纳米抗体

仪器信息网纳米抗体专题为您整合纳米抗体相关的最新文章,在纳米抗体专题,您不仅可以免费浏览纳米抗体的资讯, 同时您还可以浏览纳米抗体的相关资料、解决方案,参与社区纳米抗体话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

纳米抗体相关的耗材

  • 20102-1海狸生物A/G抗体纯化磁珠
    抗体纯化磁珠BeaverBeads™ Protein A/G 抗体纯化磁珠系列产品是利用海狸生物纳米表面技术,使Protein A/G高密度定向包被到超顺磁性微球表面。与当前国际免疫磁珠市场上同类产品相比,该产品具有更高的抗体结合能力和较低的蛋白非特异吸附率,洗脱条件更均一,一步纯化即可从血清样品中分离出纯度大于90%的抗体。本产品为纳米级磁性微球,具有超大比表面积,可大幅度缩短抗体吸附所需的时间,熟练操作可在10min内完成抗体吸附过程,30min内完成抗体纯化流程。抗体纯化磁珠试剂盒配有经过优化的预制缓冲液,为抗体纯化实验提供了最佳的反应条件,提高了抗体纯化实验的稳定性。 产品名称编号规格包装单价BeaverBeads™ Protein A Antibody Purification Kit20102-130mg/mL1mL¥BeaverBeads™ Protein A Antibody Purification Kit20102-530mg/mL5mL¥BeaverBeads™ Protein A Antibody Purification Kit20102-2530mg/mL25mL¥BeaverBeads™ Protein A/G Antibody Purification Kit20202-130mg/mL1mL¥BeaverBeads™ Protein A/G Antibody Purification Kit20202-530mg/mL5mL¥BeaverBeads™ ProteinA/G Antibody Purification Kit20202-2530mg/mL25mL¥BeaverBeads™ Magrose ProteinA Antibody Purification70804-510%(v/v)5mL¥BeaverBeads™ Magrose ProteinA Antibody Purification70804-10010%(v/v)100mL¥BeaverBeads™ Magrose ProteinA Antibody Purification70804-50010%(v/v)500mL¥BeaverBeads™ Magrose ProteinG Antibody Purification70805-510%(v/v)5mL¥BeaverBeads™ Magrose ProteinG Antibody Purification70805-10010%(v/v)100mL¥BeaverBeads™ Magrose ProteinG Antibody Purification70805-50010%(v/v)500mL¥1. 具有高效的抗体结合能力和超低非特异性吸附的性能Protein A Matrix磁珠从稀释10倍的人血清中提取抗体IgG的纯度,比直接从血清中提取的IgG纯度基本一致甚至更高。2. 操作省时、简便、温和下图为BeaverBeads™ 磁珠应用流程示意图与层析仪-琼脂糖凝胶纯化操作的对比1.无需离心,可利用磁性分离,与层析仪-琼脂糖凝胶纯化系统极大的缩短操作时间2.避免反复吸液造成填料损失而带来的误差3. 避免离心操作中机械剪切力对活性蛋白的损伤3. 产品稳定性高BeaverBeads™ Protein A Matrix磁珠稳定性测试。将磁珠置于37℃环境下连续测试8周,其抗体结合效率无明显衰减,表明了该磁珠具有较好的稳定性。4. 抗体洗脱体系更接近中性本产品采用优化的洗脱缓冲液,可以在pH4.5的条件下洗脱抗体,大大降低了酸性敏感的抗体在低pH值洗脱环境下受到损伤的风险。5. 极低的Protein A配基脱落率BeaverBeads™ 磁珠的抗体纯化产品中Protein A 残留量均低于美国FDA的标准(20ppm)。与已获FDA认证的国外知名产品无明显差别。6. 可重复利用BeaverBeads™ 抗体纯化磁珠可重复使用和再生,并保持了较高的抗体结合效率。经过15次不间断的纯化操作后,仍能保持 75% 的lgG结合能力,经过再生处理后,其抗体结合能力可恢复到最初的90%。
  • 影响医药中间体胶体磨研磨效果的因素其实很简单,医药中间体高速胶体磨,医药中间体湿法超微粉碎机,医药中间体湿磨机,医药高速纳米研磨机 ,化工原料高剪切胶体磨,原料药高速纳米胶体磨,头孢类抗生素纳米胶体磨
    影响医药中间体胶体磨研磨效果的因素其实很简单,医药中间体高速胶体磨,医药中间体湿法超微粉碎机,医药中间体湿磨机,医药高速纳米研磨机 ,化工原料高剪切胶体磨,原料药高速纳米胶体磨,头孢类抗生素纳米胶体磨 所谓医药中间体,实际上是一些用于药品合成工艺过程中的一些化工原料或化工产品。这种化工产品,不需要药品的生产许可证,在普通的化工厂即可生产,只要达到一些的别,即可用于药品的合成。 我国每年约需与化工配套的原料和中间体2000多种,需求量达250万吨以上。经过30多年的发展,我国医药生产所需的化工原料和中间体基本能够配套,只有少部分需要进口。而且由于我国资源比较丰富,原材料价格较低,有许多中间体实现了大量出口。那么,我国医药中间体域面临哪些发展机遇呢?我国β-内酰胺类抗生素经过近50年的发展,已经形成了完整的生产体系。2012年几乎所有的β-内酰胺类抗生素(除利期内的品种外)我国都能生产,而且成本很低,青霉素产量居位,大量出口供应国际市场;头孢类抗生素基本能够自给自足,还能争取一部分出口。2012年,与β-内酰胺类抗生素配套的中间体我国全部能够自己生产,除了半合成抗生素的母核7-ACA和7-ADCA需要部分进口外,所有的侧链中间体均可生产,而且大量出口。 以β-内酰胺类抗生素的主要配套中间体苯乙酸为例,我国现有苯乙酸生产厂家近30家,总年产能力约2万吨。但多数企业规模偏小,大的年产2000吨,其他大多年产数百吨。2003年国内苯乙酸总需求量约1.4万吨,消费结构为:青霉素G占85%,其他医药占4%,香料占7%,农药及其他域占4%。随着国内香料、医药、农药等行业的发展,苯乙酸需求量将进一步增加。预计到2005年,我国医药工业将消耗苯乙酸约1.4万吨,农药行业将消费500吨,香料行业约消费2000吨。再加上其他域的消费量,预计2005年国内苯乙酸总需求量将达1.8万吨。 所以上海依肯机械设备有限公司根据日益增长的市场需求结合多年来积累的丰富的行业经验以及成功案例特别推出医药中间体CMD2000系列胶体磨突破传统意义上的粉碎机,是技术上的进一步革新。好的粉碎效果源自硬质刀具的表面结构,三组分散刀头,表面含有不同粒度大小的金属颗粒,这保证了物料在通过各刀头后达到理想的细化效果。该锥体磨独特的锥形设计,增大了冷却表面积,更利于长时间工作。 产品说明:锥体磨CMD2000是CM2000的更进一步。通过减少颗粒粒度和湿磨,可获得更细悬浮液,技术更创新。这是通过将锥形刀具间的间隙调节至小来完成的。间隙可进行无调节。好的粉碎效果亦源于硬质刀具的表面结构。刀具表面含高质材料。 第1由具有精细度递升的三锯齿突起和凹槽。定子可以无限制的被调整到所需要的与转子之间的距离。在增强的流体湍流下,凹槽在每都可以改变方向。 第2由转定子组成。分散头的设计也很好地满足不同粘度的物质以及颗粒粒径的需要。在线式的定子和转子(乳化头)和批次式机器的工作头设计的不同主要是因为在对输送性的要求方面,特别要引起注意的是:在粗精度、中等精度、细精度和其他一些工作头类型之间的区别不光是转子齿的排列,还有一个很重要的区别是不同工作头的几何学特征不一样。狭槽数、狭槽宽度以及其他几何学特征都能改变定子和转子工作头的不同功能。根据以往的惯例,依据以的经验特制工作头来满足一个具体的应用。医药中间体CMD2000系列胶体磨(研磨分散机)的特点:① 线速度很高,剪切间隙非常小,当物料经过的时候,形成的摩擦力就比较剧烈,结果就是通常所说的湿磨② 定转子被制成圆椎形,具有精细度递升的三锯齿突起和凹槽。③ 定子可以无限制的被调整到所需要的与转子之间的距离④ 在增强的流体湍流下,凹槽在每都可以改变方向。⑤ 高质量的表面抛光和结构材料,可以满足不同行业的多种要求。医药中间体CMD2000系列胶体磨设备参数选型表高速胶体磨流量*输出线速度功率入口/出口连接类型l/hrpmm/skWCMD 2000/470014000404DN25/DN15CMD 2000/55,00010,5004011DN40/DN32CMD 2000/1010,0007,3004022DN50/DN50CMD 2000/2030,0004,9004045DN80/DN65CMD 2000/3060,0002,8504075DN150/DN125CMD 2000/501000002,00040160DN200/DN150*流量取决于设置的间隙和被处理物料的特性,同时流量可以被调节到大允许量的10%。影响医药中间体胶体磨研磨效果的因素其实很简单,医药中间体高速胶体磨,医药中间体湿法超微粉碎机,医药中间体湿磨机,医药高速纳米研磨机 ,化工原料高剪切胶体磨,原料药高速纳米胶体磨,头孢类抗生素纳米胶体磨
  • SARS-CoV-2 S蛋白 IgG抗体NanoPISA检测试剂盒 (纳米等离子共振免疫吸附法)
    用于定性检测人血清样本中2019新型冠状病毒S蛋白 IgG抗体

纳米抗体相关的仪器

  • 免疫一只空白适龄羊驼(1-3岁),免疫四次,两周免疫一次,免疫完了抽50ml的pbmc外周血,ELisa检测血清滴度要大于10^5;然后构建噬菌体文库,建库的标准是10^8以上;抗体筛选,可以保证提供20条以上的阳性克隆序列,一般有50-60条,最多交付的有161条。
    留言咨询
  • 免疫一只空白适龄羊驼(1-3岁),免疫四次,两周免疫一次,免疫完了抽50ml的pbmc外周血,ELisa检测血清滴度要大于10^5;然后构建噬菌体文库,建库的标准是10^8以上;抗体筛选,可以保证提供20条以上的阳性克隆序列,一般有50-60条,最多交付的有161条
    留言咨询
  • 骆驼免疫VHH抗体库构建服务 卡梅德生物科技是基于M13噬菌体展示平台,能够为客户提供高质量的驼源抗体筛选服务,包括双峰驼和单峰驼(羊驼)来源的纳米抗体噬菌体展示技术服务。噬菌体展示技术—骆驼免疫VHH抗体库构建服务人源免疫球蛋白IgG含有两条重链和轻链,而骆驼类抗体只有含有重链,因此又被称为重链抗体(heavy Chain Antibody, hcAb)。骆驼抗体的抗原结合区含有3个互补决定区(CDR),与普通抗体相比,即使缺少相应的轻链部分,骆驼抗体也具有很好的抗原识别以及结合能力。由于缺少轻链,骆驼抗体的抗原结合区域,又称为VHH结构域的分子量大小只有12-15 kDa, 远远小于普通抗体的抗原结构域,能够透过血脑屏障。驼源抗体文库主要就是指利用驼源重链抗体的可变区,即VHH区域序列构建的VHH抗体文库,又叫纳米抗体文库。此外,骆驼抗体具有极其稳定的性质,比如在60℃能保持活性,抵抗极端的pH环境。同时在VHH人源化改造方面,也具有良好的适应性,容易满足Car-T等免疫细胞的改造和分选实验要求。抗体文库制备 – 骆驼VHH抗体库构建服务 构建高质量的骆驼VHH抗体噬菌体展示文库是获得高质量单克隆VHH抗体的有效方式之一,一个优秀的VHH抗体噬菌体展示文库包含抗原设计,动物免疫,文库构建与筛选等主要环节。卡梅德生物能够为客户提供高质量的、骆驼来源的VHH抗体噬菌体展示文库制备服务。我们坚持采用人用疫苗和生物制药的QbD(Quality by Design)设计原则,设计并制备骆驼VHH抗体噬菌体展示文库,为客户提供全程可追溯的产品追溯体系和文件支撑体系。 卡梅德生物拥有专业技术团队,凭借多年的重链抗体(Vhh抗体)文库展示构建和筛选经验,能够在较短的时间周期内获得高品质的纳米抗体。服务优势:---同时提供免疫库制备服务和天然骆驼/羊驼抗体文库筛选服务---周期短,约16-20周即可获得高质量的文库和单抗细胞株---高库容量:有效库容 108 – 109/免疫库;109 – 1011/天然库---高亲和力抗体制备---个性化的淘筛策略---完整的文件追溯体系和QC质控文件卡梅德生物科技(天津)有限公司期待您的联系!
    留言咨询

纳米抗体相关的试剂

纳米抗体相关的方案

  • 利用LUMiSizer?优化负载柠檬醛(具有抗炎和抗癌活性)的固体脂质纳米颗粒(SLN)
    以单萜类成分为主的精油由于其广泛的生物活性而被用于医药,例如作为抗菌剂、抗病毒剂或抗氧化剂。这些植物来源的物质是有效的抗癌剂,因为它们具有有效减少肿瘤体积和肿瘤细胞增殖而没有副作用的潜力。柠檬醛 (C10H16O,citral )是一种单萜,具有广泛的治疗活性,例如抗菌、抗炎和抗癌特性。单萜在化学上不稳定,在水溶液中随着时间的推移会生物降解为香叶酸和 6-甲基-5-庚烯-2-酮。此外,柠檬醛的高挥发性降低了其药理功效。包括柠檬醛在内的单萜类化合物在癌症预防和治疗方面具有显着效果,可以通过与致癌物外源生物转化相互作用来调节肝脏单加氧酶活性。并且已证明精油可以对紫外线引起的突变表现出抗突变性。为了提高单萜的长期稳定性并延长其释放曲线,并降低化学降解的风险,提出将这些活性成分负载到固体脂质纳米颗粒(SLN)中。为了获得长期稳定的柠檬醛固体脂质纳米颗粒 (SLN) 制剂,本研究使用 LUMiSizer?对其进行表征优化。
  • 人抗双链DNA抗体/天然DNA抗体(dsDNA)检测试剂盒
    人抗双链DNA抗体/天然DNA抗体(dsDNA)检测试剂盒人抗双链DNA抗体/天然DNA抗体(dsDNA)检测试剂盒使用说明书本试剂盒仅供研究使用。检测范围: 规格:96T/48T使用目的:本试剂盒用于测定人血清,血浆及相关液体样本中人抗双链DNA抗体/天然DNA抗体(dsDNA)含量。实 验 原 理 本试剂盒应用双抗体夹心酶标免疫分析法测定标本中人抗双链DNA抗体/天然DNA抗体(dsDNA)水平。用纯化的抗体包被微孔板,制成固相抗体,往包被单抗的微孔中依次加入人抗双链DNA抗体/天然DNA抗体(dsDNA)抗原、生物素化的人抗双链DNA抗体/天然DNA抗体(dsDNA)抗体、HRP标记的亲和素,经过彻底洗涤后用底物TMB显色。TMB在过氧化物酶的催化下转化成蓝色,并在酸的作用下转化成最终的黄色。颜色的深浅和样品中的人抗双链DNA抗体/天然DNA抗体(dsDNA)呈正相关。 使用酶标仪在450nm波长下测定吸光度(OD值),计算样品浓度
  • 【设备更新】MST技术在纳米颗粒检测中的解决方案
    纳米抗体具有分子小、水溶性好、亲和性和稳定性高、特异性强、易于表达生产且能进一步修饰等优点,在多个领域内都有极大的应用前景。但不同表面特性的纳米粒子与蛋白质之间的相互作用的亲和力等指标,仍然缺乏相关研究。MST 技术是通过激光在溶液中产生精确而短暂的温度变化从而检测配体结合引起的荧光强度变化,结合检测不受由配体结合引起的粒径和分子量变化限制。对于纳米颗粒与蛋白间的亲和力检测也能轻松应对!

纳米抗体相关的论坛

  • 什么是纳米抗体?纳米抗体的特性有哪些?

    [font=宋体][b]什么是纳米抗体?[/b][/font][font=宋体][font=宋体][url=https://cn.sinobiological.com/resource/antibody-technical/nanobody][b]纳米抗体[/b][/url]([/font][font=Calibri]nanobody, Nb[/font][font=宋体])是一种人工设计的抗体分子,又称为单域抗体([/font][font=Calibri]single-domain antibodies, sdAbs[/font][font=宋体])、[/font][font=Calibri]VHH[/font][font=宋体]抗体或[/font][font=Calibri]camelid[/font][font=宋体]抗体,是发现于羊驼、单峰驼等驼科以及鲨鱼、鳐鱼等软骨鱼中的一种天然缺失轻链的重链抗体([/font][font=Calibri]heavy-chain antibodies, HCAbs)[/font][font=宋体]。[/font][font=Calibri]1993[/font][font=宋体]年,比利时的科学家在骆驼的血清中发现了一种天然轻链缺失的重链抗体,分子量约[/font][font=Calibri]95 kDa[/font][font=宋体],其中包括两个恒定区([/font][font=Calibri]CH2[/font][font=宋体]和[/font][font=Calibri]CH3[/font][font=宋体])、一个铰链区和一个重链可变区([/font][font=Calibri]variable heavy chain domain, VHH[/font][font=宋体]),接着克隆得到只包含一个重链可变区的单域抗体,即[/font][font=Calibri]VHH[/font][font=宋体]抗体。[/font][font=Calibri]VHH[/font][font=宋体]抗体的晶体结构为[/font][font=Calibri]4 nm[/font][font=宋体]×[/font][font=Calibri]2.5 nm[/font][font=宋体]×[/font][font=Calibri]3 nm[/font][font=宋体]的椭圆形,分子量大小仅普通抗体的[/font][font=Calibri]1/10[/font][font=宋体],约[/font][font=Calibri]12-14 kDa[/font][font=宋体],是最小的完整抗原结合片段,因此又被称为纳米抗体。纳米抗体可用于肿瘤等疾病的治疗、疾病的检测、疫苗的研发等。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][b]纳米抗体特性:[/b][/font][font=宋体] [/font][font=宋体][font=Calibri]1.[/font][font=宋体]高耐热性和稳定性[/font][/font][font=宋体] [/font][font=宋体][font=宋体]将不同的纳米抗体在[/font][font=Calibri]37[/font][font=宋体]℃放置[/font][font=Calibri]1[/font][font=宋体]周,结果其抗原结合活性均在[/font][font=Calibri]80%[/font][font=宋体]以上,表明纳米抗体在室温下保存相当稳定,这使其比常规抗体更易于储藏和运输。[/font][/font][font=宋体][font=宋体]比较了鼠单抗和纳米抗体在高达[/font][font=Calibri]90[/font][font=宋体]℃高温长时间处理的抗原结合活性,发现纳米抗体都保持了较高的活性仍能重新获得抗原结合能力,而所有常规抗体在[/font][font=Calibri]90[/font][font=宋体]℃处理后都丧失了活性,发生了不可逆的聚合。[/font][/font][font=宋体][font=宋体]在恶劣条件,如在高热、离液剂、存在蛋白酶和极度[/font][font=Calibri]pH[/font][font=宋体]值变性的条件下(如胃液和内脏中),正常抗体会失效或分解,而纳米抗体仍具有高度的稳定性。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]2.[/font][font=宋体]高抗原结合性:[/font][/font][font=宋体] [/font][font=宋体][font=宋体]纳米抗体独特的结构决定了其高抗原结合特性:纳米抗体较长的[/font][font=Calibri]CDR3[/font][font=宋体],可形成一稳定的暴露的凸环结构(凸环中具有稳定结构的二硫键),能够深入抗原内部以更好的结合抗原从而提高了其抗原特异性和亲和力。[/font][/font][font=宋体][font=宋体]而传统抗体[/font][font=Calibri]Fab[/font][font=宋体]片段及单链抗体[/font][font=Calibri]scFv[/font][font=宋体]的抗原结合表面常形成凹形拓扑结构[/font][font=Calibri], [/font][font=宋体]通常只能识别位于抗原表面的位点,因此纳米抗体[/font][font=Calibri]VHH[/font][font=宋体]单域具有更加广泛的抗原结合力,甚至当靶蛋白紧密包裹隐藏了普通抗体识别的位点时[/font][font=Calibri],[/font][font=宋体]纳米抗体也可以对其进行表位识别。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]3.[/font][font=宋体]较强的组织穿透力:[/font][/font][font=宋体] [/font][font=宋体]纳米抗体具有强而快的组织穿透能力,可以进入致密的组织如实体瘤发挥作用;并且多余未结合的纳米抗体能够很快的被清除,这相对于单克隆抗体组织穿透力差,不易被清除的不足,更有利于疾病的诊断。另外,纳米抗体能够有效的穿透血脑屏障,这样的特性为脑部给药提供了新方法,有望成为治疗老年痴呆症的新药。[/font][font=宋体] [/font][font=宋体][font=Calibri]4.[/font][font=宋体]高水溶性、高表达性[/font][/font][font=宋体] [/font][font=宋体][font=宋体]正常抗体[/font][font=Calibri]VH[/font][font=宋体]结构域单独表达时通常形成包涵体,或者暴露的疏水域相互黏附;而纳米抗体[/font][font=Calibri]VHH[/font][font=宋体]由于其[/font][font=Calibri]FR2[/font][font=宋体]中的疏水残基被亲水残基所取代,使得纳米抗体的水溶性增加,聚合性减少;而且即使以包涵体形式表达,也很容易复性,这样可以大大提高作为药物的利用率。[/font][/font][font=宋体][font=宋体]因纳米抗体分子量小、结构简单,由单一的基因编码,所以它很容易在微生物中合成,能在噬菌体、酵母等微生物中大量的表达,而且其相对价格低廉、可进行大规模生产,易于普及和应用。有报道,可通过酵母反应器酿造将纳米抗体的产量提高,每公升可达[/font][font=Calibri]1[/font][font=宋体]克的产量。[/font][/font][font=宋体] [/font][font=宋体][b]纳米抗体的应用优势[/b][/font][font=宋体] [/font][font=宋体][font=宋体]①用于生物医药研发(基因工程药物研发、[/font][font=Calibri]ADC[/font][font=宋体]药物研发);[/font][/font][font=宋体]②用于临床体外诊断(胶体金法、酶联免疫吸附法、电化学发光法);[/font][font=宋体]③用于肿瘤研究、免疫学研究等基础研究;申请具有自主知识产权的发明专利及科研奖项;[/font][font=宋体]④拓展研究思路、发表国际知名学术刊物。[/font][font=宋体] [/font][font=宋体][font=宋体]纳米抗体是一种非常有前景的下一代治疗性抗体技术,受到越来越多的研究机构和制药公司的关注。为支持纳米抗体药物的早期发现,义翘神州利用噬菌体抗体库技术自主研发了纳米抗体开发平台,已成功开发了多个纳米抗体候选分子。另外,我们的高通量纳米抗体表达平台,已成功表达和生产了多种纳米抗体形式,包括单价、多价或多特异性[/font][font=Calibri]VHH[/font][font=宋体],满足客户的各种定制需求。[/font][/font][font=宋体][font=宋体]更多详情可以关注:[/font][font=Calibri]https://cn.sinobiological.com/resource/antibody-technical/nanobody[/font][/font][font=Calibri] [/font]

  • 纳米抗体结构是什么?与普通抗体有什么区别

    [font=宋体][font=宋体]纳米抗体([/font][font=Calibri]Nanobody, Nb[/font][font=宋体]),又称为单域抗体([/font][font=Calibri]Single-domain antibodies, sdAbs[/font][font=宋体]),是来源于骆驼科动物和鲨鱼的一种独特的抗体,最初由比利时免疫学家[/font][font=Calibri]Hamers-Casterman[/font][font=宋体]于[/font][font=Calibri]1989[/font][font=宋体]年在分离骆驼血清中的抗体时偶然发现。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]传统抗体的结构类似于[/font][font=宋体]“[/font][font=Calibri]Y[/font][font=宋体]”形,是由两条重链和两条轻链构成的对称结构。一些骆驼科动物等在其生长进化的过程中,自身的免疫系统中出现了缺失轻链及重链[/font][font=Calibri]CH1[/font][font=宋体]结构但完全保留抗原结合活性的重链抗体([/font][font=Calibri]HCAb[/font][font=宋体])。[/font][font=Calibri]HCAb[/font][font=宋体]特异性结合抗原的区域为其重链的可变区,即[/font][font=Calibri]VHH[/font][font=宋体]([/font][font=Calibri]Variable domain of heavy chain of heavy-chain antibody[/font][font=宋体])。[/font][font=Calibri]VHH[/font][font=宋体]经重组表达后,可获得只含有单个结构域的最小单元抗原结合片段,即纳米抗体。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]纳米抗体仅有[/font][font=Calibri]12~14 kDa[/font][font=宋体],其晶体直径为[/font][font=Calibri]2.5 nm[/font][font=宋体],长[/font][font=Calibri]4 nm[/font][font=宋体],因此被认为是已知的可以与抗原结合的最小单位。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]纳米抗体([/font][font=Calibri]VHH[/font][font=宋体])与普通抗体[/font][font=Calibri]VH[/font][font=宋体]具有相同的结构域,即[/font][font=Calibri]4[/font][font=宋体]个保守框架区([/font][font=Calibri]FR1/2/3/4[/font][font=宋体])和[/font][font=Calibri]3[/font][font=宋体]个互补决定区([/font][font=Calibri]CDR1/2/3[/font][font=宋体])。普通抗体的[/font][font=Calibri]VH[/font][font=宋体]中[/font][font=Calibri]FR2[/font][font=宋体]内有四个高度保守的疏水性氨基酸残基([/font][font=Calibri]V42[/font][font=宋体]、[/font][font=Calibri]G49[/font][font=宋体]、[/font][font=Calibri]L50[/font][font=宋体]和 [/font][font=Calibri]W52[/font][font=宋体]),而在[/font][font=Calibri]VHH[/font][font=宋体]抗体中,这四个氨基酸被替换成亲水性的氨基酸残基([/font][font=Calibri]F42[/font][font=宋体]或 [/font][font=Calibri]Y42[/font][font=宋体]、[/font][font=Calibri]E49[/font][font=宋体]、[/font][font=Calibri]R50[/font][font=宋体]和[/font][font=Calibri]G52[/font][font=宋体]),因此增加了纳米抗体的水溶性。此外,与普通抗体的[/font][font=Calibri]CDR3[/font][font=宋体]相比,纳米抗体的[/font][font=Calibri]CDR3[/font][font=宋体]较长一些,可形成凸形结构,从而增强对隐藏的肿瘤抗原表位识别的能力。[/font][/font][font=宋体] [/font][font=宋体][b]纳米抗体与普通抗体的区别:[/b][/font][font=宋体] [/font][font=宋体][b]普通抗体:[/b][/font][font=宋体]免疫原性:较高[/font][font=宋体][font=宋体]分子量大小:[/font][font=Calibri]150 kDa[/font][/font][font=宋体]半衰期:较长[/font][font=宋体]组织穿透力:较低[/font][font=宋体][font=Calibri]CDR3[/font][font=宋体]长度:平均[/font][font=Calibri]10[/font][font=宋体]个氨基酸残基[/font][/font][font=宋体]识别位点:较难识别隐藏位点[/font][font=宋体][font=宋体]稳定性:易失活,在高温或极端[/font][font=Calibri]pH[/font][font=宋体]下失效或分解[/font][/font][font=宋体]抗体表达:哺乳动物表达[/font][font=宋体]生产费用:较高[/font][font=宋体][font=宋体]工程化改造:[/font][font=宋体]“[/font][font=Calibri]Y[/font][font=宋体]”字型结构,不易改造[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][b]纳米抗体:[/b][/font][font=宋体]免疫原性:较低[/font][font=宋体][font=宋体]分子量大小:[/font][font=Calibri]12-14 kDa[/font][/font][font=宋体]半衰期:较短[/font][font=宋体]组织穿透力:较强,可穿过血脑屏障[/font][font=宋体][font=Calibri]CDR3[/font][font=宋体]长度:[/font][font=Calibri]16-24[/font][font=宋体]个氨基酸残基[/font][/font][font=宋体]识别位点:容易识别隐藏位点[/font][font=宋体][font=宋体]稳定性:高稳定性,在高温或极端[/font][font=Calibri]pH[/font][font=宋体]下保持稳定[/font][/font][font=宋体]抗体表达:哺乳动物或微生物表达[/font][font=宋体]生产费用:较低[/font][font=宋体]工程化改造:结构简单,容易改造[/font][font=宋体] [/font][font=宋体][font=宋体]纳米抗体是一种非常有前景的下一代治疗性抗体技术,受到越来越多的研究机构和制药公司的关注。为支持纳米抗体药物的早期发现,义翘神州利用噬菌体抗体库技术自主研发了纳米抗体开发平台,已成功开发了多个纳米抗体候选分子。另外,我们的高通量纳米抗体表达平台,已成功表达和生产了多种纳米抗体形式,包括单价、多价或多特异性[/font][font=Calibri]VHH[/font][font=宋体],满足客户的各种定制需求。[/font][/font][font=宋体] [/font][font=宋体][b]纳米抗体开发服务[/b][/font][font=宋体][font=宋体]不同于经典的杂交瘤技术制备单克隆抗体,纳米抗体开发的整个流程主要包括羊驼免疫、噬菌体文库构建、抗体筛选、表达纯化及验证等阶段。羊驼免疫后,从羊驼外周血分离[/font][font=Calibri]B[/font][font=宋体]淋巴细胞,提取总[/font][font=Calibri]RNA[/font][font=宋体],反转录为[/font][font=Calibri]cDNA[/font][font=宋体],以[/font][font=Calibri]cDNA[/font][font=宋体]为模板[/font][font=Calibri][url=https://insevent.instrument.com.cn/t/jp][color=#3333ff]PCR[/color][/url][/font][font=宋体]扩增获得多样化的纳米抗体基因片段,然后将其连接到载体上,从而构建噬菌体文库。随后进行多轮淘洗步骤获得抗原特异性纳米抗体,并对其进行测序、表达和验证。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]义翘神州建立了[url=https://cn.sinobiological.com/resource/antibody-technical/nanobody][b]纳米抗体[/b][/url]开发平台,可提供一站式的纳米抗体定制服务,主要包括抗原设计与制备、羊驼免疫、文库构建、淘洗、单克隆鉴定、测序以及活性分析等实验步骤,已成功交付多个纳米抗体开发项目。获得的纳米抗体需要进行进一步的人源化改造,以降低其免疫原性,实现最佳的治疗效果。义翘神州提供的纳米抗体人源化服务,利用[/font][font=Calibri]CDR[/font][font=宋体]置换技术及计算机辅助结构模拟设计可对羊驼纳米抗体进行人源化改造,保证人源化程度 [/font][font=Calibri]95%[/font][font=宋体],成功率[/font][font=Calibri]100%[/font][font=宋体]。我们也提供体外药效评价解决方案,满足纳米抗体成药性评估、生物学活性测定等应用场景。更多详情可以参看:[/font][font=Calibri]https://cn.sinobiological.com/resource/antibody-technical/nanobody[/font][/font]

  • 纳米抗体的优缺点及制备方法详解

    [font=宋体][font=宋体]纳米抗体([/font][font=Calibri]nanobody, Nb[/font][font=宋体])是一种人工设计的抗体分子,又称为单域抗体([/font][font=Calibri]single-domain antibodies, sdAbs[/font][font=宋体])、[/font][font=Calibri]VHH[/font][font=宋体]抗体或[/font][font=Calibri]camelid[/font][font=宋体]抗体,是发现于羊驼、单峰驼等驼科以及鲨鱼、鳐鱼等软骨鱼中的一种天然缺失轻链的重链抗体([/font][font=Calibri]heavy-chain antibodies, HCAbs)[/font][font=宋体]。[/font][/font][font=宋体][font=宋体]纳米抗体分子量仅为传统抗体的[/font][font=Calibri]10%[/font][font=宋体],保留了[/font][font=Calibri]HCAbs[/font][font=宋体]完整的抗原结合能力,特异性强、亲和性好、稳定性高,广泛用于生化机制研究、结构生物学及肿瘤等疾病诊疗。[b]纳米抗体的优缺点具体如下:[/b][/font][/font][b][font=宋体]纳米抗体的优点:[/font][/b][font=宋体][font=宋体]([/font][font=Calibri]1[/font][font=宋体])在高温和[/font][font=Calibri]pH[/font][font=宋体]下的稳定性;[/font][/font][font=宋体][font=宋体]([/font][font=Calibri]2[/font][font=宋体])[/font][font=Calibri]VHH[/font][font=宋体]可以识别通常不被常规抗体识别的抗原位点;[/font][/font][font=宋体][font=宋体]([/font][font=Calibri]3[/font][font=宋体])它们的小分子片段有助于快速组织渗透和标记应用,包括跨越血脑屏障;[/font][/font][font=宋体][font=宋体]([/font][font=Calibri]4[/font][font=宋体])用于大规模生产节约成本的替代品。[/font][/font][font=宋体] [/font][font=宋体][b]纳米抗体的缺点:[/b][/font][font=宋体][font=宋体]由于纳米抗体的半衰期短,限制其临床应用,因此可将[/font][font=Calibri]VHH[/font][font=宋体]抗体与抗血清白蛋白或抗体的[/font][font=Calibri]Fc[/font][font=宋体]段融合表达以延长其在血液中的半衰期。[/font][/font][font=宋体] [/font][font=宋体][b]纳米抗体的制备主要分为两个方向:基于蛋白工程的方法和基于化学合成的方法。[/b][/font][font=宋体] [/font][font=宋体][font=Calibri]1. [/font][font=宋体]基于蛋白工程的方法:在[/font][font=Calibri]20[/font][font=宋体]世纪[/font][font=Calibri]80[/font][font=宋体]年代晚期和[/font][font=Calibri]90[/font][font=宋体]年代初期,科学家提出了单链抗体[/font][font=Calibri](scFv)[/font][font=宋体]的概念,并使用噬菌体显示技术实现了单链抗体的制备。随后,研究人员进一步改进了单链抗体的设计和优化,使其具有更好的稳定性和亲和力。这些单链抗体通过基因工程手段制备,可以实现在细菌或哺乳动物细胞中大规模生产。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]2. [/font][font=宋体]基于化学合成的方法:随着化学合成技术的发展,科学家们开始探索利用化学合成方法制备纳米抗体。在[/font][font=Calibri]2003[/font][font=宋体]年,研究人员开发出了一种称为[/font][font=Calibri]DNA[/font][font=宋体]导向的抗体组装的方法,通过[/font][font=Calibri]DNA[/font][font=宋体]纳米结构的设计和组装,实现了纳米级抗体的制备。这种方法利用[/font][font=Calibri]DNA[/font][font=宋体]的互补配对性质将抗体片段组装在一起,形成稳定的纳米抗体结构。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]3. [/font][font=宋体]其他制备方法的发展:随着纳米科技和纳米材料的发展,研究人员还尝试了其他制备纳米抗体的方法。例如,利用核酸适配体技术结合纳米材料,实现了纳米级别的适配体抗体复合物。此外,还利用纳米粒子和纳米材料作为载体,将传统抗体修饰在其表面,形成纳米抗体。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]总的来说,纳米抗体的制备方式相对来说并不是特别的困难,但是和传统抗体的生产过程一样,它需要注意到的细节问题有很多。值得注意的是,纳米抗体的制备技术依然在飞速发展和创新中,并取得了不错的进展,也让我们制备抗体的时候,有了更多选择。更多详情可以关注义翘神州[url=https://cn.sinobiological.com/resource/protein-review/transmembrane-proteins][b]纳米抗体[/b][/url]页面:[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review/transmembrane-proteins[/font][/font][font=Calibri] [/font]

纳米抗体相关的资料

纳米抗体相关的资讯

  • 研究人员开发基于纳米抗体的酶联免疫分析传感器
    7月7日,记者从广东工业大学获悉,该校生物医药学院教授赵肃清团队与美国加州大学戴维斯分校合作,首次制备出高亲和力的可溶性环氧化物水解酶抑制剂(EC5026和TPPU)纳米抗体,并用于开发灵敏的间接竞争性免疫分析传感器。相关研究论文发表于《药物分析学报》(Journal of Pharmaceutical Analysis)。该论文第一作者为杨慧怡,通讯作者为赵肃清和Bruce D. Hammock。  该研究以可溶性环氧化物水解酶抑制剂(EC5026和TPPU)为分析物,报道了一种基于纳米抗体的酶联免疫分析传感器的构建与应用,该传感器能够实现灵敏地、准确地对抑制剂给药后临床人体样品中抑制剂含量的监测。可溶性环氧化物水解酶抑制剂在各种动物模型中都是有效的神经性疼痛镇痛药,其中EC5026已成功通过美国FDA人体1a期试验,TPPU因其优异的药代动力学特征、靶效和体内生物活性被广泛应用于研究。  该研究首次制备了高亲和力的EC5026和TPPU纳米抗体,并用于开发灵敏的间接竞争性免疫分析传感器。该传感器具备较高的精密度和准确度。研究表明,纳米抗体为小分子药物的临床开发和治疗过程中的监测提供了质谱法的替代和补充分析工具。
  • Nature子刊|清华团队发现新冠病毒纳米抗体,对XBB等保持活性
    新冠疫情暴发以来,全球范围内已研发出多款针对SARS-CoV-2的中和抗体药物,通过严格的随机双盲对照临床试验,美国食品药品监督管理局已经授权多款治疗COVID-19的中和抗体药物的紧急使用。我国国家药品监督管理局也批准了由清华大学、深圳市第三人民医院和腾盛华创共同研发的Amubarvimab与Romlusevimab抗体鸡尾酒疗法,用于治疗轻型和普通型且伴有进展为重型高风险因素的成人和青少年,并在当前的临床救治过程中发挥着积极的作用。但随着COVID-19在全球范围内的大流行,新的变异株不断出现,尤其是传播性较原始株显著增强的Omicron多种突变株,对人民的健康和正常生活造成了很大影响。变异株在刺突蛋白(S)上所产生的重要突变位点导致疫苗和中和抗体活性降低或消失,对新一代疫苗和抗体药物的研发提出了更高和更迫切的要求。纳米抗体来自骆驼科等动物体内的重链抗体,是重链抗体中最小的完整功能结构。纳米抗体具有体积小、特异性强、稳定性强、易生产、穿透力强、免疫原性低等多种优势,使其更加容易识别常规抗体无法识别的抗体表位,加大了抗体的覆盖空间和结合能力,为新一代抗体药物的研发提供了更广阔和更独特的选择,具有广泛的临床应用前景。2022年12月27日,清华大学医学院张林琦教授、生命科学学院王新泉教授研究团队在《自然通讯》(Nature Communications)期刊在线发表题为“针对新冠病毒奥密克戎变异株及多种冠状病毒具有广谱中和能力和保护能力的纳米抗体”(Broadly neutralizing and protective nanobodies against SARS-CoV-2 Omicron subvariants BA.1, BA.2, and BA.4/5 and diverse sarbecoviruses)研究论文。该研究从免疫羊驼体内分离鉴定纳米抗体,对SARS-CoV-2多种变异株、SARS-CoV-1和其他主要sarbecovirus病毒具有广谱高效中和活性。其中代表性抗体3-2A2-4识别受体结合域RBD(Receptor binding domain)蛋白上高度保守的表位,保护K18-hACE2转基因小鼠免受Omicron和Delta活病毒感染,并对目前国内外出现的多种突变株BF.7,BQ.1.1和XBB等仍保持高效的中和活性,为研发新一代SARS-CoV-2纳米抗体药物提供了理想的候选。研究人员使用新冠病毒S蛋白和编码S蛋白的黑猩猩腺病毒载体疫苗等免疫羊驼,发现羊驼不仅产生了针对SARS-CoV-2病毒的中和抗体,而且产生了针对SARS-CoV-1病毒的中和抗体。通过酵母展示文库技术,研究者从免疫羊驼体内分离获得593个对SARS-CoV-2病毒具有结合能力的纳米抗体,其中124个对SARS-CoV-2病毒具中和能力,91个对SARS-CoV-1病毒具有交叉中和能力。研究人员挑选了其中32个具有高效交叉中和能力的纳米抗体开展了全面和深入的评估。通过表位竞争试验,这32个抗体被分为3组,其中第2和第3组中的大部分纳米抗体对14种SARS-CoV-2变异株(包括多种Omicron变异株)和5种sarbecovirus病毒保持了广谱中和能力。后续的初步实验结果显示,第3组的抗体对于最新出现的新冠病毒变异株BF.7、BQ.1和XBB等均保持活性。图1.鉴定获得的纳米抗体对SARS-CoV-2变异株和其他sarbecovirus具有广谱中和活性研究人员在具有较好广谱中和活性的前3组抗体中各选了一株代表性抗体,解析了与SARS-CoV-2或SARS-CoV-1RBD蛋白的高分辨率晶体结构,阐明其结合表位的分子结构和抗病毒机制。第3组的代表抗体3-2A2-4结合位点独特,位于RBD核心区的outer face和inner face交界底部,识别的表位氨基酸大多高度保守。其CDR3上F102和F103深入到了RBD N343糖链下的一个高度保守的疏水口袋中,形成了疏水相互作用,奠定了其广谱中和活性的结构基础。进一步的蛋白酶K、细胞染色实验与电镜结构解析表明该抗体结合SARS-CoV-2RBD后可将其固定在down的空间构象,影响S蛋白结合受体ACE2,从而阻碍病毒侵染细胞。图2. 3-2A2-4与SARS-CoV-2原始株RBD的结构解析为进一步研究纳米抗体3-2A2-4的体内保护效果,研究者利用K18-ACE2转基因小鼠模型进行了纳米抗体的预防保护实验。攻毒前一天通过腹腔注射10 mg/kg的3-2A2-4纳米抗体,24小时后通过鼻腔攻毒SARS-CoV-2 Omicron BA.1和Delta活病毒,对小鼠进行存活率和体重检测等。结果显示,3-2A2-4纳米抗体可以有效预防Omicron和Delta活病毒感染,防止和降低肺部组织感染,保护肺组织免于结构损伤和炎症反应,展示了优异的体内保护能力。图3.3-2A2-4在小鼠体内的预防保护综上,该研究从免疫羊驼体内分离获得上百个具有强中和能力的纳米抗体,并从中筛选出对目前所有SARS-CoV-2变异株(包括Omicron各亚株)以及5种其他sarbecovirus病毒具有强中和能力的纳米抗体。通过抗体抗原复合物晶体结构的解析,在受体结合域RBD蛋白表面发现多个高度保守的广谱中和表位,系统阐释了广谱中和能力的作用机制,确定了高度保守的抗原位点。其中,代表抗体3-2A2-4在K18-hACE2转基因小鼠模型中展示了对Omicron株和Delta株活病毒的预防保护能力,为研发下一代SARS-CoV-2纳米抗体药物提供了优秀的候选。论文链接:https://www.nature.com/articles/s41467-022-35642-2
  • DNA纳米机器可检测艾滋病诊断抗体
    一国际研究团队在最新一期《应用化学》杂志发表论文称,其设计并合成出一种纳米尺度的DNA(脱氧核糖核酸)机器,该机器的定制修改特性可支持识别特定的目标抗体。研究成果将给目前缓慢、繁琐且昂贵的抗体检测过程带来革命性变化,有助于诊断风湿性关节炎、HIV(艾滋病病毒)等感染和其他自身免疫性疾病,从而减少疾病治疗延误,降低治疗开支。  论文指出,抗体与该DNA机器的结合可引起结构性变化,并产生光信号。传感器无需化学激活,在5分钟内即可快速作用,即使在血清等复杂临床样品中也能容易地检测出目标抗体。  加拿大蒙特利尔大学瓦列里贝利索教授称,该模块化平台比现有抗体检测方法具有明显优势,不仅迅速,而且不需化学试剂,可用于即时检测和生物成像等一系列场合。研究人员还表示,该方法具有广谱特性,非常灵活,DNA纳米机器可进行定制修改,以用于检测各种不同疾病的抗体。平台还具有低成本优势,每次检测的成本仅需15美分,与其他定量检测方法相比非常有竞争力。  目前,研究人员正与诊断公司合作对该项技术进行改进,通过调整平台,未来用户将可用手机直接读取纳米开关的信号。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制