该物种研究团队的综合实力和是否可以得到高质量样品等。华大基因将采用新一代高通量测序技术对这101种脊椎动物进行测序,并构建不同物种间的系统进化树。  华大基因与G10KCOS将共同致力于构建高质量的基因组图谱,提供便于数据浏览的信息平台并促进与基因组学相关各物种的研究。完成对全球221种脊椎动物的全基因组测序将成为向破译1万种脊椎动物基因组宏伟目标迈出的第一步,该项目列表中的物种也将随着收集到的新物种材料及获得的资金支持而不断更新。科学家们将对计划列表中新物种的全基因组序列进行高效的组装、注释和分析,并于全基因组序列完成后的18个月内在线公布相关数据。华大基因与G10KCOS欢迎全球更多的科学家加入,启动更多有价值的新物种的全基因组测序工作,一起实现这个伟大的计划。
  • 朱敏院士团队eLife新成果:原始胴甲鱼揭秘有颌脊椎动物祖先的鳞列格局
    鱼类最显著的特征之一就是体表覆盖的鳞片,这些鳞片承担了防御、进攻、摄食、过滤、感觉、保护躯体免受磨损和防止寄生虫等功能,此外鳞片表面的纹饰和腹侧的结构可以接收并引导水流,减少阻力。鳞片按照一定的生长模式整齐地排成鳞列,此即为成语“鳞次栉比”的出处。鱼类的鳞片是骨质的,属于外骨骼或膜质骨的一部分。鳞片和鳞列形态是对化石鱼类进行分类、推测身体结构、生活方式和彼此亲缘关系的重要证据。 盾皮鱼类是最原始的有颌脊椎动物,因此,学者们很关注它们鳞片和鳞列的形态。完整的盾皮鱼鳞列比硬骨鱼类和软骨鱼类的鳞列更为罕见。云南曲靖下泥盆统洛赫考夫阶西屯组(大约4.1亿年前)是著名的早期鱼类化石产地,其中保存有十分丰富的盾皮鱼类鳞片微体化石。但由于缺乏完整的鳞列,导致这些大量零散保存的盾皮鱼鳞片难以得到分类鉴定,提供的信息十分有限。 胴甲鱼类是盾皮鱼类最原始的分支,处于有颌脊椎动物演化的根部,是一类外形非常奇特的鱼类。它们两眼和鼻子挤在头顶的一个“天窗”内,躯体前半部分被箱形膜质骨甲所覆盖,特别是一对胸鳍也被坚硬的骨片包裹,比起鱼鳍,看上去更像节肢动物的附肢。 胴甲鱼类是最早为科学界所知的古生物类群之一,但早期研究主要集中在中、晚泥盆世较为特化的属种上。上世纪下半叶开始,我国发现的云南鱼类等原始胴甲鱼类掀起了胴甲鱼类研究新的热潮,但直到90年代才发现了保存完整的云南鱼类标本——西屯副云南鱼(Parayunnanolepis xitunensis),至今副云南鱼仍然是云南鱼类中保存最完好的属种。因其原始地位和完整性,副云南鱼成为揭示早期有颌脊椎动物性状演化序列的关键一环。研究团队使用高精度计算机断层扫描(MicroCT)技术,对西屯副云南鱼正模保存的鳞列进行了详细重建,获得迄今最完整的胴甲鱼高清鳞列及鳞片三维形态。 副云南鱼化石扫描结果展示了最原始有颌脊椎动物的完整鳞列。它的背鳍和尾鳍都被厚重的膜质鳞片完全覆盖。扫描显示,副云南鱼鳞片形态具有相当大的分异度,以及复杂的区域分化。同一个体的鳞片在轮廓、膜质骨表面纹饰、冠部比例、覆压方式、大小等形态特征上展现出极大的多样性。此外,沿着身体纵轴向后,鳞片在不同区域展现出不同的梯度特征,特别是侧鳞沿着身体纵轴向后鳞片逐渐变大,这与绝大多数硬骨鱼相反,并且鳞片由彼此强烈覆压(硬骨鱼鳞片普遍特征)逐渐转变为不覆压(软骨鱼普遍特征)。有意思的是,上述鳞列的分化情况在胴甲鱼类进步类群化石中发生了简化,只有在胴甲鱼类的原始类群中才能观察到这些现象。已知鳞片分区的简化也分别独立地发生在软骨鱼支系、硬骨鱼中的肉鳍鱼和辐鳍鱼支系中。因此,副云南鱼就成为了解有颌脊椎动物祖先鳞列格局最重要的一扇“窗口”。 副云南鱼完整鳞列还为鳞片微体化石研究提供了重要资料。研究团队以副云南鱼鳞列为参考,在副云南鱼同一采样点和层位处理、挑样并鉴定出了一批云南鱼类鳞片微体化石。组织学研究表明大多数云南鱼类鳞片不具有发达的中间疏松层(由带血管的骨质构成),这可能代表了有颌脊椎动物鳞片的原始特征。 该研究成果以“Squamation and Scale Morphology at the Root of Jawed Vertebrates”(有颌脊椎动物根部的鳞列与鳞片形态学)为题于2022年6月8日在Nature-index刊物《eLife》上发表,并被遴选为“eLife digest”特别报道。南京大学生物演化与环境科教融合中心博士研究生王雅婧为论文的第一作者,中国科学院古脊椎动物与古人类研究所研究员朱敏院士为论文的通讯作者,该研究得到了国家自然科学基金和中国科学院战略性先导科技专项的资助。 原文链接:https://doi.org/10.7554/eLife.76661 图1 西屯副云南鱼生态复原图。(杨定华绘)图2 西屯副云南鱼化石照片。(王雅婧供图)A)背视图;B) 右侧视图;C) 左侧视图图3 西屯副云南鱼鳞列三维重建,基于高精度CT。(王雅婧供图)A) 右侧视图;B) 左侧视图;C) 前视图;D) 背视图;E) 分区模式 图4 早期有颌类鳞片演化。(王雅婧供图)
  • 总站发布《水生态监测技术要求 淡水大型底栖无脊椎动物》
    为加快构建全国水生态监测技术体系,统一监测与评价技术要求,中国环境监测总站近日印发了《水生态监测技术要求 淡水大型底栖无脊椎动物》(试行)。 本技术要求规定了淡水大型底栖无脊椎动物的样品采集、保存、运输、分析、质量保证与质量控制等监测要求。适用于以水生态业务化监测和评价为目的的湖泊、水库、河流等水体(不包含咸淡水交汇区)中淡水大型底栖无脊椎动物的监测。填补了水生态监测大型底栖无脊椎动物监测方法空白。 附件列表: 技术要求文本-发布稿-水生态监测技术要求-淡水大型底栖无脊椎动物(试行)-1231.pdf
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制