纳米通道反应器

仪器信息网纳米通道反应器专题为您整合纳米通道反应器相关的最新文章,在纳米通道反应器专题,您不仅可以免费浏览纳米通道反应器的资讯, 同时您还可以浏览纳米通道反应器的相关资料、解决方案,参与社区纳米通道反应器话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

纳米通道反应器相关的耗材

  • 化工合成反应釜反应罐高温水热反应釜纳米用晶体反应釜
    水热合成反应釜(耐高温)一、产品指南水热合成反应釜,也称水热釜,聚合反应釜,是在一定温度、一定压力条件下合成化学物质提供的反应器。 应用于新材料、能源、环境工程等领域的科研试验中,是高校教学、科研单位进行科学研究的常用小型反应器。反应釜由一个外罐和一个内杯组成(内杯有直筒、翻边设计)。外罐国标无磁不锈钢,内杯聚四氟乙烯(PTFE)或进口改性聚四氟乙烯材质(TFM),而且对于30ml,50ml,60ml、100ml几个规格我们的内杯有翻边和直筒两种设计。二、产品参数型号ZH组成方式一套包含:一个外罐和一个内杯外罐材料国标优质无磁不锈钢 内杯材料及耐温1、国产高纯实验级聚四氟乙烯PTFE耐温200℃以内;2、进口聚四氟乙烯TFM耐受230-260℃,耐压性,恢复性好三、我厂水热合成反应釜优点:1、安全。在设计时充分考虑了安全性,由被动控温转为主动控压,罐体采用圆形榫槽密封设计,手动螺旋紧固(扳手机械紧固)密封性能好;杯顶有泄气孔,安全系数高,即使在温度失控的情况下,只会内杯变形,外罐不会坏;2、使用方便:内杯采用U型设计,易于清洗;内壁光滑,不挂水;3、空缺值低,提高分析的准确度和精密度,降低了工作强度和对环境的污染;4、密封性能好,缩短实验分析时间; 5、内杯盖尖底设计,方便实验结束后样品收集; 6、内杯/外罐可编号,避免混淆方便实验,提高实验准确性,可重复性。四、专家们说 高温水热法的优点:粒子纯度高、分散性好、晶形好且可控制,生产成本低。用水热法制备的粉体一般无需烧结,这就可以避免在烧结过程中晶粒会长大而且杂质容易混入等缺点。(实验温度建议您慢慢调高,让内杯有一个循序渐进升高温度的过程。)
  • 高温反应釜纳米材料水热合成反应釜晶体反应釜
    水热合成反应釜(耐高温)一、产品指南水热合成反应釜,也称水热釜,聚合反应釜,是在一定温度、一定压力条件下合成化学物质提供的反应器。 应用于新材料、能源、环境工程等领域的科研试验中,是高校教学、科研单位进行科学研究的常用小型反应器。反应釜由一个外罐和一个内杯组成(内杯有直筒、翻边设计)。外罐国标无磁不锈钢,内杯聚四氟乙烯(PTFE)或进口改性聚四氟乙烯材质(TFM),而且对于30ml,50ml,60ml、100ml几个规格我们的内杯有翻边和直筒两种设计。二、产品参数型号ZH组成方式一套包含:一个外罐和一个内杯外罐材料国标优质无磁不锈钢 内杯材料及耐温1、国产高纯实验级聚四氟乙烯PTFE耐温200℃以内;2、进口聚四氟乙烯TFM耐受230-260℃,耐压性,恢复性更好三、我厂水热合成反应釜优点:1、安全。在设计时充分考虑了安全性,由被动控温转为主动控压,罐体采用圆形榫槽密封设计,手动螺旋紧固(扳手机械紧固)密封性能好;杯顶有泄气孔,安全系数高,即使在温度失控的情况下,只会内杯变形,外罐不会坏;2、使用方便:内杯采用U型设计,易于清洗;内壁光滑,不挂水;3、空缺值低,提高分析的准确度和精密度,降低了工作强度和对环境的污染;4、密封性能好,缩短实验分析时间; 5、内杯盖尖底设计,方便实验结束后样品收集; 6、内杯/外罐可编号,避免混淆方便实验,提高实验准确性,可重复性。四、专家们说 高温水热法的优点:粒子纯度高、分散性好、晶形好且可控制,生产成本低。用水热法制备的粉体一般无需烧结,这就可以避免在烧结过程中晶粒会长大而且杂质容易混入等缺点。(实验温度建议您慢慢调高,让内杯有一个循序渐进升高温度的过程。)
  • 整套 HT 高温反应器 6.2845.210
    整套 HT 高温反应器,用于 6.2845.110订货号: 6.2845.210用于高温 PCR 柱后衍生应用的反应器( 120°C)。带 PEEK 聚醚醚酮反应器毛细管。

纳米通道反应器相关的仪器

  • 我们的优势:反应器模块芯片采用整体键合,一体成型方式,耐高压,防漏液;碳化硅材质,耐酸耐碱耐盐,耐腐蚀;各种持液量规格的模块均可根据客户要求定制;超纯碳化硅材料及碳化硅反应器模块专业生产厂家,源头工厂;产品可能不是“最优于”,至少是“不差于”;一对一专业服务,无论何种规格,客户至上。 产品参数:工作温度(℃):-60-200工作压力(bar) : ≦50芯片尺寸(mm):300*300持液量(ml):3、8、50、250、300通道尺寸(mm):3.2-6.0 流量范围:通用款有8、50、250、300ml,可根据实际工况灵活调配,多组串联;机型:单组模块为5层碳化硅板式芯片结构,整体键合;多组模块之间采用全氟醚O型密封圈密封;模块外部由碳纤维保温隔热外壳包覆;外接配管:进出管为6-8mmPTFE管、1/4合金管等; 产品应用:硝化、氧化、还原、重氮化、缩合、酰胺化、溴化等反应。适用于医药,农药,染料,香料,表面活性剂等精细化工中间体和其它特种助剂,以及基本化学品的合成工艺研发和商业化生产。应用案例:纳米材料制备 1. 白芦黎醇纳米分散体(来源:DOI: 10. 13543 /j. bhxbzr. 2017. 05. 005): A相:白芦黎醇溶于乙醇或丙酮 B相:辅料PVP和SDS溶于水 进料流量比:A:B=1:20(3ml/min、60ml/min) 利用平流泵调节AB两相溶液的进料条作,在微通道反应器出口收集纳米分散体浆料,制得平均粒径130nm左右分散体。继续采用套管式微通道反应器优化放大,可得到平均粒径80nm左右。 2. 纳米布洛芬晶体制备(来源:单羽,微通道反应器沉淀法制备纳米晶体【D】,南京理工大学,2021,21-38. ) 选择心型微通道反应器,持液量3ml,进出料管为1/8 inch PTFE管,两进一出结构。 A相:不饱和的乙醇布洛芬溶剂 B相: 0.1mol/L的ZrCl4水溶液,pH3左右,抽滤后的滤液。进料流量比:A:B=1:15(1ml/min、15ml/min) 外加超声场,实验温度40°,通入A相,保留时间7s,出料后稳定30s,收取物料,布洛芬平均粒径100nm左右。
    留言咨询
  • 微通道反应器 GramFlow 400-860-5168转1639
    微通道反应器 GramFlow品牌:Chemtrix产地:荷兰特点:集成化的玻璃材质微反应器GramFlow是一台具有强化传热、传质的模块化、占地面积小、集成化的连续流动反应器,用于监测、优化执行A+B=P型液液流动合成反应及纳米流动合成反应。 【产品简介】主要特征:1、换热模块和反应模块集成化2、反应温度下预热混合3、简化的KiloFlow流动反应器4、良好的传热、传质5、Zig-zag结构,混合6、德国品质 【应用范围】1、新反应条件的探索2、工艺参数的优化3、工艺验证4、g级别的生产5、评估该流动工艺可行性6、教学、培训 【应用领域】医药、精细化工、染料、香精香料、农业化学、特殊化学品,日用品化工业及科研教学。 常见反应工艺类型:硝化反应、磺化反应、酯化反应、环化反应、缩合反应、叠氮化反应、偶氮化反应、氧化反应、过氧化反应、烷基化反应、胺基化反应、氯化反应、加氢反应、取代反应、贝克曼重排反应、迈克加成反应、催化反应、光照反应,格氏反应等。 【工作原理】续流动化学:是指通过将两种(或多种)试剂连续的泵入反应器(Flow Reactor)中,在反应器中进行混合&反应,并通过热交换控制器控制反应温度,从而实现化学反应,获得所需的产品。微通道反应器具有比表面积大、传递速率高、接触时间短、副产物少、转化率更高、操作性好、安全性高、快速直接放大等优点,连续流反应的各条件(反应物,产物,副产物,催化剂,溶剂,介质)微量化,温度、压力等反应条件可进行调控,相比传统的批量反应(间歇反应),在反应放大和优化的过程中,具有更高反应效率,更高重现性和稳定性。且连续流反应器热量缓冲需求量低,产量提高,试剂减少,自动化程度极高,大大节省人力资源。 【技术参数】反应类型:A + B → P通 量:0.2 – 10 mL/min(可达600g/h)反应体积:1mL压力范围:0-20bar温度范围:-20 – 150℃触液材料:PTFE、FFKM、玻璃尺 寸:126*61*46mm(W*D*H)(W*D*H)
    留言咨询
  • 产品信息品牌:湖北微化产地:湖北武汉特点:集成化的碳化硅材质微反应器,集热交换通道和反应通道于一体,具有极佳的的耐化学品腐蚀性和换热效率,是操作常规条件下具有一定风险性的合成反应的理想工具;具有强化传热、传质的模块化、占地面积小、集成化的连续流动反应器,用于监测、优化执行液液流动合成反应及纳米颗粒合成反应。 【产品简介】主要特征:1、单组持液量50-300ml,流量可精确定制;适用于中试、工业放大级生产;2、模块为5层碳化硅板式芯片结构,每组模块整体键合,模块之间采用全氟醚O型圈密封,模块外部由碳纤维保温隔热外壳包覆;3、可根据实际工况灵活调配,多组串联或并联;4、外接配管:进出管为6-8mmPTFE管、1/4合金管等;4、换热介质:管路多组集中并联,换热均衡稳定 【应用范围】1、新反应条件的探索2、工艺参数的优化3、工艺验证4、小试、中试及工艺放大级别的生产5、评估该流动工艺可行性6、教学、培训 【应用领域】医药、精细化工、染料、香精香料、农业化学、特殊化学品,日用品化工业及科研教学。 常见反应工艺类型:硝化反应、磺化反应、酯化反应、环化反应、缩合反应、叠氮化反应、偶氮化反应、氧化反应、过氧化反应、烷基化反应、胺基化反应、氯化反应、加氢反应、取代反应、贝克曼重排反应、迈克加成反应、催化反应、光照反应,格氏反应等。 【工作原理】连续流动化学:是指通过将两种(或多种)试剂连续的泵入反应器中,在反应器中进行混合、反应,并通过热交换控制器控制反应温度,从而实现化学反应,获得所需的产品。微通道反应器具有比表面积大、传递速率高、接触时间短、副产物少、转化率更高、操作性好、安全性高、快速直接放大等优点,连续流反应的各条件(反应物,产物,副产物,催化剂,溶剂,介质)微量化,温度、压力等反应条件可进行调控,相比传统的批量反应(间歇反应),在反应放大和优化的过程中,具有更高反应效率,更高重现性和稳定性。且连续流反应器热量缓冲需求量低,产量提高,试剂减少,自动化程度极高,大大节省人力资源。 【技术参数】通 量:单组持液量300ml,流量100-300L/h,适用于小试、中试及工业级放大生产;持液量:通用型8mL、50mL、250mL、300 mL,其它可根据实际工况定制;反应通量:2000t/a;压力范围:0-50 bar;温度范围:-40 – 220℃;触液材料:PTFE(聚四氟乙烯管道)、FFKM(全氟醚橡胶O型圈)、碳化硅陶瓷通道模块尺 寸:250mm*250mm 【售后服务承诺】保修期: 1年是否可延长保修期: 是现场技术咨询: 有免费培训: 现场免费培训免费仪器保养: 1次保内维修承诺: 除耗材外,免费更换报修承诺: 2小时内响应,远程无法解决的,48小时内到达现场
    留言咨询

纳米通道反应器相关的方案

纳米通道反应器相关的论坛

  • 微通道反应器和连续流反应器的精密压力控制解决方案

    微通道反应器和连续流反应器的精密压力控制解决方案

    [size=16px][color=#339999][b]摘要:针对目前连续流反应器或微反应器压力控制中存在手动背压阀控制不准确、电动或气动背压阀响应速度太慢、无法适应不同压力控制范围和控制精度要求、以及耐腐蚀和耐摩擦性能较差等诸多问题,本文提出了相应的解决方案。解决方案的核心是分别采用了低压和高压压力精密控制装置,低压控制采用电动针阀可实现0.7MPa以下压力控制,高压控制采用先导阀和气动背压阀可实现20MPa以下压力控制。[/b][/color][/size][align=center][size=16px] [img=连续流反应器和微通道反应器的精密压力控制解决方案,600,401]https://ng1.17img.cn/bbsfiles/images/2023/06/202306151529297690_1768_3221506_3.jpg!w690x462.jpg[/img][/size][/align][size=18px][color=#339999][b]1. 问题的提出[/b][/color][/size][size=16px] 连续流反应是反应组分在受控的工艺条件下通过连续流动进行混合,并通过加热和加压可实现更快的反应速度,而物质之间的有限相互作用使得反应更安全、更易优化以及更易进行工艺放大。近些年来,连续流反应技术已经从小众的学术应用研究转变为一种公认的强大的工业技术,其优势在于该技术所表现出安全、高效、高质与低成本的特点。[/size][size=16px] 按照流动管路的粗细,连续流反应器分为管式反应器和微通道反应器两大类,如图1所示。[/size][align=center][size=16px][color=#339999][b][img=01.连续流反应器几种典型形式,650,175]https://ng1.17img.cn/bbsfiles/images/2023/06/202306151534309713_433_3221506_3.jpg!w690x186.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 连续流反应器的几种典型形式[/b][/color][/size][/align][size=16px] 大多数连续流反应装置主要由八个基本部分组成:流体和试剂递送、混合、反应器、淬灭、压力调节、收集、分析和纯化,如图2所示。[/size][align=center][size=16px][color=#339999][b][img=02.标准双进料连续流反应过程示意图,650,175]https://ng1.17img.cn/bbsfiles/images/2023/06/202306151534519826_773_3221506_3.jpg!w690x186.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 标准双进料连续流反应过程示意图[/b][/color][/size][/align][size=16px] 连续流反应面临的挑战之一是控制所有过程参数,如温度和压力。如图2所示,反应器压力是连续流化学反应的重要环节,要求在各种苛刻的条件下进行恒压控制,这使得连续流反应器压力控制过程面临着以下挑战:[/size][size=16px] (1)目前多采用手动背压阀进行压力控制,存在压力控制不准、手动调节频繁的问题。[/size][size=16px] (2)目前也出现了电动和气动背压阀进行压力控制,但存在响应时间太长的问题,不太适合连续流反应过程中的压力稳定控制。[/size][size=16px] (3)各种连续流反应过程中会要求不同的压力环境,这就要求压力调节阀仅能满足低压压力控制,又能满足高压压力控制要求。[/size][size=16px] (4)连续流化学反应会涉及到很多腐蚀性气体或液体,这同样对压力控制阀的材质提出很高的要求,要求压力调节阀具有耐腐蚀和耐摩擦的优异性能。[/size][size=16px] 针对上述连续流反应器中存在的上述技术挑战和问题,本文提出了相应的解决方案。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 如图2的连续流反应过程所示,连续流反应器的压力控制的工作原理非常简单,当传送系统以一定压力将流体和试剂传递到反应器中时,可以通过调节阀开度大小来改变反应器出口端的介质流动速度来调节反应器内的压力,调节阀开度的大小则是根据压力传感并采用PID控制器来进行调节,使得反应器的压力始终恒定在设定压力上。[/size][size=16px] 连续流反应器会涉及到从低压到高压的多种压力环境,为了满足不同压力条件的要求,本解决方案采用了低压和高压两个压力控制技术方案。[/size][size=16px][color=#339999][b]2.1 低压压力控制方案[/b][/color][/size][size=16px] 低压压力是指表压为0~0.7MPa的压力范围,反应器低压压力控制装置结构如图3所示。低压压力控制装置由压力传感器、电动针阀和压力控制器组成并构成闭环控制回路,其中压力控制器获得压力传感器信号并与压力设定值比较后,PID控制输出信号驱动电动针阀的开度变化,由此改变通过针阀的流量大小而最终实现反应器的压力恒定控制。[/size][align=center][size=16px][color=#339999][b][img=03.连续流反应器低压压力控制装置结构示意图,550,276]https://ng1.17img.cn/bbsfiles/images/2023/06/202306151535125789_463_3221506_3.jpg!w690x347.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图3 连续流反应器低压压力控制装置结构示意图[/b][/color][/size][/align][size=16px] 为了保证控制精度,低压压力控制系统三个器件的技术指标如下:[/size][size=16px] (1)压力传感器:根据压力控制精度要求,可在1%~0.05%内选择不同的压力传感器。[/size][size=16px] (2)电动针阀:电动针阀为步进电气驱动的针型阀,具有从0.9、2.25和2.75mm三种通径,工作压力范围为-1~7bar,其最大特点是具有1秒以内的高响应速度,采用FFKM全氟醚橡胶做密封件的超强耐腐蚀性和耐摩擦性,非常适应于微反应器的压力和流量控制。[/size][size=16px] (3)压力控制器:有单通道和双通道可选,双通道控制器还可同时用于温度的测量和控制,其中每个通道都为24位AD、16位DA和0.01%最小输出百分比。压力控制器具有程序控制和PID参数自整定功能,配备有具有标准MODBUS协议的RS485接口,并自带计算机软件,可通过计算机运行软件进行控制器的远程参数设置、运行和控制过程的曲线显示和存储。[/size][size=16px][color=#339999][b]2.2 高压压力控制方案[/b][/color][/size][size=16px] 高压压力是指表压为0.5~20MPa的压力范围,反应器高压压力控制装置结构如图4所示。高压压力控制装置由压力传感器、先导阀、背压阀和压力控制器组成并构成闭环控制回路,其中压力控制器获得压力传感器信号并与压力设定值比较后,PID控制输出信号驱动先导阀,先导阀再驱动背压阀的开度变化,由此改变通过背压阀的流量大小而最终实现反应器的压力恒定控制。[/size][align=center][size=16px][color=#339999][b][img=04.连续流反应器高压压力控制装置结构示意图,550,276]https://ng1.17img.cn/bbsfiles/images/2023/06/202306151535309222_5324_3221506_3.jpg!w690x347.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图4 连续流反应器高压压力控制装置结构示意图[/b][/color][/size][/align][size=16px] 在高压压力控制装置中采用了相同的压力传感器和压力控制器,其他器件的技术指标如下:[/size][size=16px] (1)先导阀:工作压力范围0~0.5MPa,综合精度小于±1.5%FS。[/size][size=16px] (2)背压阀:工作压力范围0.5~20MPa,综合精度小于±10%FS。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 综上所述,通过上述的解决方案,可以很好的解决连续流反应器的压力准确控制问题,特别是采用了电动针阀和高精度压力控制器的低压压力控制装置,可广泛应用于低压低流量的微流道反应器中,可很方便的构成多通道微反应器压力控制系统,并能保证很高的压力控制精度和长期稳定性。[/size][align=center][b][color=#339999][/color][/b][/align][align=center][size=16px][color=#339999][b]~~~~~~~~~~~~~~~~~[/b][/color][/size][/align]

  • 微通道反应器冷热源恒温控制设备压缩机故障排除办法

    微通道反应器冷热源恒温控制设备是微通道反应器行业使用比较多的控温设备,无锡冠亚针对微通道反应器行业配套生产了微通道反应器冷热源恒温控制设备,微通道反应器冷热源恒温控制设备在运行中压缩机如果发生故障的话,需要及时排查解决。  微通道反应器冷热源恒温控制设备压缩机故障排查的话,先检查微通道反应器冷热源恒温控制设备电路部分,看看微通道反应器冷热源恒温控制设备电源、电压、开关是否正常,看看微通道反应器冷热源恒温控制设备电源是否有电,电压是否正常,开关触点是否良好,电源是否缺相。当微通道反应器冷热源恒温控制设备没有安装电流表、电压表时,可采用万用电表或测电笔检查电源情况。在电源电压过低时会使压缩机起动不了。  微通道反应器冷热源恒温控制设备的压缩机如果采用活塞式的压缩机的话,其连杆大头轴瓦与曲袖是否发生抱轴。这些,可以是以前运行时,由于排气温度过高造成,也可能是润滑油焦化,使气缸与活塞粘结造成,使压缩机不能起动。  检查微通道反应器冷热源恒温控制设备压差继电器和高低压继电器。当压缩机的油压不正常时,能使压缩机停止运行。同时,当压缩机排气压力和吸气压力异常时,均不能起动或已起动后压缩机会很快停止运转。检查冷冻水量、冷却水量、水温是否正常。若水量小、水温高,会引起冷凝压力急剧升高,蒸发温度迅速下降,由于机组保护设施动作,往往很快停机。  检查微通道反应器冷热源恒温控制设备有关的电磁阀、调节阀是否失灵,是否按要求开起或关闭。检查温度继电器的感温包内是否有工质泄漏,或调节有误。  微通道反应器冷热源恒温控制设备在使用之前,相应的准备工作一定要做好,希望微通道反应器冷热源恒温控制设备能够高效运行。

  • 微型反应器的特点

    (1)由于反应器中微通道宽度和深度比较小,一般为几十到几百微米,使反应物间的扩散距离大大缩短,传质速度快,反应物在流动的过程中短时间内即可充分混合(2)微通道的比表面积一般为5000—50000m2m-3,而在常规反应容器内,比表面积约为100m2m-3,少数为1000m2m-3。微通道的比表面积大,具有很大的热交换效率,即使是激烈的放热反应,瞬间释放出大量反应热也能及时移出,维持反应温度在安全范围内。由于反应物总量少,传热快,特别适用于研究异常激烈的合成反应而避免爆炸的危险。(3)在微通道反应器中进行合成反应时,需要反应物用量甚微,不但能减少昂贵、有毒、有害反应物的用量,反应过程中产生的环境污染物也极少,实验室基本无污染,是一种环境友好、合成研究新物质的技术平台。(4)在微通道反应器中得到产物的量与近代分析仪器,如GC、GC2MS、HPLC及NMR的进样量相匹配,使近代分析仪器可用于直接在线监测反应进行的程度,大大提高了研究合成路线的速度。(5)可以将各种催化剂固定在芯片微通道中得到高比表面积的微催化床,提高催化效率。(6)在微通道反应器中进行合成反应时,反应物配比、温度、压力、反应时间和流速等反应条件容易控制。反应物在流动过程中发生反应,浓度不断降低,生成物浓度不断提高,副反应较少。(7)在微通道反应器中采用连续流动的方式进行反应,对于反应速度很快的化学反应,可以通过调节反应物流速和微通道的长度,精确控制它们在微通道反应器中的反应时间。(8)随着微加工技术的发展,由微传感器、微热交换器、微混合器、微分离器、微反应单元、微流动装置等组成的集成系统,在合成反应研究中受到越来越多的关注。(9)微流控芯片高通量、大规模、平行性等特点使多个或大量微反应器的集成化与平行操作成为可能,从而提高了合成新物质、筛选新药物的效率,大幅度地降低了研究成本。文章来源:http://www.micromeritics.com.cn/news_view.aspx?id=819

纳米通道反应器相关的资料

纳米通道反应器相关的资讯

  • ​【印度新材料案例】康宁反应器合成纳米磁性氧化铁
    研究背景纳米氧化铁在催化、药物传递、光吸收材料等前沿研究中扮演者不可或缺的角色。纳米氧化铁的尺寸大小和粒径分布对材料性能表现非常重要。因此,高效制备一系列小粒径(<10 nm)且平均粒径均一的纳米氧化铁颗粒变得尤为重要。康宁反应器印度团队与印度国家理工学院的研究人员合作,使用康宁微反应器合成氧化铁纳米颗粒(NPs),研究了不同操作参数对获得的NP特性的影响。氧化铁NPs的合成基于使用硝酸铁(III)前体和氢氧化钠作为还原剂的共沉淀和还原反应。使用透射电子显微镜(TEM)、傅里叶变换红外光谱和X射线衍(XRD)分析对氧化铁纳米颗粒进行了表征。简介近年来,由于在磁存储设备、生物技术、水净化和生物医学应用领域的广泛应用,如热疗、化疗、磁共振诊断成像、磁感染和药物递送等,对高效合成磁性氧化铁NP的兴趣显著增加。该工作涉及使用Corning AFR微通道反应器通过共沉淀和还原法合成胶体氧化铁纳米颗粒,氧化铁纳米颗粒的XRD和TEM分析分别证实了其晶体性质和纳米尺寸范围。另外使用电子自旋共振光谱研究了氧化铁纳米颗粒的磁性,康宁微通道反应器制备的氧化铁纳米颗粒表现出超顺磁性行为。结果和讨论一. 氧化铁纳米颗粒形成的反应原理1.控制两个反应器中氧化铁纳米颗粒形成的总沉淀还原反应如下:2.随后,按照以下反应生成氧化铁:二. 共沉淀和还原反应生成氧化铁纳米颗粒共沉淀和还原反应是获得氧化铁纳米颗粒的最简单和最有效的化学途径。在通过反应器的过程中,九水合硝酸铁(III)被氢氧化钠还原,形成还原铁,随后稳定为氧化铁纳米颗粒。图1. AFR实验装置表1 康宁微反应器中的操作条件和结果在康宁AFR反应器中,氧化铁(磁铁矿Fe3O4或磁铁矿γ-Fe2O3)在室温下将碱水溶液添加到亚铁盐和铁盐混合物中形成。在反应器中,由于铁还原加速而形成黄棕色沉淀物,得到胶体氧化铁纳米颗粒如图1所示。在AFR反应器中合成氧化铁纳米颗粒的实验条件Fe(NO₃ )₃ 9H₂ O和NaOH溶液的流速在20- 60 ml/h。对于所有实验,还原剂与前体的摩尔比保持恒定为1:1。图2. 在AFR中具有不同流量的氧化铁np的紫外吸收光谱&trade .实验显示了在AFR反应器中不同流速所对应的结果:在CTAB表面活性剂存在下获得的λ最大值在480和490 nm之间;AFR中的心形设计使混合更佳;氧化铁NP的平均粒径通常随着流速的增加而减小,在50 ml/h的流速下获得最小粒径。在60和50 ml/h的较高流速下,分别观察到窄PSD超过6.77&minus 29.39 nm和3.76&minus 18.92 nm,如图3和表1所示;另一方面,在20 ml/h的较低流速下,在10.1&minus 43.82 nm,如图5和表1所示。从图5B所示的数据也可以确定,由于纳米粒子的引发和成核在50 ml/h下比在60 ml/h时发生得更快。因为颗粒大小取决于纳米粒子在反应器中的成核过程和停留时间,这也通过图5所示的TEM图像得到证实,图5显示制备的颗粒大小在2~8nm;图3所示数据&minus 对于表1中报告的PSD和平均粒径,可以确定粒径随着进料流速的增加而减小,这归因于较低的停留时间。在反应器中的较大停留时间(较低流速)为颗粒的团聚和晶体生长提供了更多的时间,从而获取更大的颗粒尺寸。图4A、B所示的TEM图像也证实。图3. 不同流速下氧化铁纳米颗粒的粒度分布(PSD)图4:50 ml/h的微反应器中合成的氧化铁纳米颗粒的透射电子显微镜图像图5:(A,B)使用CTAB作为表面活性剂在AFR中合成的氧化铁NP的TEM图像。总结通过共沉淀还原方法,在Corning AFR微通道设备中成功制备了稳定的胶体氧化铁纳米颗粒;流速即反应停留时间和混合模式的差异对所获得的氧化铁NP的粒度和PSD有显著影响,这反过来也影响材料稳定性和磁性;CTAB的使用,有助于合成稳定的氧化铁NP;反应流速是决定NP的平均粒径以及粒径分布的关键参数。氧化铁NP的平均粒径随着反应物流速的增加而减小;通过ESR光谱分析和基于使用永磁体的研究证实,制备的氧化铁NP表现出超顺磁性行为。总的来说,当前的工作证明了使用康宁微通道反应器,合成了更小更均一粒径的磁性氧化铁纳米颗粒。这项研究为后续其它纳米科学相关领域的研究提供里有效的实验支持和指导。参考文献:Green Process Synth 2018 7: 1–11
  • “化学剪裁”法精准制备纳米反应器
    近日,中科院大连化学物理研究所催化基础国家重点实验室研究员刘健团队与比利时那慕尔大学、武汉理工大学教授苏宝连合作,通过“化学剪裁”法精准制备出具有金属纳米颗粒空间分布的多级中空酚醛树脂纳米反应器,并表现出高效的多相催化加氢性能。相关研究成果发表于《先进材料》。细胞是一种具有多级中空结构和多组分活性物种的天然软物质。模拟细胞结构构筑人工细胞(也可称为纳米反应器)一直以来都受到科研人员的广泛关注。然而,设计具有多级中空结构的有机大分子仍具有挑战性。在该工作中,合作团队对氨基苯酚树脂微球进行了纳米级化学剪裁——使用乙醇作为化学剪裁剂,精确剪裁其微纳结构和化学组成。合作团队通过调节醇的种类和用量,可得到一系列类似纳米结构的氨基苯酚树脂颗粒,证明了该方法的通用性。研究发现,独特的多级中空结构及其有机微环境能够将金纳米颗粒包裹在其内部空腔中,形成类石榴型的微纳结构。合作团队将钯纳米颗粒选择性沉积在其外壳后,制备出具有精确金属空间分布的多级中空酚醛树脂纳米反应器。该纳米反应器封装的金纳米颗粒有利于向钯纳米颗粒提供电子,形成更多的金属钯。同时,外壳上的钯纳米颗粒有利于产生更多的活泼氢用于底物的氢化,从而提高催化活性。在苯乙烯、苯乙炔和硝基苯加氢反应中,该纳米反应器表现出高效的加氢性能。《中国科学报》 (2022-08-31 第1版 要闻)
  • 安徽理工大学张雷教授团队制备出新型多孔纳米笼型氧反应器
    作者:王敏 来源:中国科学报安徽理工大学材料科学与工程学院教授张雷团队制备出了一类新型的多孔纳米笼型反应器,并证明这种材料可以用于可充电锌空气电池的空气阴极。相关研究成果近日发表于《化学工程杂志》。新型多孔纳米笼型氧催化反应器示意图 安徽理工大学供图锌空气电池具有高理论能量密度、高安全性、低成本等优点,是一种极具发展前景的储能技术。目前锌空气一次电池已被广泛应用于助听器、路灯等电子设备中,锌空气二次电池因不可充电的致命缺陷严重限制了其进一步商业化应用。“随着新能源发电、新能源汽车产业发展,研究人员开始研发锌空气二次电池。但用于该电池的催化剂一般是贵金属催化剂。贵金属资源有限,成本高,开采困难,并且其催化性能单一、催化稳定性低,催化效率迟迟不能突破。”张雷向《中国科学报》介绍,开发出高效稳定的双功能氧催化剂替代传统的贵金属催化剂,对于锌空气二次电池的产业化至关重要。以自然界的石榴作为催化剂设计蓝本是个很好的创意,每一粒石榴果实都可以理解为一个催化活性位点,大量果实的集成丰富了催化所需要的活性位点,有助于高效的催化反应。“但这些活性位点往往被深埋于体相,导致活性位点的实际利用率极低,这就像石榴果实被包裹于果皮内,难以与外界的各种反应物质充分接触,这造成催化剂的催化活性难以完全发挥。”张雷说。此次研究中,张雷等提出了一种新的活性调控策略,通过将双功能活性中心装填于多孔碳纳米笼中,利用独特的孔洞设计加速电催化反应中的传质和传荷过程,实现了催化活性的大幅度提升。这种方法类似于在石榴表皮上构筑大量的孔,这些孔让大量的石榴果实与外界的反应物质充分接触,增大反应面积,加快物质的传输效率。张雷说:“这项研究可为下一代可逆能源转化系统中多功能电催化剂的设计和发展提供新的思路。”审稿人认为,“这一成果不仅克服了传统的电催化剂只对其中一个半反应具有出色的催化活性,而对另一个半反应往往催化活性一般的弊端,更为从微/纳米尺度上认识催化活性位点的组成、空间分布、界面电荷转移以及传质/传荷通道等与催化活性和稳定性之间的关联机制,提供了一个有效策略和理想的催化剂模型。”论文相关信息:https://doi.org/10.1016/j.cej.2022.137210
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制