磷酸二酯酶抑制剂

仪器信息网磷酸二酯酶抑制剂专题为您整合磷酸二酯酶抑制剂相关的最新文章,在磷酸二酯酶抑制剂专题,您不仅可以免费浏览磷酸二酯酶抑制剂的资讯, 同时您还可以浏览磷酸二酯酶抑制剂的相关资料、解决方案,参与社区磷酸二酯酶抑制剂话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

磷酸二酯酶抑制剂相关的耗材

  • 蛋白酶抑制剂
    包装20 tablets特点和优势使用cOmplete蛋白酶抑制剂片剂可以保护蛋白质以免被广泛的蛋白酶降解。在短短几分钟内,不受抑制的蛋白酶水解活性即可降解您花费数天分离的蛋白质。这些方便的水溶性片剂各自含有蛋白酶抑制剂的混合物,能抑制大多数细胞类型(包括动物、植物、酵母和细菌)的蛋白酶水解活性。不需要称重或测量就能确保一致的结果。易于使用:只需将速溶片加入到您的缓冲液中即可。完善的保护:立即保护您的蛋白质免受广泛的蛋白酶的降解。灵活性:几乎能够保护任何组织或细胞提取物中的蛋白质,包括动物、植物、酵母、细菌或真菌。安全性:选择对您或您周围的人没有任何风险的无毒抑制剂。所有产品、耗材配件均原厂,公司拥有完善的质量管理体系和专业的技术团队,在全国多个城市设立服务机构,覆盖率广,效率高、响应速度快!除销售仪器、配件耗材外,还可提供维修、维保、培训等一站式产品和服务解决方案!
  • V-C-A抑制剂
  • V-C-N-T抑制剂

磷酸二酯酶抑制剂相关的仪器

  • 二氧化硫滴定分析仪(红/ 白葡萄酒、玫瑰酒)早在1487 年,普鲁士皇室颁布法令同意在葡萄酒酿制中使用二氧化硫(SO2)。今天,在葡萄酒的酿制中加入SO2,是再平常不过的事情。SO2 对葡萄酒的影响可谓是从内到外,主要有两种。第一,SO2 通常作为保护剂添加到葡萄酒中,有杀死葡萄皮表面的杂菌(SO2 几乎是酿酒师所能使用的唯一的细菌抑制剂)。第二。它又是一种抗氧化剂,在保护酒液的天然水果特性的同时防止酒液老化。尽管SO2 对葡萄酒的酿制有很大作用,但是不可忽略的一点是,SO2 含量过高时会使葡萄酒产生如腐蛋般的难闻气味,人体饮用后会引起急性中毒,严重的还可能引起肺水肿、室息、昏迷。因此,葡萄酒中的二氧化硫含量一直属于葡萄酒检测中要产格监控的检测项目。、二氧化硫滴定分析仪技术参数量程:1-300mg/L重复性:总二氧化硫为6mg/L,游离二氧化硫为2mg/L分析时间(不包括蒸馏时间):总二氧化硫为4-5 分钟,游离二氧化硫2-3 分钟标准配置包括:主机、玻璃反应容器、干燥阀、300mL 锥形瓶(3 个),搅拌子(2 个),滴定头(10 个),试剂包和操作说明书。
    留言咨询
  • 应用于工艺步骤:终端制剂灌装l有效降低污染风险,最大限度减少产品损失l一次性技术保障过程安全,降低资本投入,缩短上市周期l整合全部灌装关键部件,适配您的定制化需求lEmprove 文件系统,BioReliance定制E&L验证服务,为您的药品申报提供保障
    留言咨询
  • 安捷伦 Seahorse XFe24 分析仪以 24 孔板形式测量活细胞的耗氧率 (OCR) 和细胞外酸化率 (ECAR)。OCR 和 ECAR 是线粒体呼吸和糖酵解以及 ATP 生成速率的关键指标,综合这些检测结果可在系统水平表征培养细胞和体外样品的细胞代谢功能。特性:24 孔规格的细胞能量代谢活细胞实时分析平台每个检测孔报告多个参数,包括 OCR、PER 或 ECAR 以及 ATP 产生速率采用大孔尺寸和瞬态微室,可容纳更大和/或代谢更活跃的样品对定制 24 孔板中每孔仅 10,000 个细胞可靠的响应兼容 3D 研究模型,例如胰岛和小型生物(例如斑马鱼)具有自动混合功能的四加药口系统,能评估细胞对底物、抑制剂及其他化合物的即时反应4 至 30 °C 的宽工作环境温度,使该分析仪可维持 16 至 42 °C 的内部检测温度,兼容各种样品数据文件兼容基于网络的分析工具 Seahorse Analytics
    留言咨询

磷酸二酯酶抑制剂相关的试剂

磷酸二酯酶抑制剂相关的方案

磷酸二酯酶抑制剂相关的论坛

  • 43.8 某药酒中非法添加PDE5抑制剂的HPLC检测

    43.8 某药酒中非法添加PDE5抑制剂的HPLC检测

    作者:倪晨;陈汀波;梁远园;王倩;(广东广州中医药大学;)摘要:目的建立快速、准确的检测中药保健品中非法添加磷酸二酯酶5(PDE5)抑制剂的方法。方法采用高效液相色谱法(HPLC)检测,DiamonsilC18色谱柱;流动相:乙腈-0.05mol·L-1三乙胺(用磷酸调PH至6.0)=40:60,流速1.0mL·min-1,检测波长290nm。结果该保健酒中未检出PDE5抑制剂:枸橼酸西地那非、盐酸伐地那非、他达拉非。结论该方法灵敏度高,重复性好,可用于PDE5抑制剂的定性检查。谱图:http://ng1.17img.cn/bbsfiles/images/2012/08/201208131450_383525_1606903_3.jpg

  • 【求助】竞争性抑制剂或变性剂

    新人做论文,检测丁烯二酸的顺反异构体,由于峰形问题,要加入磷酸,作为离子抑制剂,但是老师要求换其他的试试,以便说明选择磷酸的好处,请教一下,还有哪些是属于竞争性抑制剂或变性剂??

磷酸二酯酶抑制剂相关的资料

磷酸二酯酶抑制剂相关的资讯

  • 人冠状病毒广谱抑制剂的研究进展(二)
    上期,展鹏教授团队分享并阐述了冠状病毒的基本结构、冠状病毒的生命周期、抗冠状病毒药物的主要靶点等内容,本期将分享靶向冠状病毒刺突蛋白、RdRp、蛋白酶及宿主靶标的一系列冠状病毒广谱抑制剂,以及其对抗击新冠肺炎疫情、预防未来的冠状病毒传播具有的重要意义。本文讨论的冠状病毒广谱抑制剂是针对冠状 病毒与宿主的关键靶点开发的抗病毒化合物。现 阶段,根据这类化合物靶向的生理过程不同,分别靶向冠状病毒的侵入过程、RNA复制过程、多聚 蛋白裂解过程以及宿主靶标。4.1靶向冠状病毒侵入过程的抑制剂在抗病毒药物中,侵入抑制剂可以使病毒的生命周期停止在第一步,使其对宿主的危害最小化。SARS-CoV和SARS-CoV-2是通过刺突蛋白与人类呼吸道上皮细胞的ACE2结合而侵入[16], 而MERS侵入所利用的胞外受体是CD26,也称 作二肽基肽酶(DPP4)。刺突蛋白是一种I型跨膜蛋白(图3),分子 表面高度糖基化,它组装成三聚体后,分布在病毒颗粒的最外层,形成了冠状病毒独特的外观。所有冠状病毒刺突蛋白的胞外部分都是由两个相同的结构域结合而成:氨基端的S1亚单位与受体结 合相关,含有受体结合域(receptor binding domain,RBD);羧基端的S2亚单位含有融合肽 (fusion peptide),与病毒融合相关。在S1完成结合后,S2被细胞表面的TMPRSS2蛋白酶裂解,该过程是病毒与宿主细胞膜融合所必需的[17]。因此,靶向S蛋白或TMPRSS2的分子可成为有效的冠状病毒侵入抑制剂。Figure 3 (A-B ) Structure of S protein trimer, from different angles of view ( PDB code :6XM5) ; ( C) Structure of S protein monomer and location of NTD and RBD; (D) Binding mode of S protein with ACE2 ( PDB code: 7KNY)4.1.1 靶向S蛋白的侵入抑制剂在S蛋白抑制剂中,肽类具有高效、低毒的优势[18]。基于ACE2胞外序列设计的水溶性肽 作为潜在的侵入抑制剂曾受到重视,但其体内半衰期短,难以转运到肺泡[19]。为提高成药性, Lei[20]将ACE2片段与人免疫球蛋白IgGl的Fc结构域结合,提高了血浆中稳定性并增强了结合力。目前,已设计并合成了一系列模拟ACE2的N端螺旋结构域的肽类化合物,如Barh[21]通过扫 描现有的抗菌、抗病毒肽类数据库,得到了10个可能有效阻断S蛋白RBD区域与人ACE2作用 的肽类,但其体内外活性有待进一步研究。在此 基础上,Larue[22]设计了一系列针对刺突蛋白的 ACE2多肽类似物(SAP1 ~SAP6,表1),并在编码荧光素酶并负载SARS-CoV-2刺突蛋白的慢病毒侵染HEK293T-ACE2细胞体系中测定各个多 肽对病毒侵入的抑制作用,各物质活性以半数抑 制浓度(IC50)计量,活性最好为SAP6[(1.90 ± 0. 14) mmol • L-1 ]。同时,上述多肽对SARS- CoV-2刺突蛋白RBD区域的亲和力(Kd)最高为 (0.53 ±0.01) mmol-L-1(SAPl)。Table 1 Amino acid sequence of ACE2 derivatives targeting S proteinCompd.SequenceLocationSAP127-TFLDKFNHEAEDLFYQ42Helix-1SAP237-EDLFYQSSLS5Helix-1SAP379-LAQMYPL-85Helix-3SAP4352-GKGDFRYL-359Helix-11SAP524-QAKTFLDKFNHEA-36Helix-1SAP637-EDLFYQ42Helix-1Curreli等[23]基于ACE2蛋白结合区中30个 氨基酸残基长度的螺旋结构,以8 ~11碳的不饱 和炷链连接肽链上一定跨度的邻近氨基酸,设计了 4个高度螺旋化的装订肽(stapled peptide) NYBSP-1~NYBSP-4,并在 HT1080/ACE2 细胞 与人肺A549/ACE2细胞系中使用基于假病毒的 单循环方法测定了上述多肽分子的EC50值。其中3 个多肽分子显示出了潜在的抗病毒活性:HT1080/ ACE2 中的 EC50值为(1. 9 ~ 4. 1 )μmol• L-1 , A549/ACE2 中 EC50值为(2. 2 ~ 2. 8) μmol • L-1,且在最高测试剂量时,未显示出任何细胞毒性。使用SARS-CoV-2病毒侵染Vero E6细胞时, NYBSP-1显示出了最高的抑制活性,在 17.2 μmol• L-1的浓度完全阻止了细胞病理效应。NYBSP-2和NYBSP-4活性稍低,EC100值为 33 μmol • L-1,NYBSP-4在血浆中的半衰期为289 min,代谢稳定性好。Glasgow 采用“受体陷阱”,(receptor trap)策略,合成出高亲和性、高溶解性的ACE2胞外部分结构域,阻止病毒刺突蛋白与人体细胞表面的 ACE2的结合与入侵[24]。基于此策略设计的肽类分子使冠状病毒难以产生抗药性,并可以抑制几乎所有通过ACE2侵入细胞的冠状病毒[25]。在进一步研究中,Glasgow[24]利用计算机/实验组合的蛋白质工程方法,重新设计了能与SARS- CoV-2刺突蛋白结合的ACE2胞外可溶性区域 (氨基酸18-614) 。最终得到的ACE2变体对于单体刺突蛋白RBD区域的KD app ( apparent binding affinity)值已接近100 pmol• L-1。同时,最理想的 “受体陷阱”分子抑制SARS-CoV-2假病毒和真正 SARS-CoV-2 病毒的 IC50值已达到(10~100) ng-mL-1的范围。这类多肽分子有望真正实现针对利用ACE2入侵宿主细胞的冠状病毒的广谱抑制。由于S蛋白分子高度糖基化,可与多糖衍生物产生多种相互作用,引导人们去探索针对S蛋 白的多糖类抑制物。早在2013年,Milewska就证实了N-(2-羟丙基)-3-三甲氨基甲壳素氯化物 (HTCC,1,图4)及其疏水性修饰的同系物(HM- HTCC)是HCOV-NL63的潜在抑制剂[26],并制备 了不同比例的氨基被甲壳素取代的HTCC衍生物, 各自具有对不同种类人冠状病毒的抑制作用[27]。近期,文献报道了在人呼吸道上皮细胞中,HTCC 具有抑制 SARS-CoV-2 和 MERS-CoV 的 活性。尽管HTCC中单个正电基团对于靶标的作用较弱,但冠状病毒连环化的特性和多聚物分 子中的多个位点协同作用使得HTCC可以稳定 结合S蛋白。目前,虽然HTCC仍未被批准用于 临床,但实验已经证明其在肺部局部给药的可行 性,且毒副作用极低口旳。综合考虑,上述各种甲 壳素衍生物联合使用,有望成为广谱抗人冠状病 毒感染的防治药物。Griffithsin(2,图4)是由海藻中分离得到的天 然血凝素,可利用糖基结构域结合病毒包膜糖蛋白中特定的寡糖[29]。已有研究表明,griffithsin可以与多种病毒表面的糖蛋白相互作用,包括HIV gpl20 以及 SARS-CoV 的 S 蛋白[30-31]。2016 年,Millet 等[32]报道了 griffithsin 对于 MERS-CoV 的抑制作用。在2μg • mL-1 浓度下,griffithsin抑制了 MERS 病毒对 Huh-7、MRC-5 和 Vero-81 细 胞系90%以上的感染性。针对迅速爆发的新冠 肺炎疫情,一系列针对griffithsin抗新冠病毒活性 的研究正在展开。Xia等[33]首先发现griffithsin 对SARS-CoV-2假病毒侵染呈现剂量依赖性地抑 制作用,EC50值为293 nmol• L-1 Cai等[34]网进一 步在体外试验中测定了 griffithsin对SARS-CoV- 2的抑制活性,结果表明,griffithsin对SARS-CoV- 2活病毒的EC50值达63 nmol• L-1,同时对S蛋白 介导的细胞间融合的EC50 值为323 nmol-L-1值得注意的是,该研究团队还报道了 griffithsin与肽 类冠状病毒侵入抑制剂EK1的协同作用。未来, griffithsin可以单独或与EK1联合制成鼻喷剂、吸入剂或凝胶,以预防或治疗新冠肺炎。4. 1.2 TMPRSS2 抑制剂在SARS-CoV或 MERS-CoV的刺突S蛋白 发挥作用之前,要依赖宿主细胞的跨膜蛋白酶 TMPRSS2将其裂解为S1和S2亚单位[35]。针对 这类蛋白酶的抑制剂也可用于阻断各种冠状病毒 的入侵过程。蔡莫司他(nafamostat,3,图5 )最初用于治疗 胰腺炎,后发现也是TMPRSS2抑制剂,对MERS- CoV具有拮抗活性[36]。进一步研究发现,蔡莫司 他甲磺酸盐对SARS-CoV-2的EC50值达到了纳摩尔级[37]。同时,在日本批准用于治疗胰腺炎的 药物甲磺酸卡莫司他(camostat mesilate,4,图5) 同样具有抑制TMPRSS2的活性[17],在微摩尔浓度即可有效抑制MERS-CoV感染中合胞体的形成[38],EC50值达到 0.11 μmol• L-1[39]:对 SARS- CoV-2的EC50值为87 nmol• L-1[37]o现阶段仍无 法确定该化合物能否在肺部达到抑制病毒的有效浓度[40],但已有临床研究正在评估其对新冠肺炎的治疗作用。4. 1. 3 宿主细胞激酶抑制剂病毒在生命周期中利用了宿主细胞的若干信 号通路。冠状病毒以内吞方式入侵宿主细胞的过 程中,除S蛋白与ACE2的作用外,还需要Abel- son激酶(Abl)的介导。Abl是细胞中重要的管 家蛋白,参与正常细胞的多个生理过程,同时也与 病毒的入侵与复制密切联系,是开发广谱冠状病 毒抑制剂的有效靶点[41]。伊马替尼(imatinib ,5, 图5)是Abl的抑制剂,已被批准用于治疗慢性粒 细胞白血病。已有研究证实,伊马替尼通过阻断病毒颗粒与胞内体膜融合,从而抑制病毒以内吞 路径入胞,并在感染早期抑制SARS-CoV和 MERS-CoV的增殖關。据报道,伊马替尼抑制 SARS-CoV-2 增殖的 EC50值达到130 nmol-L-1 , 同时对SARS-CoV-2 S蛋白的RBD区域结合活 性高达2. 32 pimol-L-1,可通过双靶点作用有效 抑制SARS-CoV-2的侵入關。但在细胞实验中, 其毒性较为明显,用于治疗新冠肺炎或其他冠状 病毒感染前还要经过充分评估。目前,世界范围 内已有多项伊马替尼针对新冠肺炎的临床试验正 在进行(NCT04394416、EudraCT2020-001236-10、 NCT04357613)。4. 1. 4 组织蛋白酶L与Furin蛋白酶抑制剂组织蛋白酶L位于宿主细胞的胞内体,在无 TMPRSS2表达的细胞中,组织蛋白酶L发挥裂 解活性,介导病毒粒子与胞内体膜融合,从而完成侵入过程[44]。2003年,SARS-CoV疫情引起了人 们对组织蛋白酶L抑制剂研发的重视。随后的十几年内,已发现数种具有抗冠状病毒活性的组 织蛋白酶L抑制剂。其中,K11777(6,图5)是通 过筛选2 000余个人组织蛋白酶抑制剂发现的[45],其对人体或某些寄生虫的半胱氨酸蛋白酶具 有显著抑制作用。K11777抑制SARS-CoV和 MERS-CoV感染的EC50值分别达到0.68 nmol• L-1与46 nmol• L-1,但其不可逆的共价结合机制可能导致较强的毒副作用。目前,K11777仅作为锥虫 病治疗药物进行临床试验M ,其针对SARS- CoV-2的抑制作用有待于进一步确证。SARS-CoV-2 S蛋白的裂解过程也可依赖 Furin蛋白酶进行。Cheng[47]研究了以蔡基荧光 素(naphthofluorescein, 7,图5 )为代表 的数个 Furin蛋白酶抑制剂,证实了此类分子可抑制SARS-CoV-2的感染进程及细胞病理效应。但冠状病毒侵入细胞的不同路径中的关键酶具有互补作用,因此单一种类的蛋白酶抑制剂难以起效[48],而多种抑制剂联用的毒性可能大幅度增加。针对冠状病毒生命周期中宿主蛋白酶的药物应用尚存在一定的风险与挑战。4.2靶向冠状病毒RNA复制过程的抑制剂针对冠状病毒另一类极为重要的治疗靶标是 RNA依赖的RNA聚合酶(RdRp),由非结构蛋白 nspl2、nsp7与nsp8结合构成。其活性位点高度保守,包括在一个β转角中突出的两个连续的天 冬氨酸残基样[49],在不同的正链RNA病毒如冠状病毒和HCV中结构相似[50]。RdRp作为RNA复 制的工具,在病毒的复制中具有重要作用[51]。同 时该酶结构高度特异化,人体无同源酶,是药物开 发的优良靶点。4. 2. 1 RNA依赖的RNA聚合酶抑制剂瑞德西韦(remdesivir ,8,图6-A)是一种腺昔 酸类似物,作为RNA聚合酶的广谱抑制剂,能够抑制人与鼠冠状病毒[52]。更为重要的是,研究证明瑞德西韦在体外针对SARS-CoV-2具有抑制活性, 其抑制 SARS-CoV-2 的 EC50值为 0.77μmol• L-1, 且CC50值大于100 μmol• L-1[53]。基于“老药新用”的原则,2020年10月23日,瑞德西韦获得美 国FDA的正式使用批准,用于治疗12岁以上的新冠肺炎患者[54]。作为一种核昔类似物,瑞德西韦可以与 SARS-CoV、MERS-CoV 和 SARS-CoV-2 RdRp 的 NTP结合位点相互作用。其代谢后以核昔母体9 (GS-441524,图6-A)的形式掺入新生的子代 RNA链中,但允许子链RNA的进一步延长。瑞 德西韦在新生链中移动到-4位时,分子中1,-氰基 与RdRp侧链的Ser861残基发生空间上的碰撞,阻碍了 RdRp在RNA链上的进一步移动,进而导致RNA复制终止(图6-B)。由于终止作用是在瑞德西韦结合RdRp后发生的,该过程称为延迟链终止[54]。延迟链终止机制的RdRp抑制剂针对冠状病 毒具有一定的抗耐药性。包括SARS-CoV-2在内 的冠状病毒会编码具有核酸外切酶活性的nspl4,该酶可以在3,端切除掺入RNA链的异常 碱基,并重启正确的RNA合成[56]。在此机制下, 导致RNA合成即时终止的分子,如去除3,羟基 的核甘类似物,在插入后会被nspl4切除。相对地,在一定延迟后使RNA链合成终止的RdRp抑制剂可有效逃脱nspl4的校对。但研究证实,核酸外切酶仍会识别并切除部分含有瑞德西韦的子 链RNA,并重启RNA复制[57]。同时,病毒体外 传代实验中发现了针对瑞德西韦的耐药现象。与 SARS-CoV-2相似的鼠肝炎病毒(MHV)传代培 养至23代后,其RdRp中出现了不利于瑞德西韦 结合的氨基酸突变[58]。一系列瑞德西韦的临床试验也引起了研究人 员对其临床疗效的争议。2020年5月,原研公司 吉利德发布了适应性试验的“最终报告” (NCT04280705)[59],称瑞德西韦在临床中可缩短住院时间,改善呼吸系统症状。但WHO在2020 年12月2日发表的“团结实验” (NCT04315948) 结果显示,瑞德西韦无法显著改善总体死亡率、通气时间与住院时间,疗效仍待改进[60]。Spin-ner[61]在为期11天的周期内研究了瑞德西韦针 对新冠肺炎轻中症患者的疗效(NCT04292730), 结果表明,在治疗期间,虽然患者的某些临床数 据出现显著改变,但并不表示任何程度的病情改善。近H,Li[62]在一系列细胞实验中比较了瑞德 西韦与核昔母体GS-441524在体外细胞中的抗病毒能力。结果显示,GS-441524在Vero E6细胞 系中对SARS-CoV-2的抑制能力略强于瑞德西韦,但在Calu-3和Caco-2细胞系中活性稍弱。GS-441524亦可显著提高感染鼠肝炎病毒 (MHV)小鼠的生存率,初步展示出广谱抗病毒作用。由于GS-441524合成方便、成本低、可口服, 同样有望成为治疗SARS-CoV-2的候选药物。法匹拉韦(favipiravir, 10,图7)最早在日本上 市,用于治疗流感,其通过与RdRp活性位点结合 发挥抑制活性[63],对所有种类及亚型的流感病毒均有拮抗作用,具有治疗多种RNA病毒感染的 潜力。此外,法匹拉韦在抑制病毒RdRp的同时, 不对哺乳动物机体的RNA及DNA合成路径产生影响[64-65]。虽然法匹拉韦在体外试验中对 SARS-CoV-2的抗病毒活性较低(EC50 = 62μmol• L-1),但在两次临床试验中均显示出良 好的效果3项7]。利巴韦林(ribavirin, 11,图7)是已上市的广谱抗病毒药物,已被批准用于治疗丙型肝炎与呼吸道合胞病毒感染。其作用机制是通过靶向病毒 RdRp而使病毒基因组RNA中出现多位点突变, 最终导致病毒mRNA加帽终止,进而抑制病毒 RNA合成[68]。利巴韦林的疗效已经在SARS- CoV和MERS感染者中得到了证实,但严重的不 良反应限制了其临床应用[69]。且在体内外实验中,利巴韦林对SARS-CoV-2感染的疗效约为瑞德西韦的1 /100[53]。综合考虑,利巴韦林治疗 SARS-CoV-2感染的药效、安全性及潜在的毒性 作用有待在临床试验中进一步研究。Galidesivir( BCX4430,12,图 7 )也是腺昔酸 类似物,最初为病毒RNA聚合酶抑制剂,曾被用 来治疗丙型肝炎,且对多种RNA病毒如SARS- CoV,MERS-CoV, Ebola 病毒和 Marburg 病毒具 有广谱抑制活性。在生物体内,galidesivir首先被 转化成相应的三磷酸核昔,再以此形式插入病毒 新合成的RNA链中,导致RNA转录或复制的提 前终止[70]。因此,其有望成为治疗新冠肺炎的候 选药物[71]。阿兹夫定(azvudine,FNC,13,图7)是首个核 首类双靶点HIV抑制剂,针对多种HIV耐药毒株有良好的抑制活性[72]。新冠肺炎疫情爆发后,在我国进行的一项临床试验(CTR2000029853)显 示,阿兹夫定可以显著缩短新冠肺炎轻中症状患 者的核酸转阴时间,对重症患者也具有潜在的治 疗作用。同时临床上未观察到任何与药物有关的 不良反应,安全性有充分保障。目前针对阿兹夫 定更大样本的临床试验正在进行中[73]。核苷类似物B-D-N4-羟基胞昔(14,NHC/EI- DD-1931,图8)针对多种RNA病毒具有广泛抑 制作用[74]。研究已证明,NHC可有效抑制α属 冠状病毒HCoV-NL63和β属冠状病毒SARS- CoV、MERS-CoV[75-76],且针对 SARS-CoV-2 感染,其在 Vero E6( EC50 =0. 3μmol• L-1)和 Calu-3(EC50=0.08μmol• L-1)细胞中作用显著如。 同时化合物14的酯类前药莫那匹韦(molnupira- vir,15,图8)针对SARS-CoV-2的EC50值也达到 0. 22 μmol• L-1[77]。与其他的核昔类似物相同, NHC或莫那匹韦在细胞内代谢为三磷酸核昔,并作为假底物与RdRp结合。由于NHC的碱基存 在互变异构形式,两种异构体分别可与腺喋吟 (A)及鸟喋吟(G)配对结合(图8),插入病毒 RNA后可导致由G到A和由C到U的碱基突变。突变积累至一定程度即产生功能错误或丧失 的子代RNA,且无法被核酸外切酶校正,最终导 致病毒增殖活动终止[74,78]。虽然细胞水平研究显示NHC有对哺乳动物 造成突变的风险[79],但NHC的前药莫那匹韦已 在治疗SARS-CoV-2的I期临床试验中充分证明 其安全性,m期临床评估正在展开「"°此外, NHC 口服吸收好,给药方便,有望使发病早期居 家隔离的患者显著降低恶化率与住院率。4. 2. 2 DHODH 抑制剂二氢乳清酸脱氢酶(DHODH)是哺乳动物体内嚅嚏生物碱合成的关键酶病毒的增殖必须依赖宿主的核昔酸等物质,因此该酶的抑制剂具有开发为广谱抗RNA病毒药物的潜力。来氟米特(leflunomide, 16,图9)与其体内代谢物特立氟胺(teriflunomide, 17,图9)是目前仅有的FDA批 准上市的DHODH抑制剂,用于治疗自身免疫性疾病[77]。李洪林团队的研究结果表明[83],在Veto E6细胞系中,来氟米特与特立氟胺针对SARS- CoV-2 的 EC50 值 分别为 26. 06μmol• L-1和 63. 56μmol• L-1该团队基于靶标结构,进一步设计了一系列DHODH抑制剂,其中S312(18,图9)与S416(19,图9)在相同条件下对 SARS-CoV-2 的 EC50 值分别为(1. 56 ± 0. 32 )μmol• L-1 和(0.017 ±0.002)μmol• L-1。特别是 S416的选择指数达到10 000以上,且无激酶抑制 活性,在治疗浓度下对宿主细胞毒性极小,基本克 服了脱靶效应,作为广谱抗冠状病毒抑制剂具有 极大的开发潜力。此外,DHODH抑制剂有望在 新冠肺炎的治疗中发挥免疫抑制作用,降低“细 胞因子风暴”产生的炎症损伤。参考文献见 中国药物化学杂志 第31卷 第9期,2021年9月总173期
  • 固定化酶技术在中药酶抑制剂筛选中的研究现状
    中药资源丰富,历史悠久,在预防与治疗疾病中扮演着重要的角色。然而,中药的化学成分多种多样,作用机制更是复杂多样,如何从中药中筛选疾病相关药效物质是当前亟待解决的关键问题。大量研究表明,人体许多疾病过程都与体内生物酶调节作用相关,如痛风[1]、阿尔茨海默症[2]、糖尿病[3-5]等。而且,中药在治疗各种疾病中也扮演着重要角色,如白芷提取物能促进新生血管形成与成熟,从而提高自发2型糖尿病小鼠创面愈合速率和质量[6];绞股蓝叶水提物能够降低链脲佐菌素诱导的糖尿病大鼠的血糖,其作用机制可能与增加骨骼肌肌膜葡萄糖转运体4蛋白表达和抑制骨骼肌炎症有关[7]。因此,基于酶在疾病发生发展的重要性,以酶为靶点从中药中筛选新药是一有力途径,而且开发一种快速、高效的酶抑制剂筛选方法是当前首要任务。固定化酶技术是20世纪60年代发展起来的,该技术利用物理或化学方法将游离酶固定在相应的载体上用于筛选酶抑制剂。固定化酶技术可以有效提高酶的催化性能和操作稳定性,并降低成本,是目前广泛使用的技术[8]。此外,相比于游离酶,固定酶更有利于酶-配合物的分离纯化,在pH耐受性,底物选择性,热稳定性和可回收性等方面表现出优越的性能[9-10]。不同的酶发挥催化作用的活性部位不同,将酶进行固定时,要使载体材料与酶的非活性部位结合,才可以保留酶的活性,因此载体材料的选择是固定化酶技术发挥作用的关键。本文以固定载体材料(表1)为分类综述了近10年固定化酶技术在中药酶抑制剂[α-葡萄糖苷酶(α-glucosidase,α-Glu)、脂肪酶等] 筛选中的研究现状,希望可以为后续的相关研究提供一定的参考依据。1 磁性载体磁性载体材料是利用铁、锰、钴及其氧化物等化合物制备的一类具有磁性的材料[11],通过改变磁力大小和外部磁场的方向来改变粒子的运动轨迹,从而使酶与载体的结合与分离可以在可控条件下完成,便于固定化酶的分离和收集,并用于酶抑制剂的筛选[12]。以磁性载体为材料的固定化酶技术的最大优点在于利用磁力吸引可使固定化酶快速从反应体系中分离,且固定化方法简单,能有效减少筛选时间及实验试剂的消耗。因此,通过不同方法对磁性载体材料进行功能化修饰,在充分发挥磁性材料优势的基础上改善其表面性质,提高对不同类型目标物的特异性,从而在各类复杂样品的前处理过程中有着良好的应用潜力[13]。目前,磁珠是近年来发展起来的一种常用的磁性载体材料,也叫做磁性纳米粒子,包括氧化铁(Fe3O4和γFe2O3)、合金(CoPt3和FePt)等。其中,Fe3O4纳米粒子具有生物相容性和无毒性等优点,被广泛应用于酶的固定化。中药酶抑制剂筛选中的常用磁珠其磁核以Fe3O4纳米粒子为主,壳层为二氧化硅、琼脂糖、葡聚糖等,是具有超顺磁性的小球形磁性粒子[14-15],可借助外部磁场从生物催化体系中分离酶抑制剂。该方法机械稳定性高、孔隙率低,利于降低反应中的传质阻力,提高了固定化酶的重复使用性。由于其具有操作稳定性高、磁响应强、磁分离速度快等优点,在生物和药物研究中得到了广泛的应用[16]。在进行酶抑制剂筛选时,磁珠的修饰位置不同,所固定的位点也不同。因此,在实验中,往往要根据靶蛋白的分子结构选择合适的磁珠或将某一磁珠进行修饰后作为固定载体。将酶固定在合适的磁珠上会增强酶与待筛选酶抑制剂的亲和力,利用磁力将固定化酶及其抑制剂从提取液中分离,然后洗去与酶不相互作用的化合物,随后可得到酶固定化磁珠配体配合物,最后通过洗脱溶剂使配体释放进而通过质谱表征[17]。在这种方法中,潜在的配体与酶相互作用,生成酶配体配合物,这有利于利用磁性[18-23]从复杂混合物中分离活性化合物。在酶抑制剂的筛选中,磁性载体材料是最常用的固定化载体材料[24-30]。1.1 无机载体材料二氧化硅是磁性纳米粒子表面修饰最常用的无机材料[23,31-34],此外还有二氧化钛[35]、介孔二氧化硅[16]等。Li等[23]首先将Fe3O4分散在水中加入聚乙烯吡咯烷酮(polyvinylpyrrolidone,PVP)室温搅拌得到产物。然后在超声作用下将产物分散在含有异丙醇和氨水的混合溶剂中,室温搅拌下缓慢加入正硅酸乙酯(tetraethylorthosilicate,TEOS)溶液得到SiO2@Fe3O4磁性微球,并加入3-氨丙基三甲氧基硅烷(3-aminopropyltrimethoxysilane,ATPES)对其表面进行改性。最后将α-淀粉酶固定在表面改性的SiO2@Fe3O4磁性微球上。将制得的酶固定化磁性微球用于黄花草中α-淀粉酶抑制剂的筛选,最终得到3种黄酮类化合物对α-淀粉酶具有较好抑制作用。Liu等[35]采用溶剂热法(也称水热法或水热合成法)制备了Fe3O4@TiO2纳米粒子,并通过静电相互作用固定脂肪酶。采用透射电镜、傅里叶变换红外光谱和X射线衍射等方法对磁性纳米粒子进行表征,以确定脂肪酶是否已经被固定。研究中应用脂肪酶固定化Fe3O4@TiO2纳米粒子从6种具有脂肪酶抑制活性的藏药中筛选出脂肪酶抑制剂,获得5种具有与临床常用减肥药物奥利司他活性类似的化合物,其中1种化合物(山柰酚)的抑制活性优于奥利司他。Yi等[16]将谷胱甘肽S-转移酶固定在介孔二氧化硅磁性微球表面筛选紫苏中的酶抑制剂,利用高效液相色谱和四极飞行时间质谱法进行鉴定,筛选出6种具有谷胱甘肽S-转移酶抑制作用的物质,其中,迷迭香酸、(−)表没食子儿茶素-3-没食子酸酯和 (−)-表儿茶素-3-没食子酸酯具有较好的抑制活性。最后利用分子对接技术确定潜在抑制剂与谷胱甘肽S-转移酶的结合方式。首先,用FeCl3与柠檬酸三钠和乙酸钠合成Fe3O4,然后将其分散在含有乙醇、去离子水和氨水的混合溶液中,搅拌均匀后加入TEOS制得SiO2@Fe3O4磁性微球。为进一步合成介孔二氧化硅磁性微球(mSiO2@SiO2@Fe3O4),将SiO2@Fe3O4磁性微球分散在十六烷基三甲基氯化铵、去离子水和三乙醇胺中并滴加TEOS,产物用磁铁分离并清洗除杂后得mSiO2@SiO2@Fe3O4磁性微球。最后用PDA对mSiO2@SiO2@Fe3O4磁性微球进行表面改性并将谷胱甘肽S-转移酶固定在其表面。1.2 有机载体材料在酶抑制剂的筛选中,有机载体材料相比于无机载体材料应用较少。目前,用于磁性纳米粒子表面修饰的有机载体材料有聚酰胺(polyamidoamine,PAMAM)[36]、共轭-有机骨架[37]和金属-有机骨架[38]等。Jiang等[36]以PAMAM包覆磁性微球为基础,建立了一种筛选和鉴定赤芍提取物中α-Glu抑制剂的方法。首先,采用微修饰法合成了Fe3O4-COOH微球。然后,通过Fe3O4-COOH微球表面羧基与PAMAM氨基的偶联反应,制备了Fe3O4@PAMAM微球。最后,通过GA的交联,成功地将α-Glu连接到其表面。结果表明,没食子酸和(+)-儿茶素对α-Glu均具有较好抑制作用。Zhao等[37]将乙酰胆碱酯酶(acetylcholinesterase,AchE)固定在适配体功能化磁性纳米颗粒共轭有机骨架上构建固定化酶反应器,并将该方法用于酒石酸、(−)-石杉碱A、多奈哌齐和小檗碱4种AchE抑制剂抑制活性的测定,发现酒石酸的IC50与已报道的结果相当,证明了该固定化酶反应器的可行性。Wu等[38]将α-Glu固定在磁性纳米材料Fe3O4@ZIF-67上,构建了快速筛选α-Glu抑制剂的生物微反应器。然后,将酶生物微反应器通过外加磁场固定在连接高效液相色谱仪(high performance liquid chromatography,HPLC)和微注射泵2端的管中,形成一个磁性在线筛选系统。以信阳毛尖粗茶提取物为实验对象,对该在线筛选方法进行验证,利用该在线筛选系统筛选出3种抑制剂(儿茶素、表没食子儿茶素没食子酸酯和表没食子酸酯)。与传统方法相比,该方法可将筛选、洗脱和分析结合起来,可以简单、高效、直接地从天然来源筛选和鉴定潜在的α-Glu抑制剂。磁珠分散性好,磁分离速度快,酶结合量大,酶活性高,是固定化酶的理想载体,现已广泛应用于酶抑制剂的筛选中。将酶固定在特定的磁珠上,可实现酶抑制剂的分离。此方法操作较稳定,非特异性结合率低。因此,酶固定化磁珠技术因其快速的生物分析、导向性分离和从复杂混合物中直接捕获配体而受到越来越多的关注。2 非磁性载体2.1 无机载体材料2.1.1 石英毛细管 毛细管电泳(capillary electrophoresis,CE)具有分离效率高、分析速度快、操作简单和样品消耗少以及可与多种检测手段联用等优点,在酶分析研究中越来越受到关注[39-41]。近年来,固定化酶微反应器与生物活性靶向技术相结合已应用于中药酶抑制剂的筛选[42]。该方法将酶固定在经过修饰的石英毛细管内,捕获抑制剂后,洗涤未结合组分,进而通过蛋白质变性洗脱活性结合配体,允许直接并可重复注射生物样品到高效液相色谱上进行检测,筛选和分离一步完成,大大缩短了操作时间。但该方法制备过程中是比较复杂繁琐的[43-44],而且载体的孔隙率[45]、孔径[46]和表面化学[47-48]等因素也很容易影响固定化酶的性能。Wu等[49-50]用PDA对石英毛细管进行表面改性,并与氧化石墨烯共聚形成聚多巴胺/氧化石墨烯涂层,增加了固定化酶的结合率,并将该方法成功用于凝血酶和凝血因子Xa以及黄嘌呤氧化酶抑制剂的筛选。有研究者用3-氨基丙基三乙氧基硅烷对石英毛细管进行表面改性,采用戊二醛交联法进行酶的固定,并成功用于酶制剂的筛选。Rodrigues等[51]将此修饰方法用于黄嘌呤氧化酶(xanthine oxidase,XOD)抑制剂的筛选,成功地从不同天然产物中筛选出30个潜在的XOD抑制剂。Zhang等[52]将此修饰方法用于组织蛋白酶B抑制剂筛选,并从中药中发现了17个具有抑菌潜力的活性成分,发现山柰酚等5种天然产物有潜在的抑制作用,并以分子对接进行验证。Tang等[53]将此修饰方法用于脂肪酶抑制剂的在线筛选,结果发现6种天然产物对脂肪酶活性均有抑制作用。Zhao等[54]将此修饰方法用于神经氨酸酶抑制剂的筛选,发现了6种天然产物为潜在抑制剂。进一步测定了这6种化合物对神经氨酸酶潜在的抑制活性,由大到小分别为:甲基补骨脂黄酮A>补骨脂甲素>黄芩素>黄芩苷>白杨素和牡荆素。此外,还有研究者采用单片毛细管固定化酶反应器与液相色谱-串联质谱联用技术,成功用于酶抑制剂的筛选[55-56]。毛细管的高表面体积比有利于足够高浓度的酶用于酶促反应[57-58]。此外,由于注入的底物溶液直接与固定化酶分子接触,使传统的采样、反应、分离和检测多步操作简化为一步操作,因此该分析变得更简单,不需要额外的混合程序。与磁性载体相比,该技术将筛选和分离集成为一步,大大缩短了操作时间。该技术适用于复杂混合物中酶抑制剂的快速筛选,而且样品消耗量少,节省了试剂成本,可以实现酶抑制剂的快速分离。2.1.2 硅酸铝纳米管 硅酸铝纳米管(halloysite nanotubes,HNTs)是一种天然存在的硅酸盐纳米管,由于其优异的物理特性,引起了人们越来越多的兴趣。HNTs的内径为20~30 nm,外径为30~50 nm,长度为1~2 µm,为药物、酶和杀菌剂的储存提供了理想的纳米级包埋系统。更重要的是,HNTs的外表面主要由O-Si-O基团组成,内表面由Al2O3组成,为酶提供了更多的选择性结合位点,从而减少了配体在HNTs上的非特异性吸附[59]。因此,有研究者将HNTs作为一种新的酶固定载体材料用于酶抑制剂的筛选。Wang等[59]通过静电吸附作用将脂肪酶固定到羟基纳米管上用于厚朴中脂肪酶抑制剂的筛选,发现厚朴三酚和厚朴醛B 2种化合物对脂肪酶抑制活性较好。HNTs的内外表面为酶提供了更多的选择性结合位点,降低了非特异性吸附,但其合成较为复杂,收率较低,因此应用有限。2.1.3 多孔二氧化硅 多孔二氧化硅材料具有表面张力低、粘温系数小、压缩性高、气体渗透性高等基本性质,同时还具有耐高温和低温、电气绝缘、耐氧化稳定性、耐候性、难燃、耐腐蚀、无毒无味以及生理惰性等特性[60]。Hou等[61]首先将α-Glu结合到脂质体囊泡中,然后采用反蒸发法将其负载到多孔二氧化硅表面,制备成受体脂质体生物膜色谱柱,用于五味子提取物的α-Glu抑制剂筛选,并通过体外实验进一步证实了五味子苷的降糖作用。2.2 有机载体材料2.2.1 中空纤维 中空纤维是一种具有孔径和内腔的有机聚合物,具有比表面积大、生物材料和有机溶剂消耗低,且设备便宜、用于中空纤维制备的材料来源丰富,是酶、细胞、脂质体等生物材料的理想载体,已被应用于酶固定化中。首先,对中空纤维进行活化。然后,将酶与已活化的中空纤维孵育使酶被吸附在中空纤维上。最后,将待测物与中空纤维固定化酶孵育,筛选待测物中潜在酶抑制剂。Zhao等[62]提出了一种基于吸附中空纤维固定化酪氨酸酶(tyrosinase,TYR)的方法,从葛根提取物中筛选潜在的TYR抑制剂。通过液相色谱-质谱分析,成功地检测出了7种潜在活性化合物,并进一步结合体外实验,发现葛根素、葛根素-6-O-木糖苷、葛根素和阿片苷具有良好的TYR抑制活性。中空纤维因其具有孔径、内腔及比表面积大等优点,为酶提供了充分的附着空间,但由于其清洗较为困难,导致重复利用率低。2.2.2 生物传感器 生物传感器是一种对生物物质敏感并可将其浓度转换为电信号进行检测的仪器。丝网印刷电极因其具有批量生产、低成本、高重现性、小尺寸等特点而被广泛应用于分析领域。所谓酶生物传感器法,是将酶固定在经过修饰的丝网印刷电极上,当与抑制剂接触时会发生电信号变化,通过检测电信号的变化,达到分析检测的目的。Elharrad等[63]为筛选药用植物中潜在的XOD抑制剂,研制了一种简便、灵敏的安培生物传感器,并用于测定多种药用植物对黄嘌呤氧化酶的抑制率,发现留兰香和马齿苋2种植物对黄嘌呤氧化酶抑制活性较高。以普鲁士蓝修饰丝网印刷电极表面,极大降低了生物传感器的检测电位,使该装置具有较高的选择性。该传感器具有结构简单、选择性好、成本低、稳定性好、结果快速等优点。2.2.3 纸 自2007年Whiteside研究小组首次提出微流体装置概念以来,纸作为一种新的载体材料,以其良好的生物相容性、大的比表面积、易于修饰、价格低廉等优点,在环境监测、化学检测、生物医学诊断等领域具有广阔的应用前景[64]。(1)滤纸:三维打印技术是利用一种纸分析仪器将纸张制作成为一种特殊的微流体装置,该装置成本低,具有较高的比表面积,易于结合分子吸附蛋白质。使用过的纸张设备可以很容易地通过燃烧来处理,可减少实验消耗品造成的污染。Guo等[65]将三维打印技术用于酶抑制剂的筛选,首先,用3D印刷的聚己内酯对滤纸进行改性,形成疏水区。然后,对滤纸进行准确切割,得到既具有亲水性又具有疏水性的改性纸。接下来,用壳聚糖对亲水区进行改性。最后,将α-Glu固定在亲水区,制备出具有独特微流体结构的三维打印技术微装置,并成功地将该方法用于筛选植物提取物中具有α-Glu抑制活性的物质,发现绿原酸、槲皮素-3-O-葡萄糖醛酸、异槲皮素和槲皮素4种化合物对α-Glu的抑制活性较好。该方法结合一些便携式探测器,如手机和照相机,可以获得定性和定量的结果。因此,很容易判断酶在纸上的固定化效果。(2)纤维素滤纸:纤维素滤纸(cellulose filter paper,CFP)具有成本低、来源广、表面积大、生物相容性好、表面羟基含量高等优点,被选为新型酶固定化载体,而且CFP可以快速从酶反应混合物中分离并终止反应,从而缩短了操作时间,简化了其他载体(如纳米材料和磁性纳米颗粒)所需的分离过程。Li等[66]以纤维素滤纸为载体,对α-Glu进行固定化。利用多巴胺的自聚-粘附行为,通过希夫碱反应和迈克尔加成反应,将聚多巴胺复合层包覆α-Glu与改性后的CFP共价结合形成固定化酶(CFP/DOPA/α-Glu)。用CFP/DOPA/α-Glu筛选11种中药中的α-Glu抑制剂,发现诃子对α-Glu的抑制作用最强。Zhao等[67]以CFP为载体,以壳聚糖为物理包覆剂引入氨基基团,然后以戊二醛为交联剂,通过希夫碱反应,将AchE与氨基功能化的CFP共价键合进行固定化酶。最后,将CFP固定化AchE应用于17种中药的抑制剂筛选。2.2.4 金属-有机骨架 金属-有机骨架(metal- organic framework,MOFs)为一种杂化多孔材料,由有机连接体和金属节点通过强的化学键组装而成。MOFs具有可调节孔径、大比表面积和热稳定性等优点。有研究表明,酶被固定在MOFs上后,其在可重用性、催化活性和稳定性方面的性能都有了很大的提高。Chen等[68]首先将ZrCl4和氨基对苯二甲酸溶于N,N-二甲基甲酰胺溶液中进行超声,然后分别加入HCl和HAc,得到混合物。随后,将混合物转移到不锈钢聚四氟乙烯内衬的高压釜中密封加热,反应混合物在空气中冷却至室温,然后离心。沉淀物用新鲜N,N-二甲基甲酰胺和无水乙醇洗净,后减压干燥,合成了金属有机骨架UiO-66-NH2。UiO-66-NH2通过沉淀交联固定化猪胰脂肪酶(porcine pancreatic lipase,PPL),得到的PPL@MOF具有较高的PPL载量和相对活力恢复率,并将PPL@MOF复合物用于筛选夏枯草脂肪酶抑制剂,发现了13种潜在的脂肪酶抑制剂。与磁珠、纳米粒子相比,MOFs材料酶固定量大、相对活力恢复率高。2.2.5 酶微柱 有研究者采用酶微柱法用于酶抑制剂的筛选,该方法属于固相萃取技术,操作简单,可与高效液相色谱耦合,实现了在线筛选,提高了酶抑制剂的筛选和分析效率。首先将硅胶分散在乙醇中,加入3-氨基丙基三乙氧基硅烷形成氨基功能化硅胶,然后将氨基功能化的硅胶与酶液混合,使酶固定在硅胶表面,洗去未结合酶,最后将酶固定化硅胶填入不锈钢微柱中形成酶微柱。Peng等[69]运用该方法成功的从金银花中筛选和鉴定XOD抑制剂。该方法与高效液相色谱的在线耦合提高了筛选和分析效率。与传统的与二维色谱耦合相比,该方法为直接与HPLC耦合,缩短了分析检测时间。3 总结与展望中药含有的化学成分复杂、种类繁多、作用机制比较复杂,一直是获取活性成分或者先导化合物的重要来源。以酶为靶标进行药物筛选是发现和寻找新药的重要环节之一。随着固定化酶技术的发展,研究者将固定化酶技术与中药酶抑制剂的筛选相结合,并通过高效液相色谱-质谱联用技术进行鉴定,筛选得到很多具有酶抑制活性的化合物,在一定程度上明确了中药发挥作用的活性成分及其作用机制。本文以不同载体材料为分类,综述了固定化酶技术在中药酶抑制剂筛选中的应用。磁珠是最常用的磁性载体材料,该类材料利用磁力吸引可使固定化酶配体配合物快速从体系中分离,且固定化方法简单,而且使用后的磁珠可以回收利用,能有效减少人力物力的投入。非磁性载体材料主要以石英毛细管应用最为广泛。此外,还有中空纤维、纳米管、生物传感器等材料用于筛选中药中的酶抑制剂,丰富了固定酶的载体材料。固定化酶技术在酶抑制剂筛选上的应用前景十分广泛,不仅节省了人力物力而且提高了新药研发的效率。目前,固定化酶技术仍然存在一些问题,如酶与载体材料的结合率较低、固定化酶的活力也会有所下降等。但相信随着科学技术的不断发展及酶抑制剂研究的不断深入,固定化酶技术会成为酶抑制剂筛选最有前景的方法之一。利益冲突 所有作者均声明不存在利益冲突
  • 糖苷酶抑制剂标准品哪里找?上海甄准生物
    糖苷酶抑制剂标准品哪里找?------上海甄准生物糖苷酶抑制剂是一类含氮的拟糖类结构能抑制糖苷键形成的化合物。从结构上可分为两组:第一组氮原子在环上有野尻霉素(nojirimycin)、半乳糖苷酶抑素(galactostatin)、寡糖酶抑素(oligostatin)等。第二组氮原子在环外,如阿卡糖(acarbose),validoxylamine A、B,有效霉素A、B(海藻糖苷酶抑制剂)等,从抑制酶范围上看,它包括了部分&alpha -葡萄糖苷酶抑制剂、半乳糖酶抑制剂、唾液酸抑制剂、淀粉酶抑制剂。上海甄准生物提供糖苷酶抑制剂标准品,为您检测分析提供强有力支持!产品信息:货号品名CAS No. B691000N-Butyldeoxynojirimycin Hydrochloride210110-90-0C10H22ClNO410/100mga-葡糖苷酶1和 HIV cytopathicity抑制剂E915000N-Ethyldeoxynojirimycin Hydrochloride210241-65-9C8H18ClNO410/100mgHIV cytopathicity抑制剂C181150N-5-Carboxypentyl-deoxymannojirimycin104154-10-1C12H23NO65/50mg制备亲和树脂的配体,用于纯化Man9 甘露糖苷酶A1875452,3-O-Acetyloxy-2&rsquo ,3&rsquo ,4&rsquo ,6,6&rsquo -penta-O-benzyl-4-O-D-glucopyranosyl N-Benzyloxycarbonylmoranoline (&alpha /&beta mixture) C56H63NO1310/100mg4-O-&alpha -D-Glucopyranosylmoranoline 制备中间体B690500N-(n-Butyl)deoxygalactonojirimycin141206-42-0C10H21NO45/50mga-D-半乳糖苷酶抑制剂B690750N-Butyldeoxymannojirimycin, Hydrochloride355012-88-3C10H22ClNO45/50mga-D-甘露糖苷酶抑制剂D236000Deoxyfuconojirimycin, Hydrochloride210174-73-5C6H14ClNO310/100mgalpha-L-岩藻糖苷酶抑制剂M166000D-Manno-&gamma -lactam62362-63-4C6H11NO55/50mgalpha-甘露糖苷酶 ß - 葡糖苷酶抑制剂和M165150D-Mannojirimycin Bisulfite C6H13NO7S1/10mgalpha-甘露糖苷酶抑制剂D4550006,7-Dihydroxyswainsonine144367-16-8C8H15NO51/10mga-甘露糖苷酶抑制剂C665000Conduritol B25348-64-5C6H10O425/250mgb-葡糖苷酶抑制剂C666000Conduritol B Epoxide6090-95-5C6H10O525/250mgb-葡糖苷酶抑制剂A1552502-Acetamido-2-deoxy-D-gluconhydroximo-1,5-lactone 1,3,4,6-tetraacetate132152-77-3C16H22N2O1025/250mgglucosamidase抑制剂D240000Deoxymannojirimycin Hydrochloride73465-43-7C6H14ClNO410/100mgmammalian Golgi alpha- mannosidase 1 抑制剂M297000N-Methyldeoxynojirimycin69567-10-8C7H15NO410/100mgN-连接糖蛋白高斯过程干扰剂A1584002-Acetamido-1,2-dideoxynojirimycin105265-96-1C8H16N2O41/10mgN-乙酰葡糖胺糖苷酶抑制剂A157250O-(2-Acetamido-2-deoxy-D-glucopyranosylidene)amino N-Phenylcarbamate132489-69-1C15H19N3O75/10/100mgO-糖苷酶,己糖胺酶A和己糖胺酶B抑制剂A157252(Z)-O-(2-Acetamido-2-deoxy-D-glucopyranosylidene)amino N-Phenyl-d5-carbamate1331383-16-4C15H14D5N3O71/10mgO-糖苷酶,己糖胺酶A和己糖胺酶B抑制剂M3345154-Methylumbelliferyl &alpha -D-Glucopyranoside 4&rsquo -O-C6-N-Hydroxysuccinimide Ester C26H31NO1225mgT2DM糖苷酶抑制剂G4500004-O-&alpha -D-Glucopyranosylmoranoline80312-32-9C12H23NO91/10mg&alpha -葡萄糖苷酶抑制剂D2317501-Deoxy-L-altronojirimycin Hydrochloride355138-93-1C6H14ClNO45/50mg&alpha -糖苷酶抑制剂H942000N-(2-Hydroxyethyl)-1-deoxy-L-altronojirimycin Hydrochloride Salt C8H18ClNO50.5/5mg&alpha -糖苷酶抑制剂H942015N-(2-Hydroxyethyl)-1-deoxygalactonojirimycin Hydrochloride C8H18ClNO51/10mg&alpha -糖苷酶抑制剂H942030N-(2-Hydroxyethyl)-1-deoxy-L-idonojirimycin Hydrochloride C8H18ClNO55/50mg&alpha -糖苷酶抑制剂T7952003&rsquo ,4&rsquo ,7-Trihydroxyisoflavone485-63-2C15H10O5200mg/2g&beta -半乳糖苷酶抑制剂A158380O-(2-Acetamido-2-deoxy-3,4,6-tri-o-acetyl-D-glucopyranosylidene)amino N-(4-nitrophenyl)carbamate351421-19-7C21H24N4O1210/100mg氨基葡萄糖苷酶抑制剂M166505Mannostatin A, 3,4-Carbamate 1,2-Cyclohexyl Ketal C13H19NO4S2.5/25mg保护的Mannostatin AB682500Bromoconduritol (Mixture of Isomers)42014-74-4C6H9O3Br200mg哺乳类 alpha-葡萄糖苷酶 2 抑制剂K450000Kifunensine109944-15-2C8H12N2O61/10mg芳基甘露糖苷酶抑制剂D2397501-Deoxy-L-idonojirimycin Hydrochloride210223-32-8C6H14ClNO410/100mg酵母葡糖a-苷酶类抑制剂S885000Swainsonine72741-87-8C8H15NO31/10mg可逆,活性部位直接抑制甘露糖苷酶抑制剂;Golgi a-甘露糖苷酶 II抑制剂T295810[1S-(1&alpha ,2&alpha ,8&beta ,8a&beta )]-2,3,8,8a-Tetrahydro-1,2,8-trihydroxy-5(1H)-indolizinone149952-74-9C8H11NO410/100mg苦马豆素和衍生物合成中间体N635000Nojirimycin-1-Sulfonic Acid114417-84-4C6H13NO7S10/100mg葡糖苷酶类抑制剂V094000(+)-Valienamine Hydrochloride38231-86-6C7H14ClNO41/10mg葡糖苷酶抑制剂D4400002,5-Dideoxy-2,5-imino-D-mannitol59920-31-9C6H13NO41/10mg葡糖苷酶抑制剂D494550N-Dodecyldeoxynojirimycin79206-22-7C18H37NO410/100mg葡糖苷酶整理剂D4799552,4-Dinitrophenyl 2-Deoxy-2-fluoro-&beta -D-glucopyranoside111495-86-4C12H13FN2O95/50mg葡糖基氟化物,可以作为特定的机制为基础的糖苷酶抑制剂,未来可应用于合成和降解的低聚糖和多糖A6532702,5-Anhydro D-Mannose Oxime, Technical grade127676-61-3C6H11NO510/100mg潜在的葡苷糖酶抑制剂C-(D-吡葡亚硝脲)乙胺和C-(D-glycofuranosyl)甲胺D2365001-Deoxygalactonojirimycin Hydrochloride75172-81-5C6H14ClNO410/100mg强效的和有选择性的d半乳糖苷酶抑制剂D236502Deoxygalactonojirimycin-15N Hydrochloride C6H14Cl15NO45/25mg强效的和有选择性的d半乳糖苷酶抑制剂B445000(2S,5S)-Bishydroxymethyl-(3R,4R)-bishydroxypyrrolidine105015-44-9C6H13NO410/100mg强有力的和特定的糖苷酶抑制剂M166500Mannostatin A, Hydrochloride134235-13-5C6H14ClNO3S1/10mg强有力的糖苷酶抑制剂,甘露糖苷酶抑制剂A858000N-(4-Azidosalicyl)-6-amido-6-deoxy-glucopyranose86979-66-0C13H16N4O71/10mg人类红细胞单糖运输标签抑制剂C185000Castanospermine79831-76-8C8H15NO410/100mg溶酶体 a-或者beta-葡糖苷酶. 葡糖苷酶1抑制剂和 beta-甘露糖苷酶抑制剂D4399801,4-Dideoxy-1,4-imino-D-mannitol, Hydrochloride114976-76-0C6H14ClNO45/50mg糖蛋白甘露糖苷酶抑制剂A608080N-(12-Aminododecyl)deoxynojirimycin885484-41-3C12H26N2O45/50mg糖苷酶亚氨基糖醇制备用试剂I8663501,2-O-Isopropylidene-alpha-D-xylo-pentodialdo-1,4-furanose53167-11-6C8H12O5100mg/1g糖苷酶抑制剂制备试剂A6483002,5-Anhydro-2,5-imino-D-glucitol132295-44-4C6H13NO410/100mg糖水解酶类抑制剂A6483502,5-Anhydro-2,5-imino-D-mannitol59920-31-9C6H13NO41/10mg糖水解酶类抑制剂M2570003-Mercaptopicolinic Acid Hydrochloride320386-54-7C6H6ClNO2S500mg/5g糖质新生抑制剂B286255N-Benzyloxycarbonyl-4,6-O-phenylmethylene Deoxynojirimycin138381-83-6C21H23NO65/50mg脱氧野尻霉素衍生物B286260N-Benzyloxycarbonyl-4,6-O-phenylmethylene Deoxynojirimycin Diacetate153373-52-5C25H27NO82.5/25mg脱氧野尻霉素衍生物D245000Deoxynojirimycin19130-96-2C6H13NO410/100mg脱氧野尻霉素抑制哺乳类葡糖苷酶1A172200N-Acetyl-2,3-dehydro-2-deoxyneuraminic Acid Sodium Salt209977-53-7C11H16NNaO810/100mg细菌、动物和病毒抑制剂C181200N-5-Carboxypentyl-1-deoxynojirimycin79206-51-2C12H23NO65/50mg制备亲和树脂的配体,用于纯化葡糖苷酶IC181205N-5-Carboxypentyl-1-deoxygalactonojirimycin1240479-07-5C12H23NO65/50mg制备亲和树脂的配体,用于纯化葡糖苷酶IC645000Conduritol A 牛奶菜醇A526-87-4C6H10O41/10mg C667000Conduritol D牛奶菜醇D4782-75-6C6H10O410mg I8688751,2-Isopropylidene Swainsonine85624-09-5C11H19NO31/10mg 更多产品,更多优惠!请联系我们!上海甄准生物科技有限公司免费热线:400-002-3832
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制