流体速度矢量场

仪器信息网流体速度矢量场专题为您整合流体速度矢量场相关的最新文章,在流体速度矢量场专题,您不仅可以免费浏览流体速度矢量场的资讯, 同时您还可以浏览流体速度矢量场的相关资料、解决方案,参与社区流体速度矢量场话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

流体速度矢量场相关的耗材

  • 真空磁流体
    产品型号真空磁流体主要用途适用于各种高真空仪器和设备,外部部件旋转带动真空内部部件旋转的真空端引入,适用于磁流体轴线速度小于80m/s以内。技术指标1适用真空度:≤10-6PaL/S;2.工作温度:-20~80℃;磁流体订制客户提要求,我们会根据你的需求选择功能满足、尺寸接近现有系列的磁流体:如都不能够满足我们可以订制,订制交货周期略长;型号规格 空心轴法兰式密封传动装置 空心轴法兰式带水冷密封传动装置 空心轴套筒式密封传动装置 空心轴悬臂式带水冷密封传动装置 实心轴法兰式带水冷密封传动装置 实心轴法兰式带水冷重负载传动装置实心轴法兰式密封传动装置 实心轴悬臂式C密封传动装置同心多轴密封传动装置
  • 岛津 Shim-pack UC系列 Shim-pack UC-GIS II 超临界流体色谱柱
    Shim- pack UC系列超临界流体色谱柱当使用 Nexera uc超临界流体色谱系统进行分析时,由于样品在流动相中的扩散速度与液相色谱相比较高,所以根所用色谱柱的类型的不同,分离行为会发生明显变化。shim- ack UC-X系列涉及各种固定相,适用于各种化合物的分析。更快速、更高效Shim- pack UC-X系列产品有多种固定相,适用于高扩散和低粘度液体二氧化碳作为流动相的SFC系统。可通过加快流速而减少分析时间,SFC系统可以提升至传统HPLC不能达到的分析速度,并且不降低分离性能多种固定相以满足不同需求Shim- pack uc-X系列有八种类型的固定相和尺寸,以满足不同的研究和开发需求。高耐久性和稳定的重现性Shim- pack UC-X系列具有高惰性,提高分析精度并提高色谱柱耐久性。其均匀的二氧化硅表面和稳定的化学修饰也确保了分析的高重现性。分析应用例生育酚异构体难以分离的异构体和结构相似的化合物可以通过Nexera UC和Shim-pack UC-X系列配合实现快速分析。在下面的例子中,通过Nexera UC和Shim-pack UC-X Sil分析了四种生育酚异构体。如下图所示,分析时间缩短到常规HOLCIM方法所用时间的三分之一,同时分离度提高。
  • Masterflex微流体快速连接-断开倒刺公接头
    Masterflex微流体快速连接-断开倒刺公接头Masterflex® 快速断开接头是一种创新的无菌连接,允许较大体积的流体在较小的阀体中以较低的管路压力通过。随着整体快速断开设计的成熟,对客户需求的更好理解已经实现,因此这些配置可以更好地满足医疗和制药洁净室、食品和饮料加工地板以及其他严格监管的应用的需求。这些连接采用符合ISO 10993标准的可追溯材料,优先考虑安全性和无菌性,并通过在阳阀组件中安装通风弹簧室,降低交叉污染的风险。通过简单地将标准通路弹簧从障碍物中移除,消除标准通路弹簧产生的湍流和逆流,从而进一步降低污染风险。通过连接每侧的凹陷配合特征保护接触表面免受环境暴露的威胁。Masterflex微流体快速连接-断开倒刺公接头安全滑动释放机制使这些创新的快速断开接头非常适合任何使用流体传输连接、一次性部件组件或更久的夹具的环境,以尽量减少意外断开。--无菌连接和断开--无弹簧流体路径--嵌入式配合特征--USP VI级聚丙烯和PVDF外壳材料--通过安全滑动释放消除意外断开--一个完整的连接器需要一个具有相同流量大小的公接头和母接头(单独订购)。与内螺纹微型快速断开接头兼容。Masterflex微流体快速连接-断开倒刺公接头倒钩尺寸/管道内径管接头类型材质Flow pattern包装数量货号0.125"微量快速连接倒刺公接头聚丙烯Open1040261-130.125"微量快速连接倒刺公接头PVDFOpen1040261-170.125"微量快速连接倒刺公接头PVDFOpen1040261-210.125"微量快速连接倒刺公接头聚丙烯Open1040261-090.1875"微量快速连接倒刺公接头聚丙烯Open1040261-140.1875"微量快速连接倒刺公接头PVDFOpen1040261-180.1875"微量快速连接倒刺公接头PVDFOpen1040261-220.1875"微量快速连接倒刺公接头聚丙烯Open1040261-100.25"微量快速连接倒刺公接头聚丙烯Open1040261-150.25"微量快速连接倒刺公接头PVDFOpen1040261-230.25"微量快速连接倒刺公接头聚丙烯Open1040261-110.25"微量快速连接倒刺公接头PVDFOpen1040261-190.625"微量快速连接倒刺公接头聚丙烯Open1040261-120.625"微量快速连接倒刺公接头PVDFOpen1040261-160.625"微量快速连接倒刺公接头PVDFOpen1040261-200.625"微量快速连接倒刺公接头聚丙烯Open1040261-08

流体速度矢量场相关的仪器

  • 矢量光场发生系统 400-860-5168转1545
    紧凑型矢量光场生成系统Model: CVOFG-1001, 概述矢量光场可广泛应用于光学捕获和操纵、表面等离子体、光学加工、焦场工程、量子信息处理、超分辨率显微成像、光通信等方面。上海瞬渺光电近期推出的Model:CVOFG-100是一款基于反射型液晶空间光调制器的便携式、紧凑型多功能矢量光场发生器,可以生成任意复杂光束。2, 功能特征Model:CVOFG-100可以完全控制逐像素级的所有空间自由度(相位、振幅、偏振比、椭偏率),既可以独立地调制矢量光场的每个单一自由度,也可以针对光束的所有自由度进行综合调制,与目前常用的方法相比,具有很好的灵活性及功能的全面性。该系统更加紧凑、集成化,可应用于光学微加工、光学纳米制造、表面等离子体激发、光学微操作、光学成像等应用领域。图1 紧凑型矢量光场生成系统技术特征:采用4K高分辨率SLM矢量光场单自由度调制综合调制所有的4个自由度,也可以选择调制其中的2~3个自由度铝合金箱体,紧凑尺寸:750x604x329mm元件组成:4K GAEA空间光调制器3维组合位移台1个激光器和准直器各1个反射镜3个偏振片1个1个反射式4f系统:透镜和反射镜各1个3维组合位移台1个精密位移台1个1个透射式4f系统:透镜2个可调光阑1个精密位移台2个三维组合位移台1个分束器模块:直角棱镜1个、1/2 波片1片、1/4 波片2片、偏振分束器1个、非偏振分束器4个,三维组合位移台1个CCD相机、线偏振片和1/4波片各1个精密位移台1个步进电机旋转安装座2个.图2 CVOFG-100装置示意图. 图3 CVOFG-100工作流程图.2.1 光学参数:空间光调制器:4160x2464 GAEA-2(PLUTO-2.1可选)波长:420-650nm/650-1100nm/1400-1700nm等调制像素精度:3.74um (6.4um/8um)调制幅度:相位(0~2π),振幅(1:6),偏振比(0-2π),椭偏率(-π/2-π/2)2.2 可移动性特点仅一个光学面包板就可以承载整个系统,铝合金箱体设计(750x604x329mm),结构紧凑,功能完备,非常适合于安装到各种实验系统里。2.3 4160x2464 GAEA-2空间光调制器 4160x2464 GAEA-2空间光调制器研究人员可能希望在多个实验中使用SLM。紧凑型矢量光场发生器的设计就考虑到了这一点。用户可以简单地从Model:CVOFG-100系统中卸下它,并将其添加到任何其他光学设置中。4160x2464 GAEA-2空间光调制器指标Resolution: 4160 x 2464 Active Area:15.56x9.22mm Pixel Pitch: 3.74um Fill Factor: 90%Max. Spatial Resolution:133.5 lp/mm Addressing: 8 Bit (256 Grey Levels) 软件特点:GAEA 4K 纯相位调制器设备可以使用显卡的标准 HDMI 接口像外接显示器一样简单地寻址。无需额外的软件或专用硬件即可操作 SLM。该设备随附基于 GUI(图形用户界面)的配置管理器软件。Configuration Manager 可用于通过应用新的伽马曲线或其他数字驱动方案来更改几何设置、亮度、对比度和电光响应。USB接口用于这些高级校准。紧凑型矢量光场生成系统还提供多自由度光场调控系统闭环控制软件,可根据客户需要将相位图加载到SLM上,同时自动控制四分之一波片和偏振片的旋转,采集不同旋转角度组合下CCD上接收到的光强数据,以对生成的矢量光场进行表征。提供用于设计灰度图的MATLAB示例程序语言:National Instruments LabVIEW&trade 8.6 and laterMathWorks MATLAB R2009b and later 图4 综合调制效果 图5 偏振比调制 图6 椭偏率调制 订货信息: CVOFG-100-XX-YY (XX: AA or BB or CC )(YY: TT or HH or HHC)AA: SLM选用GAEA-2, 3.74um,4160x2464的SLMBB: SLM选用Pluto-2.1, 8um,1920x1080的SLMCC: SLM选用LETO-3, 6.4um,1920x1080的SLMTT: 光学面包板开放结构HH:铝合金结构(750x604x329mm)HHC: 自定义需要调控的参数,优化铝合金结构 例如:采购CVOFG-100, 内置GAEA-2 空间光调制器,选用光学面包板开放结构,part no:CVOFG-100-AA-TT 定制化设计:如果需要用于光学捕获和操纵,显微成像,光学加工等特定应用的紧凑型光场发生器,我们可以按照客户要求定制光场发生器的调控参数个数。
    留言咨询
  • 【肉眼无法识别的磁气可视化的测定器】 用高精度磁气传感器正确测定磁石表面的磁束密度分布。 应对从圆柱型到瓦状型各式各样的磁石的计测。 MTX 主要通过一个磁头搭载三轴磁力传感器对磁体表面及临界空间的磁场进行高精度的三维测定,并可以通过测得的数据进行三维磁场矢量合成的3D矢量磁性分析仪。测量数据经过电脑的收录、计算、通过2D图表、3D图表和矢量图等多种表示功能,使原来看不见的磁场可视化。此外,增添了在原来的磁性分析仪中积累的技术经验,标准配备了充磁解析、马达解析、品质管理等必要的多种多样的波形解析功能。收录的数据全部采用CSV形式保存,可以容易的向市场上销售的图表计算软件和磁场模拟软件进行数据输出。 用磁力的本质------三维矢量磁场来捕捉磁场,并能收录、表示、解析和输出的MTX是对磁场应用产品的研究和技术开发起重大作用的指南针。
    留言咨询
  • 矢量电磁铁矢量三维电磁铁产品概述:LY系列矢量三维电磁铁是由北京锦正茂科技有限公司电磁铁研发团队经过专业磁场仿真软件,结构优化后而设计现出的一款矢量型电磁铁,该电磁铁采用两对垂直正交的电磁铁构成平面内的电磁铁,在任意方向上都可以通过调节其电流大小,获得任意矢量方向上的可控均匀磁场。矢量三维电磁铁是在二维磁铁的基础上增加垂直于面的螺线管磁场,构成三维磁铁。通过调节三组控制电源电流的大小,来实现三维空间内任意矢量方向的可控均匀磁场 ,轭铁和极柱采用电工纯铁制作,饱和磁导率高,节省能源以及材料。北京锦正茂科技有限公司自主研发的多极电磁铁以四极电磁铁居多,也有五极、六极、八极等多极的应用,主要应用于多极磁环充磁、径向梯度磁场、旋转磁场磁导向等多种应用,按用户的使用要求设计制作,该种类型的电磁铁能够完*的与客户设计的磁场平台兼容。产品用途:电磁铁/电磁场发生器主要用于磁滞现象研究、磁化系数测量、霍尔效应研究、磁光实验、磁场退火、核磁共振、电子顺磁共振、生物学研究、磁性测量、磁性材料取向、霍尔效应、磁导率测量、自旋磁共振演示、生物研究等。产品优势:1:多极水冷式或风冷、具有视野开阔、磁场强度高、磁场强度大小调节方便的特点2:体积小、重量轻、占空比小、结构紧凑、磁场性能更佳。3:可选配工作间隙刻度指示4:在小气隙时用于铁氧体产品的充磁,与磁性样品产品的磁化处理。同时与北京锦正茂自主研发的高精度双极性恒流电源及FCP磁场控制平台完*结合(稳定性10PPM),可以组成一套多功能实验室磁场发生系统。这个系统中,通过真正的双极性恒流电源输出,可以实现了快速均匀的磁场扫描以及磁场换向,从而避免在使用非连续性电源时出现过零反转的间断问题,实现真正的零磁场。技术指标:※电磁铁为四极结构的,轭铁八边形,气隙可调,极柱直径50mm,磁极直径25mm,四极在同一平面;可水平或45度角放置。※电磁铁配四个极头;其中两个极头打5mm通孔,当气隙为25mm时,一维中心磁场Hmax≥0.25T;※电磁铁采用自然冷却。0.25T磁场环境下可连续工作30分钟,线包温升小于60℃ ;※电磁铁单线包功率150W,双线包串联300W,﹡功率300W*2,四极各留抽头。注:标价不准,以电话沟通为准
    留言咨询

流体速度矢量场相关的试剂

流体速度矢量场相关的方案

流体速度矢量场相关的论坛

  • 加压流体萃取仪的五大优势体现

    加压流体萃取仪是一种用于提取样品中目标成分的高效、快速、环保的分析仪器。采用高压流体作为提取溶剂,通过高速离心力将目标成分从样品中分离出来,从而实现对目标成分的快速、准确、高纯度的提取。工作原理是先将样品和提取溶剂加入萃取池中,然后通过高压泵将高压流体注入萃取池,使样品充分与提取溶剂接触,目标成分溶解在提取溶剂中。接着,通过高速离心机将提取溶剂中的固体颗粒分离出来,得到含有目标成分的提取液。最后,通过控制系统对提取液进行收集、处理和分析,从而得到目标成分的含量。广泛应用于环境监测、食品安全、药物分析、石油化工等领域,是实验室分析的重要工具。 加压流体萃取仪具有的优点:      1.高效:由于采用高压流体作为提取溶剂,使得样品与提取溶剂的接触更加充分,从而提高了提取效率。同时,高速离心分离技术使得目标成分的提取速度更快,大大缩短了分析时间。      2.快速:整个操作过程自动化程度高,操作简便,大大提高了分析速度。此外,由于采用了高压流体和高速离心分离技术,使得目标成分的提取和分离过程更加迅速。      3.环保:采用非有机溶剂作为提取溶剂,避免了有机溶剂对环境和人体的危害。同时,高压流体的使用减少了溶剂的使用量,降低了对环境的污染。      4.高纯度:由于采用了高压流体和高速离心分离技术,使得目标成分的提取和分离过程更加干净,从而保证了提取液的高纯度。      5.广泛的应用范围:适用于各种类型的样品,如固体、液体、气体等,可以满足不同领域的分析需求。

流体速度矢量场相关的资料

流体速度矢量场相关的资讯

  • 如何将9T磁场测量系统秒变9T-9T-9T矢量磁场?
    探索材料角度相关的磁输运性质是凝聚态物理学中应用广泛和重要的课题研究方向。该研究通常需要很宽的样品温度范围,比如从室温到几开尔文或更低,还需要强大的矢量磁场。控制矢量磁场对此类研究尤为重要。然而,传统的超导矢量磁体不仅价格昂贵,而且场强也有限:三个方向上至少两个方向的磁场强度通常不能超过2T。 德国attocube公司是上著名的端环境纳米精度位移器制造商。近期,该公司推出的atto3DR低温双轴旋转台,将施加在样品上固定方向的单一磁场(垂直或水平方向)的改变为三维矢量磁场。通过这种方式,在任何其他方向上也可立即获得非常高的磁场(例如9 T或12 T)。因此,它相当于提供了9T-9T-9T矢量磁铁的等效系统,这是目前尚无法实现的。此外,与常规矢量磁铁(如5T-2T-2T)只能在旋转中提供大2T的磁场相比,此解决方案的成本也非常低。 另外,双旋转轴的应用保证了样品在任意磁场方向上的变化和灵活性,通过水平固定轴的旋转,可控制样品表面与外界磁场的倾角(+/- 90°);而沿面内固定轴的旋转提供了另外+/- 90°的运动,从而实现样品与磁场形成任意相对方向。同时还兼容2英寸样品空间和He气氛,配备Chip carrier,提供多达20个电信号接口。 1. 为什么要旋转你的样品? 物理学家、化学家和材料科学家正在不懈地寻找具有理想性能的新材料。新材料几乎每天都会被合成出来,并经历各种各样的测量和表征。费米面的表征在材料表征中起着核心作用,因为将电子结构与材料的性质相关联,可以设计出具有所需性质的材料,并针对特定的应用进行调整。若能够地控制磁输运测量中的场方向有助于提取样品各向异性的信息。能够旋转样品在面内和面外场之间切换,或沿所需方向(例如,沿准一维样品,如纳米管或纳米线)对准就显的尤为重要。 Attocube公司研发的压电驱动的纳米旋转台有效地取代了价格昂贵的矢量磁铁,甚至提高了它们的性能,不仅扩大了其任意方向上的大可用磁场,而且也能很好的实现自动化的测量。更为重要的一点是:它们优于传统无法避免的机械滞后性的机械转子。此外,当需要超高压条件时,例如在ARPES中,与机械旋转器相比,压电陶瓷旋转台提供了额外的优势-压电陶瓷旋转台不会导致超高压室泄压或者漏气。2. Attocube提供的解决方案2.1 attocube 的纳米精度旋转台 attocube提供了多种可以组合的压电驱动纳米定位器,其中包括水平旋转台和竖直旋转台(attocube纳米旋转器-ANR/ANRv)。旋转台组合包括一系列不同尺寸和方向,以及适用于低温环境、超高真空和/或高磁场的不同环境下的需求。由于其体积非常紧凑,attocube的旋转台能够适配于大多数的超导磁体样品腔。图1: ANR portfolio [4]2.2 atto3DR:在3D中模拟强矢量磁场 atto3DR双旋转器具有两个立的旋转台,它们组合在一起,从而提供相对于样品表面的所有方向上的全磁场(例如14 T),如引言中所述。atto3DR如图2所示。atto3DR可以提供普通低温版本,同时也可根据具体需求提供用于低温真空(如稀释制冷机)的定制版本;有关mK温度下的应用案例,请参阅应用部分。图2: atto3DR:(a)带有无铅陶瓷芯片载体的样品架,配备20个触点;(b) 面内ANR;(c) 另外一个面内的ANR[4]。 3. 应用案例 在概述了ANRs、atto3DR的主要特点和优点之后,本文后一章将重点介绍通过使用基于我们的旋转器获得的传输测量的研究结果。3.1 基于ANR旋转台的应用案例3.1.1 在强磁场和200 mK条件下考察的g因子的各向异性 在Zumbühl集团(瑞士巴塞尔)与RIKEN(日本Saitama)、SAS(斯洛伐克布拉迪斯拉发)和UCSB(美国圣巴巴拉)课题组的合作进行了以显示GaAs量子点中各向同性和各向异性g因子校正的分离实验。这项研究是在两个立的横向砷化镓单电子量子点上进行的。为了在实验上确定g因子修正,通过测量具有不同强度和方向的平面内磁场的隧穿速率来得到自旋分裂。自旋分裂定义了自旋量子位的能量,是磁场中自旋的基本性质之一。在这里,他们测量并分离了两个GaAs器件中对g因子的各向同性和各向异性修正,发现与近的理论计算有很好的一致性。除了公认的Rashba和Dresselhaus项,作者还确定了动量平方依赖的塞曼项g43和穿透AlGaAs势垒gP项[5]。 此项工作是在attocube纳米精度旋转台ANRv51的帮助下完成的:样品安装在压电驱动旋转器上,并在磁场平面内旋转。由于旋转台有电阻编码器,因为能够读出旋转器的状态角度。此外,ANRv51可在高达35 T的磁场环境下使用,并可在低至mK的低温范围内使用-该实验在稀释制冷机中进行,电子温度为200 mK,磁场高达14 T。该磁场强度在任意面内方向上施加,只能通过旋转器实现不同角度下的测量。图3: sample in chip carrier mounted on ANRv513.1.2 mK位移台在材料输运性质随磁场角度的变化研究中的应用 北京大学量子材料科学中心林熙课题组成功研制出基于attocube低温mK位移台研制的低温强磁场下的样品旋转台,用于测量材料的输运性质随磁场角度的变化研究。 该系统是基于Leiden CF-CS81-600稀释制冷机系统的一个插杆,插杆的直径为81 mm,attocube的mK位移台通过一个自制的转接片连接到插杆上,如图4所示,位于磁场中心的样品台的尺寸为5 mm*5 mm,系统磁场强度为10T。系统的制冷功率为340 μW@120mK,得益于attocube低温位移台低的发热功率及工作时非常小的漏电流,使得旋转台能够很好的在<200mK的温度下工作(工作参数:60V,4Hz, 300nF)。 图4. 实现的旋转示意图和ANR101装配好的实物图 图5. 侧视图,电学测量的12对双绞线从旋转台的中心孔穿过 图6中是GaAs/AlGaAs样品在不同角度下测试结果,每一个出现小电导率的点,代表着不同的填充因子。很好的验证了其实验方案的可行性和稳定性。图6. Shubnikov–de Haas Oscillation at T = 100 mK3.1.3 25 mK和强磁场下的自旋弛豫测量 基于量子点的自旋量子位是未来量子计算机的一个有希望的核心元件。2018年,一项国际合作((Basel, Saitama, Tokyo, Bratislava and Santa Barbara)在理论预测电子自旋弛豫现象15年后,次通过实验成功证明了一种新的电子自旋弛豫机[8]。图7: Measurement setup with sample on an ANRv51 for rotating around the angle ϕ in the plane of the magnetic field. 在25 mK 的稀释制冷机和高达14 T的磁场条件下,半导体纳米结构(GaAs)中的电子自旋寿命在0.6 T左右达到了一分钟以上的新记录。有关此记录的更多信息,请参见[9]。对于该实验设置,使用了attocube的ANRv51,只有它完全符合mK温度和高磁场系统的要求。此外,在GaAs二维电子气体中形成的单电子量子点样品可以与平面内磁场相对于晶体轴作任意角度的旋转。3.1.4 从缓慢的Abrikosov到快速移动的Josephson涡旋的转变 来自瑞士苏黎世ETH的Philip Moll及其研究组使用attocube的ANR31研究了层状超导体SmFeAs(O,F)中磁旋涡的迁移率,发现旋涡迁移率的大增强与旋涡性质本身的转变有关,从Abrikosov转变为Josephson[12]。该实验中如果磁场倾斜出FeAs平面,即使小的未对准(图8: Flux -flow dissipation as a function of the angle between the magnetic field (H = 12 T) and the FeAs layers (= 0°) for several temperatures.图9: Rotator setup showing the ANR31/LT rotator carrying the sample and two Hall sensors.3.1.5 用于量子输运分析的超低热耗散旋转系统 在2010新南威尔士大学(澳大利亚悉尼)的La AYOH ET.A.课题组分析了半导体纳米器件中的量子输运。他们的主要目标是获得一个合适的旋转系统来研究各向异性塞曼自旋分裂。为了充分观察测量这种效应,需要在保持温度低于100mK的情况下,在磁场(高达10T)方向旋转样品。该样品安装在陶瓷LCC20器件封装中的AlGaAs/Ga/As异质结构。两条铜线连接到载体上。使用带RES传感器的ANRv51进行位置读出,该小组设计了一个具有两个可选安装方向的样品架(见图10):一个具有芯片载体的平面内旋转,另一个具有芯片载体的平面外旋转(见图)。ANRv51非常适合此应用:先其由非磁性材料制成,完全兼容mK,并具有一个小孔,可将20根铜线送至转子背面。在他们的论文中,研究小组仔细描述了不同驱动电压和频率下,旋转器的散热作为转速的函数[13]。在缓慢的旋转速度下,散热可以保持在低限度,即使连续旋转,仍然能让系统温度低于100 mK。当关闭旋转器时回到25 mK基准温度的时间仅仅为20 min。此外,由于滑移原理,旋转台可在到达终目标位置时接地,从而确保位置稳定性和零散热。图10: Rotation system assembly for rotating the sample in two separate configurations with respect to the applied magnetic field B.3.2. atto3DR 应用案例3.2.1 范德华异质结器件在低温40mK中旋转 理解高温超导物理机制是凝聚态物理学的核心问题。范德华异质结构为量子现象的模型系统提供了新的材料。近日,国际合作团队(团队成员来自美国伯克利大学,斯坦福大学,中国上海南京以及日本韩国等课题组)研究石墨烯/氮化硼范德华异质结具有可调控超导性质的工作发表在《Nature》杂志上。在温度低于1K的时候,该异质结的超导的特特性开始出现,电阻出现一个明显的降低,出现一个I-V电学曲线的平台[14]。图11: 图左低温双轴旋转台;图右下:石墨烯/氮化硼异质结器件,图右上,电输运测试结果,样品通过旋转后的方向与与磁场方向平行。 电学输运工作的测量是在进行仔细的信号筛选后,在本底温度为40mK的稀释制冷剂内进行的。样品的面内测量需要保证样品方向与磁场方向平行,因而使用了德国attocube公司的atto3DR低温双轴旋转台。该atto3DR低温双轴旋转台可以使样品与单轴线管的超导磁场方向的夹角调整为任意角度。通过电学输运结果,证实了样品中存在的超导与Mott缘体与金属态的转变,证明了三层石墨烯/氮化硼的超晶格为超导理论模型(Habbard model)以及与之相关的反常超导性质与新奇电子态的研究提供了模型系统。3.2.2 30mk下的扭曲双层石墨烯的轨道铁磁性 范德华异质结构,特别是魔角双层石墨烯(tBLG),是当今固态物理研究的热点之一。尽管之前对tBLG的测量已经表明,铁磁性是从大滞后反常霍尔效应中推断出来的,随后又指向了Chern缘体,但A.L.Sharpe及其同事通过输运测量实验表明,tBLG中的铁磁性是高度各向异性的,这表明它是纯轨道起源的——这是以前从未观察到的[15]。 为了进行测量,该小组将封装在氮化硼薄片中的tBLG样品安装在attocube atto3DR双旋转器上,通过巧妙设计,使其在电子温度低于30 mK的条件下正常工作,在高达14 T的磁场中,使用霍尔电阻对倾斜角度进行专门的现场校准,以便在实验过程中控制准确的面内和面外方向。图12: Angular dependence of hysteresis loops in twisted bilayer graphene, measured with atto3DR at 磁性输运测量通常涉及可变温度和强磁场。能够旋转样品是提取有用信息的关键先决条件,如三维费米表面、电荷载流子的有效质量和密度,亦或块体材料、薄膜或介观结构的各向异性相关的许多其他参数。使用基于压电陶瓷的旋转器有助于获得比矢量磁场更高的矢量场,而且能够大大降低成本。因此,attocube ANR及其成套解决方案——atto3DR——对于每一位在具有磁场依赖和低温下进行电气和磁性输运测量的研究人员来说,都是佳和的解决方案。5. 参考文献[1]L.W. Shubnikov, W.J. de Haas, Proc. Netherlands Roy. Acad. Sci. 33, 130 (1930)[2]Fermi Schematics, Sabrina Teuber, attocube systems AG[3]http://www.phys.ufl.edu/fermisurface/[4]attocube systems AG[5]L.C. Camenzind et al., Phys. Rev. Lett. 127, 057701 (2021)[6]U. Zeitler et al., attocube Application Note CI04 (2014)[7]P. Wanget al., Rev. Sci. Instrum. 90, 023905 (2019)[8]L.C. Camenzind et al. Nat Commun 9, 3454 (2018)[9]https://www.unibas.ch/en/News-Events/News/Uni-Research/New-mechanism-of-electron-spin-relaxation-observed.html[10]Y. Pan et al., Sci. Rep. 6, 28632 (2016)[11]A.M. Nikitin et al., Phys. Rev. B 95, 115151 (2017)[12]P.J.W. Moll et al., Nature Mater. 12, 134 (2013)[13]L. A. Yeoh et al., Rev. Sci. Instrum. 81, 113905 (2010)[14]G. Chen et al., Nature 572, 215 (2019)[15]A.L. Sharpe et al., Nano Lett 2021, 21, 10, 4299 – 4304 (2021)
  • 武汉光电国家研究中心王健教授团队研发新型矢量多普勒测量仪
    2021年7月7日,《自然通讯》(Nature Communications)杂志在线发表了武汉光电国家研究中心王健教授团队题为“Vectorial Doppler metrology”的最新研究成果。此研究将具有空间变化偏振分布的矢量光场应用于光学测量,提出并实现了新型矢量多普勒测量仪,其对于复杂运动信息的全矢量测量具有重要意义。多普勒效应是一种经典的物理现象,属于波的基本特性之一。该效应来源于波源与观测者之间的相对运动,使得观测者接收到的波的频率相对于波源频率具有一定偏移量。无论是机械波,还是电磁波,通过测量其多普勒频移,可以推算出观测者相对于波源的运动速度。多普勒效应已广泛应用于医学诊断、交通测速、精密测量、激光制冷以及天文学与航空航天等领域。光波属于电磁波,相对于机械波,如声波、水波等,具有超高速、大带宽、方向性好且能在真空中传播等优点,因此开发光的多普勒效应具有独特的优势。对于传统的平面相位光束,不考虑相对论效应,只有当运动物体在光束传播方向上有相对运动才能产生多普勒频移,称之为线性(或纵向)多普勒效应。最近二三十年,随着科学家对光的基本属性的进一步认知,光学研究已由简单的平面光束向更复杂多样的结构光束展开。结构光束的旋转(或横向)多普勒效应也受到了越来越多的关注,这为光学多普勒测量提供了更多的可测量维度。纵观多普勒效应的发现及发展应用历程,该效应针对的只是波的标量属性,即由相位(或强度)的连续改变产生多普勒频移。对于本振频率比较低的机械波,通常可以直接提取其多普勒频移,从而测定目标物体的运动速度与方向信息。对于光波(电磁波),由于其超高的本振频率,提取多普勒频移必须采取与参考光进行干涉拍频。然而,干涉拍频虽然能提取多普勒频移量,但却丢失了符号信息,即无法区分多普勒蓝移与红移。因此,如果不采用额外的测量手段,如外差检测或双频检测,直接基于干涉测量提取多普勒频移无法推断出目标运动物体的方向信息,这无疑导致了光学多普勒测量的应用局限。光波是一种横波,除了振幅与相位自由度,还有偏振自由度。光的偏振描述的是电磁场在正交于传播方向的平面上的谐振情况。传统的平面相位光束,其偏振取向在光束横截面上是均匀分布的。对于一类特殊的结构光场,其偏振取向在横截面上呈空间周期性变化分布,称之为矢量光。针对这类矢量结构光场,近期,华中科技大学武汉光电国家研究中心多维光子学实验室(MDPL: Multi-Dimensional Photonics Laboratory)王健教授团队研究发现,粒子在这类光场中运动能产生新的多普勒效应,即矢量多普勒效应。区别于基于标量光场的传统多普勒效应(多普勒信号表现为随时间变化的一维强度信号),基于新的矢量结构光场的矢量多普勒效应,其多普勒信号表现为随时间变化的二维偏振信号。这类新的多普勒偏振信号,除了携带目标运动物体的速度大小信息外,还同时携带了速度方向信息。具体表现为,不同的运动方向导致多普勒偏振信号呈现出不同的旋转手性,如图1和图2所示。实验或实际应用中,利用两个检偏器分析两路信号光的相对相位差,就能轻松分辨出多普勒偏振信号的旋转手性,进而直接测定目标物体的运动速度大小与方向。研究还发现,基于矢量结构光的矢量多普勒效应,不仅能直接测定粒子的运动矢量信息(速度大小与方向),还能潜在地追踪粒子运动的瞬时相对位置与瞬时速度,并且测量无须参考光束干涉,有很强的抗环境干扰能力。进一步,针对各项异性的运动粒子,理论分析发现,即使粒子在旋转的同时还处于自旋状态,通过对多普勒偏振信号进行标准的斯托克斯参数分析,或简单地利用两个检偏器分析,能同时测定粒子的旋转速度矢量(大小与方向)和自旋速度矢量(大小与方向)。该工作于2021年7月7日以Vectorial Doppler metrology为题发表在《自然通讯》(Nature Communications)上,华中科技大学武汉光电国家研究中心为论文第一单位,华中科技大学武汉光电国家研究中心博士后方良与硕士生万镇宇为共同第一作者,华中科技大学名誉教授、南非金山大学Andrew Forbes教授为论文合作者,华中科技大学武汉光电国家研究中心王健教授为论文唯一通讯作者。该项工作是对传统基于标量光场多普勒效应的一次突破,极大丰富了多普勒测量的内涵,同时对于矢量结构光场的基础研究及拓展应用研究具有重要科学意义。Liang Fang, Zhenyu Wan, Andrew Forbes, Jian Wang*, “Vectorial Doppler metrology,” Nature Communications, 12, 4186 (2021).https://www.nature.com/articles/s41467-021-24406-z图1矢量多普勒效应概念示意图图2基于矢量结构光场的矢量多普勒效应测量粒子的运动矢量(速度大小和方向)。(a)(c)相反运动的粒子在矢量结构光场(以HE31为代表)中与局部偏振光相互作用示意图。(b)(d)粒子采样反射或散射的二维多普勒偏振信号因粒子运动方向不同表现出不同的手性。二维多普勒偏振信号同时携带粒子运动的速度大小与方向信息。多维光子学实验室(MDPL)研究人员(从左至右):方良、王健、万镇宇
  • IDEX Health & Science 流体部件与客户仪器奔赴抗疫前线 | 为中国速度骄傲!
    自从新型冠状病毒肺炎疫情爆发后,每日抗疫的新闻和消息牵动了每一个人的心。大家的共同的心愿:战胜病毒。如今,火神山医院已经交付并投入使用,而雷神山也已经达到了交付条件。中国速度再一次被全世界人民称赞。此刻,作为全球流体部件制造商,IDEX Health & Science 能够为奋战疫情出一份力,也是我们每一位公司成员的心愿与骄傲。 我们的传感器、脱气机、接头、管路、多岐管板以及新型24/25通阀门,与客户的实验室体外诊断设备、基因测序仪器,共同奔赴抗疫前线。新型24/25通阀门在DNA测序市场的应用:选向阀通过一个公共端口(入口或出口)连接至多个不同端口,实行多个系统液路连接的切换。在DNA测序应用中,选向阀可以让流道在不同的试剂(A、T、C、G)之间切换。传感器在DNA测序市场的应用:动态监测压力多岐管板在DNA测序市场的应用:可与TitanHT 24位25通阀集成 与流通池相连的多歧管板,液流在进入多歧管板时需要分流,一分四或者一分六,此时必须使用多歧管板。真空脱气机在DNA测序市场的应用:用在公共通道管理中除气,防止在流通池中产生气泡。艺达思集团内的其它事业部也有参与投身疫情救治的工作中。苏州工厂的部分同事也已经复工。你我携手,共克时艰!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制