未知蛋白

仪器信息网未知蛋白专题为您整合未知蛋白相关的最新文章,在未知蛋白专题,您不仅可以免费浏览未知蛋白的资讯, 同时您还可以浏览未知蛋白的相关资料、解决方案,参与社区未知蛋白话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

未知蛋白相关的耗材

  • 荧光蛋白定位激发光源
    荧光蛋白定位激发光源GFP-MDS-96/BN放置在物镜前方的阻挡滤光片可根据要求规格订做。此激发光源与护目镜GFsP-0共同使用,可在动物设备的固定位置如消毒层流柜直接观察绿色荧光蛋白(GFP)。两个握杆之间的空间可容纳小动物的笼子(如小鼠)。荧光蛋白定位激发光源可与荧光蛋白观察镜GFsP-0 或 YFsP-0一起使用直接观察绿色荧光蛋白(GFP)或黄色荧光蛋白(YFP)。 荧光蛋白定位激发光源GFP-MDS-96/BN有以下用途:(1) 数字摄像(2) 定位观察荧光蛋白 8种激发光源(共有96高亮度LED)的光柱可分别瞄准。它们能够为大多数绿色蛋白激发提供足够的激发强度。放置在物镜前方的阻挡滤光片可根据要求规格订做。此激发光源与观察镜GFsP-0共同使用,可在动物设备的固定位置如消毒层流柜直接观察绿色荧光蛋白(GFP)。两个握杆之间的空间可容纳小动物的笼子(如小鼠)。GFP-MDS-96/BN激发光源使用110/220v,可与观察镜GFsP-0或YFsP-0一起使用直接观察绿色荧光蛋白(GFP)或黄色荧光蛋白(YFP)。可根据相机的类型订做滤光片(需明确镜头尺寸)。将相机安装在仪器上的工具,方便调节支架。可根据相机的类型订做滤光片(需明确目标尺寸)。将相机安装在仪器上的工具,方便调节支架。
  • mRP-C18 高回收蛋白柱/胶上蛋白胰蛋白酶裂解试剂盒
    产品特点:mRP(大孔反相)C18 高回收蛋白柱是为高回收、高分离度分离复杂蛋白样品(如免疫去除后的血清或血浆蛋白),并同时脱盐而设计的。 &bull 安捷伦多重亲和去除系统- LC 柱进行免疫去除后的血清,蛋白样品的回收率为95-99% &bull 最多可以进样380 &mu g 总蛋白量,而不会降低蛋白质的色谱分离度 &bull 色谱柱填充了大孔的C18 - 键合相,5 &mu m 粒径超纯硅胶,为减少或消除蛋白质强吸附而设计 &bull 最大操作压力250 bar (4000 psi) &bull 与水和所有常用有机溶剂兼容胶上蛋白胰酶裂解试剂盒包含处理从聚丙烯酰胺凝胶上切割的考马斯亮蓝或荧光素染色的蛋白条带,所需要的全套试剂。&bull 可处理约150 份样品 &bull 采用简便易行的7 步方案,制备适用于质谱分析的精确而可重复的裂解产物 &bull 适用于广泛的蛋白条带浓度,大于~20 ng/ 条带 &bull 包括需要的所有缓冲液和6 种试剂,其中还有方案中所需的胰蛋白酶订货信息: mRP-C18 高回收蛋白柱 说明 蛋白载样容量 部件号 mRP-C18, 0.5 x 100 mm 10 ng - 5 &mu g 5188-6510 mRP-C18, 2.1 x 75 mm 8 - 85 &mu g 5188-6511 mRP-C18, 4.6 x 50 mm 40 -380 &mu g 5188-5231 胶上蛋白胰蛋白酶裂解试剂盒   说明   部件号 胶上蛋白胰蛋白酶裂解试剂盒   5188-2749
  • 蛋白质组学级胰蛋白酶
    用于LC/MS 分析的蛋白质组学试剂安捷伦复杂的蛋白质组学标准品是含有1500 种蛋白的Pfu 蛋白提取物。与我们的TPCK-处理的蛋白质组学级胰蛋白酶一起使用,为LC/MS 生物标志物发现和其它蛋白质组学研究提供了理想的工作流程验证组合。订货信息:

未知蛋白相关的仪器

  • 岛津集团发布新型PPSQ-51A单反应器蛋白测序仪和PPSQ-53A三重反应蛋白测序仪。 新PPSQ-51A / 53A蛋白质测序仪采用岛津SPD-M30A光电二极管阵列检测器,配有新型毛细管流通池,灵敏度是原型号标准检测池的10倍,能进行较长序列的蛋白质研究。 主要特点:1、在等度洗脱模式下进行PTH-氨基酸的分析,等度序列分析提供更稳定的保留时间。这意味着可以使用色谱减法取消在以前的周期中检测到的峰,方便用户识别正确的氨基酸。在等度洗脱模式下进行PTH-氨基酸分析也使实验室通过流动相回收减少废液的浪费,降低运行成本。2、操作简单,专业的蛋白质测序仪将对反应单元和高效液相色谱分析单元提供控制功能,便于进行序列分析。3、新PPSQ软件可配置为满足实验室的各种需要,无论是监管、研究和开发,还是学术。该软件符合FDA 21 CFR Part 11指南对安全、用户管理和审计跟踪的要求。易于使用的数据分析功能,简化操作,数据处理和报告。这些功能允许色谱的后处理、多重色谱的叠加、色谱减法、和氨基酸序列的自动估计。此外,PPSQ-51A / 53A音序器提供定制的报告,并对数据进行快速、全面的的图形显示。拥有以前机型的客户(31A/33A/51B/53B)可以升级现有系统为相同灵敏度,并能拥有和PPSQ-51A / 53A一样的软件。升级包在有高层次的灵活性以及数据库的标准版和客户端服务器版本中都可以使FDA 21 CFR Part 11合规。
    留言咨询
  • 仪器简介采用10mm的标准比色杯,专为粘稠的蛋白和核酸样品设计的检测方式,可以精确地测量样品的浓度及纯度,配备控温器、磁力搅拌器即可完成动力学分析等功能。详细信息光源:长效氙闪灯检测器:二极管阵列检测器波长范围:190nm----720nm(0.5纳米步进调节)波长准确性:± 1nm波长重复性:± 0.05nm吸光度测量范围:-3 &mdash +3A吸光度线性范围:0.02 &mdash 2A(at 350nm,10mm比色皿)吸光度准确性:UV- 0.04A;VIS- 0.02A杂散光:0.5% T吸光度长时间稳定性:0.003A/h at 500nm全光谱测读时间:1s测读模式:能量模式、吸光度模式、透光度模式标准比色皿样品量:推荐1.7ml -2ml标准比色皿检测光程:10mm端口:USB接口和RS 232接口重量:5KG尺寸:24cm(深) X 17cm(宽) X 20cm(高)数据分析方式:实验结束后,分析软件进行自动分析,直接给出结果 产品设计特点:1、双光束、高精度、多色器光学检测系统,像差校正光栅和二极管阵列检测器提供可靠的检测结果2、检测光程固定,仪器内部没有移动的光学部件,检测光程为10mm。3、采用超长寿命的氙闪灯,开机后无需预热即可工作4、可选配5.7英寸彩色触摸控制器HID-Pro 320进行单机操作,也可连接电脑操作应用:用于生命科学领域的核酸蛋白定量分析,如进行DNA、RNA、蛋白质、细胞等样品的紫外/可见光检测。数据多种导出格式(EXCEL、PPT等)方便保存和数据统计分析。 可选配Traycell微量比色皿Traycell微量比色皿&mdash &mdash 0.7-5ul样品,0.2mm或1mm检测光程 只需将一滴样品滴加到检测位置,盖上盖子即可进行检测,快速获得结果为您的检测工作带来 极高的重复性 操作简便,清洁更方便 高度的灵活性 低成本
    留言咨询
  • 蛋白组学样本前处理工作站是一款具备高通量、高回收率、安全性能强、抗干扰能力强,适用范围广等优势,适用大队列样本的高通量处理设备,可实现质谱蛋白样本前处理的全自动化和标准化操作。蛋白组学样本前处理解决方案适用于血浆、血清、尿液、细胞、组织等类型样本从蛋白到多肽混合物的质谱检测前处理工作,试剂盒利用新型固相烷基化试剂SPA材料与蛋白的特异性共价反应,实现蛋白质的高效捕获,通过清洗磁珠表面,快速去除干扰物质,并进行原位固相酶解,获得蛋白酶解产物,仪器整合制冷模块、磁吸附模块、加热振荡模块、抓扳手,进而实现蛋白质组提取、还原、烷基化、酶解等流程自动化操作,提高蛋白质样品的处理效率和回收率。 优势特点高通量■96通道移液头,一次可处理最多96个样本,高效完成实验流程中吸废等步骤;■兼具8通道移液功能,可以实现试剂的精准分装;■ 全流程4-5小时可完成96个蛋白样本的前处理(具体时间根据具体实验流程);自动化程度高■ 整合抓板手,用于对标准SBS板子的转移;■ 整合蛋白前处理所需的试剂制冷模块、磁吸附模块、加热振荡模块等功能模块;■均一化操作,减少实验过程中的误差,提高准确性和稳定性;灵活性强■ 盘面包含18个SBS标准盘位,除功能模块外,有15个盘位放置试剂和耗材;■开放式平台,配有多样化适配器,可适配多种不同品牌试剂耗材;■软件界面人性化设计,拖拽式布局,操作简单,每个步骤可独立进行参数设置,实验流程可进行存储,按键式启动运行;安全性■可配置避光外罩,搭配紫外消毒灯;■可根据实验需求选配正、负压HEPA过滤系统,有效避免交叉污染; 数据测试样本批内测试数据材料:293T 细胞实验方法:手工操作3 组,仪器操作3 组Q Exactive质谱结果如下:表1:手工操作和仪器操作后蛋白数及零漏切率对比图1 Venn diagram(蓝色:手工;绿色:仪器)试验总结手工操作和仪器操作蛋白样本预处理后可检测到的蛋白数及零漏切率基本一致,达到预期要求;手工操作与仪器操作蛋白种类皮尔斯相关系数大于0.97,与预期一致;样本批间测试数据图2 96孔板检测示意图如图2所示共处理96个样品,分三组进行实验,随机选取36个样品进行Q Exactive质谱检测,结果如下:图3 36个样本检测蛋白数(个)图4 36个样本零漏切率(%)图5 随机样品日间比较实验总结36个随机样本检测蛋白数3074±89个,零漏切率78.32±2.66%,样本预处理的结果正常且稳定;36个样品的皮尔斯相关系数及日间随机样品皮尔斯相关系数均介于0.955-0.989之间,达到指标要求,具有较好的均一性。 应用领域临床诊断/用药指导/病理机制研究/疾病标志物的发现/药物机理研究
    留言咨询

未知蛋白相关的试剂

未知蛋白相关的方案

未知蛋白相关的论坛

  • 整合蛋白和跨膜蛋白区别?跨膜蛋白制备详解

    [b][font=宋体]整合蛋白和跨膜蛋白定义:[/font][/b][font=宋体] [/font][font=宋体]整合蛋白和跨膜蛋白是两类重要的蛋白质,它们在细胞分子水平上起着重要的作用。[/font][font=宋体] [/font][font=宋体]整合蛋白,也称为内在蛋白或跨膜蛋白,部分或全部镶嵌在细胞膜中或内外两侧,以非极性氨基酸与脂双分子层的非极性疏水区相互作用而结合在质膜上。它们是生物膜的基本结构成分,许多具重要生理功能的膜蛋白均属整合蛋白,如膜结合的酶类、载体蛋白、通道蛋白、膜受体等。[/font][font=宋体] [/font][font=宋体]跨膜蛋白,是可以跨越细胞膜的蛋白,它在细胞的信号传递系统中担当着重要的角色。跨膜蛋白在结构上可以分为单次跨膜、多次跨膜、多亚基跨膜等,它们具有能够跨越细胞膜的能力。[/font][font=宋体] [/font][b][font=宋体]整合蛋白和跨膜蛋白在位置、结构和功能上存在显著的差异[/font][/b][font=宋体] [/font][font=宋体]①位置:整合蛋白主要存在于细胞质内,细胞核或其他非细胞膜结构中,它们容易在细胞中自由移动。而跨膜蛋白则嵌入细胞膜中,一部分位于细胞膜的胞外侧,另一部分位于细胞膜的胞内侧,形成了一个穿过细胞膜的通道。[/font][font=宋体][font=宋体]②结构:整合蛋白的结构通常由两个独立的部分组成,一个是靠近细胞膜的膜结合区域([/font][font=Calibri]TM[/font][font=宋体]),另一个是靠近细胞骨架的非膜结合区域([/font][font=Calibri]N-TM[/font][font=宋体])。当接受到外界的信号时,整合蛋白的[/font][font=Calibri]TM[/font][font=宋体]区域会被激活,把来自外界的信号转化为细胞内可以识别的信号,直接参与细胞信号传导系统中。[/font][/font][font=宋体]③功能:整合蛋白主要是用来从外界传达信号到细胞内,充当细胞与外界信号的桥梁。而跨膜蛋白则在细胞的信号传递系统中担当着重要的角色。[/font][font=宋体]总的来说,整合蛋白和跨膜蛋白在位置、结构和功能上存在显著的差异,这些差异使得它们在生物体中扮演着不同的角色。[/font][font=宋体] [/font][font=宋体][font=宋体]义翘神州提供[url=https://cn.sinobiological.com/resource/protein-review/transmembrane-proteins][b]跨膜蛋白表达与制备服务[/b][/url],制备流程图:基因合成[/font][font=宋体]→载体构建→细胞转化[/font][font=Calibri]/[/font][font=宋体]转染→蛋白表达→细胞收集→细胞破碎→膜脂提取→膜脂增溶→蛋白纯化→质量检测,同时义翘拥有[/font][/font][b][font=宋体]三大跨膜蛋白制备平台[/font][/b][font=宋体],可以为客户提供全面的多次跨膜蛋白产品和服务。同时,为基础研究和药物研发提供更加优质的原材料。[/font][font=宋体] [/font][b][font=宋体][font=Calibri]VLP[/font][font=宋体]技术平台[/font][/font][/b][font=宋体][font=宋体]正确折叠的膜蛋白在细胞膜上表达,类病毒颗粒[/font][font=Calibri]VLP[/font][font=宋体]通过出芽的方式包裹上携带有靶标蛋白的细胞膜,形成包膜的[/font][font=Calibri]VLP[/font][font=宋体]。它是由病毒的衣壳蛋白通过自组装而形成的纳米级颗粒(直径约[/font][font=Calibri]100[/font][font=宋体]~[/font][font=Calibri]300[/font][font=宋体]纳米),不含病毒核酸,不能进行自主复制,生产操作过程中较为安全。产生的[/font][font=Calibri]VLP[/font][font=宋体]蛋白可直接像可溶蛋白一样进行包被进行[/font][font=Calibri]ELISA[/font][font=宋体]检测。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]义翘神州已成功开发[/font][font=Calibri]VLP[/font][font=宋体]技术平台,它可以将完整天然构象的膜蛋白展示在类病毒颗粒表面,这种方法不仅可以保留膜蛋白的完整结构,同时也能够真实地模拟其在细胞膜上的位置和构象。[/font][/font][font=宋体] [/font][b][font=宋体]去垢剂技术平台[/font][/b][font=宋体][font=宋体]由于存在疏水结构域,跨膜蛋白与膜的结合非常紧密,需要用去垢剂([/font][font=Calibri]detergent[/font][font=宋体])才能从膜上洗涤下来,[/font][font=Calibri]Detergent[/font][font=宋体]作为一种两亲性分子,疏水尾部包裹目的蛋白的疏水区域,亲水头部位于与溶液接触的界面。微团的形成是膜蛋白增溶的基础,当去垢剂浓度高于[/font][font=Calibri]CMC[/font][font=宋体]([/font][font=Calibri]Critical micelle concentration[/font][font=宋体],临界胶束浓度)时会形成微团,增溶后,去垢剂将蛋白周围的磷脂置换,从而实现收集目标膜蛋白的目的,后续再进行蛋白纯化,最终蛋白呈现在含有[/font][font=Calibri]Detergent[/font][font=宋体]的溶液中。义翘神州成功搭建了去垢剂技术平台,利用该平台可有效提高跨膜蛋白的产量和纯度。[/font][/font][font=宋体] [/font][b][font=宋体][font=Calibri]Nanodisc[/font][font=宋体]技术平台[/font][/font][/b][font=宋体][font=Calibri]Nanodisc[/font][font=宋体]结构稳定,与天然的生物膜非常相似,使得[/font][font=Calibri]Nanodisc[/font][font=宋体]能够很好地应用于膜蛋白的研究。目前[/font][font=Calibri]Nanodisc[/font][font=宋体]平台有[/font][font=Calibri]2[/font][font=宋体]种方式,一种是基于苯乙烯马来酸酐共聚物([/font][font=Calibri]SMA[/font][font=宋体])组装的[/font][font=Calibri]SMA-Nanodisc[/font][font=宋体]平台,如下图(左)所示,它可以直接从细胞膜上提取膜蛋白,使其变为可溶性蛋白,组装完成的蛋白样品很稳定,更能维持蛋白的天然构象。另一种是基于膜骨架蛋白([/font][font=Calibri]MSP[/font][font=宋体])的[/font][font=Calibri]MSP-Nanodisc[/font][font=宋体]平台(下图右),它需要先将膜蛋白利用去垢剂制备出来,然后再加入磷脂分子和[/font][font=Calibri]MSP[/font][font=宋体]进行组装。通过调整磷脂、[/font][font=Calibri]MSP[/font][font=宋体]和待组装膜蛋白三者的比例,可以使得待组装膜蛋白在[/font][font=Calibri]Nanodisc[/font][font=宋体]中呈不同聚集状态。义翘神州已成功搭建了[/font][font=Calibri]Nanodisc[/font][font=宋体]技术平台,利用跨膜蛋白与磷脂结合能够维持其良好活性的特性,制备出稳定的产品,满足动物免疫、抗体筛选、[/font][font=Calibri]cell-based assays[/font][font=宋体]等场景。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]详情可以关注:[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review/transmembrane-proteins[/font][/font]

  • 【资料】几种常用的蛋白鉴定方法

    传统的蛋白鉴定方法,如免疫印迹法、内肽的化学测序、已知或未知蛋白的comigration分析,或者在一个有机体中有意义的基因的过表达通常耗时、耗力,不适合高流通量的筛选。 目前,所选用的技术包括对于蛋白鉴定的图象分析、微量测序、进一步对肽片段进行鉴定的氨基酸组分分析和与质谱相关的技术。1 图象分析技术(Image analysis)“满天星”式的2-DE图谱分析不能依靠本能的直觉,每一个图象上斑点的上调、下调及出现、消失,都可能在生理和病理状态下产生,必须依靠计算机为基础的数据处理,进行定量分析。 在一系列高质量的2-DE凝胶产生(低背景染色,高度的重复性)的前提下,图象分析包括斑点检测、背景消减、斑点配比和数据库构建。 首先,采集图象通常所用的系统是电荷耦合CCD(charge coupled device)照相机;激光密度仪(laser densitometers)和Phospho或Fluoroimagers,对图象进行数字化。 并成为以象素(pixels)为基础的空间和网格。 其次,在图象灰度水平上过滤和变形,进行图象加工,以进行斑点检测。 利用Laplacian,Gaussian,DOG(difference of Gaussians) opreator使有意义的区域与背景分离,精确限定斑点的强度、面积、周长和方向。图象分析检测的斑点须与肉眼观测的斑点一致。 在这一原则下,多数系统以控制斑点的重心或最高峰来分析,边缘检测的软件可精确描述斑点外观,并进行边缘检测和邻近分析,以增加精确度。 通过阈值分析、边缘检测、销蚀和扩大斑点检测的基本工具还可恢复共迁移的斑点边界。 以PC机为基础的软件Phoretix-2D正挑战古老的Unix为基础的2-D分析软件包。 第三,一旦2-DE图象上的斑点被检测,许多图象需要分析比较、增加、消减或均值化。 由于在2-DE中出现100%的重复性是很困难的,由此凝胶间的蛋白质的配比对于图象分析系统是一个挑战。 IPG技术的出现已使斑点配比变得容易。 因此,较大程度的相似性可通过斑点配比向量算法在长度和平行度观测。 用来配比的著名软件系统包括Quest,Lips,Hermes,Gemini等,计算机方法如相似性、聚类分析、等级分类和主要因素分析已被采用,而神经网络、子波变换和实用分析在未来可被采用。 配比通常由一个人操作,其手工设定大约50个突出的斑点作为“路标”,进行交叉配比。 之后,扩展至整个胶。例如:精确的PI和MW(分子量)的估计通过参考图上20个或更多的已知蛋白所组成的标准曲线来计算未知蛋白的PI和MW。 在凝胶图象分析系统依据已知蛋白质的pI值产生PI网络,使得凝胶上其它蛋白的PI按此分配。 所估计的精确度大大依赖于所建网格的结构及标本的类型。 已知的未被修饰的大蛋白应该作为标志,变性的修饰的蛋白的PI估计约在±0。25个单位。 同理,已知蛋白的理论分子量可以从数据库中计算,利用产生的表观分子量的网格来估计蛋白的分子量。 未被修饰的小蛋白的错误率大约30%,而翻译后蛋白的出入更大。 故需联合其他的技术完成鉴定。

未知蛋白相关的资料

未知蛋白相关的资讯

  • 科学家发现端粒酶新蛋白成分
    美国科学家近日发现了一种功能极似端粒酶的蛋白质,它能四处运送至关重要的蛋白质块来修复在正常复制中被丢失的染色体末端。如果没有这样的日常维护,干细胞将很快停止分裂,胚胎也将无法发育。  这是10年来首次发现端粒酶的新蛋白组分,这也许将成为抗癌疗法的一个有价值靶标。该项研究成果刊登在1月30日出版的《科学》杂志上。  端粒酶可在成体干细胞、免疫细胞和正在发育的胚胎细胞中正常表达。在这些细胞中,端粒酶附着在新复制的染色体末端,从而使细胞的分裂不受约束。如果没有端粒酶,细胞将停止分裂,或在有限数目的分裂后死亡。不幸的是,这种酶在许多癌细胞中也很活跃。研究人员发现,阻止这种称为TCAB1蛋白的不恰当表达,也许能限制端粒酶到达其DNA靶标(端粒),并限制细胞的寿命。  研究人员表示,目前还没有有效的端粒酶抑制剂。多年来,端粒酶一直是研究热点,但科学家们困扰于其大尺寸和极其少量。成人体内的少数细胞可制作出这种巨型蛋白复合物,但制作量非常之少,因此只有端粒酶的部分成分已被确定。研究人员称,要找出端粒酶的所有蛋白成分是一项难以置信的巨大挑战,端粒酶中的未知成分甚至被称为“暗物质”。  美国斯坦福大学医学院的研究人员使用高灵敏的蛋白鉴别技术(质谱),找到了端粒酶中TCAB1的存在。去年年初,研究人员曾利用相同的技术首次确定了另两种蛋白pontin和reptin,这两种蛋白对端粒酶这种巨型复合物的形成非常重要。此次,研究人员则确定了TCAB1蛋白具有以前未知的功能。  与pontin和reptin不同的是,TCAB1是端粒酶的一个真正组成部分。但它对酶的活性来说并不是必需的,它只是给称为卡哈尔体(Cajalbodies)的细胞核中的处理和保持区域补充端粒酶复合物。卡哈尔体将对各种使用RNA小分子来引领其活性的蛋白进行修饰,譬如,端粒酶使用RNA分子作为嵌在染色体末端的DNA链的模板。在适当的时候,TCAB1将端粒酶复合物运送到新复制染色体的等待端。  研究人员表示,TCAB1对端粒酶完成从卡哈尔体到端粒的跳跃是绝对必需的。一旦抑制其在人类癌细胞中的活性,端粒就会变短,这也意味着癌细胞会更快地死亡。研究人员认为,TCAB1蛋白可能是一种负责将各种分子运往其目的地的普通生物运输器。下一步,研究人员将继续对TCAB1进行研究,并寻找端粒酶的其他组成部分。
  • 张锋《自然》重磅:首次在真核生物中找到类Cas蛋白
    近日,《自然》杂志刊登张锋团队新研究成果,研究者首次在真核生物中找到受RNA引导的核酸内切酶Fanzor(Fz),并可组装能对人类基因组进行编辑的类CRISPR/Cas系统,经初步改造编辑活性可达18.4%。该蛋白的真核起源和较小体积,都预示着它可能具有比目前CRISPR/Cas更广阔的应用场景。论文题图毫不夸张地说,CRISPR/Cas的出现为生物学发展带来了巨大的变革,起源于原核生物的CRISPR也让人好奇,是否在真核生物中也存在类似的系统。2021年,张锋团队在《科学》发文,他们发现了一种类CRISPR系统OMEGA(obligate mobile element–guided activity)。OMEGA系统由转座子末端转录的非编码RNA(ωRNA)和内切酶组成,其中3种转座子编码蛋白IscB、IsrB、TnpB是天然存在的RNA引导的核酸酶,且IscB和TnpB分别为Cas9和Cas12的可能祖先。而早在2013年,Fanzor蛋白就被报道为一种真核TnpB-IS200/IS605样蛋白,这不由得让人怀疑,Fanzor就是那个我们还未知的真核生物中的Cas。经公开遗传数据库搜索,研究者发现Fanzor蛋白广泛存在于真菌、原生生物、节肢动物、软体动物、巨病毒等物种,可分为Fz1和Fz2两种不同的独立起源,并发现了细菌TnpB向真核生物水平转移并进化为Fanzor的痕迹。与TnpB和Cas12的结构对比可以看出,Fanzor结构与它们非常相似,这无疑说明Fanzor可能具有类似的功能。Cas12、TnpB、Fanzor的结构对比研究者猜测,Fanzor可能以ωRNA 3端侧翼序列为向导RNA,在目标DNA序列执行切割功能。为此,他们构建了Fz OMEGA系统,并与质粒文库匹配进行切割实验。实验结果可见,不同Fanzor蛋白具有特定的切割模式,并具有针对双链DNA(dsDNA)的特异性。不同Fanzor蛋白具有特定的切割模式Fanzor表现出ωRNA引导的、TAM和靶序列依赖的dsDNA切割研究者在人类细胞中测试了Fz OMEGA的编辑效率,针对8个不同基因位点,4个Fanzor同源物中有3个表现出了可测量的编辑活性,效率最高达11.8%,总体水平与AsCas2f1相当。编辑效率最高达11.8%为提升编辑效率,研究者还尝试了修饰ωRNA和向Fanzor中引入突变。多方尝试之下,可将编辑效率最高提升至18.4%。不同修饰ωRNA(上)和Fanzor突变(下)后的编辑效率研究者还通过冷冻电镜技术分析了SpuFz1的结构,在2.7Å下可见典型的双球形结构,REC和WED结构域识别包含TAM的DNA双链,NUC和RuvC结构域则形成了类似Cas的沟槽,容纳ωRNA与DNA形成的异源双链。Fanzor结构最后,研究者还对SpuFz1的天然ωRNA结构进行了分析,确定其中tem2的区域是功能所不需的,去除后ωRNA总长为96nt,可令结构更紧凑、便于应用。ωRNA结构中tem2不影响活性不过,目前为止,研究者们还没有搞清楚Fanzor蛋白的生理功能,仅猜测与转座有关。Fanzor的真核生物起源和它相较Cas12等更小的大小,使得它有潜力成为新一代的基因编辑手段,但是它的天然功能使其可能面对在生物体内活性低、作用严重受控等问题。研究者认为,这可以通过基因工程改造来优化。今日,《自然》杂志刊登张锋团队新研究成果,研究者首次在真核生物中找到受RNA引导的核酸内切酶Fanzor(Fz),并可组装能对人类基因组进行编辑的类CRISPR/Cas系统,经初步改造编辑活性可达18.4%。该蛋白的真核起源和较小体积,都预示着它可能具有比目前CRISPR/Cas更广阔的应用场景。论文题图毫不夸张地说,CRISPR/Cas的出现为生物学发展带来了巨大的变革,起源于原核生物的CRISPR也让人好奇,是否在真核生物中也存在类似的系统。2021年,张锋团队在《科学》发文,他们发现了一种类CRISPR系统OMEGA(obligate mobile element–guided activity)。OMEGA系统由转座子末端转录的非编码RNA(ωRNA)和内切酶组成,其中3种转座子编码蛋白IscB、IsrB、TnpB是天然存在的RNA引导的核酸酶,且IscB和TnpB分别为Cas9和Cas12的可能祖先。而早在2013年,Fanzor蛋白就被报道为一种真核TnpB-IS200/IS605样蛋白,这不由得让人怀疑,Fanzor就是那个我们还未知的真核生物中的Cas。经公开遗传数据库搜索,研究者发现Fanzor蛋白广泛存在于真菌、原生生物、节肢动物、软体动物、巨病毒等物种,可分为Fz1和Fz2两种不同的独立起源,并发现了细菌TnpB向真核生物水平转移并进化为Fanzor的痕迹。与TnpB和Cas12的结构对比可以看出,Fanzor结构与它们非常相似,这无疑说明Fanzor可能具有类似的功能。Cas12、TnpB、Fanzor的结构对比研究者猜测,Fanzor可能以ωRNA 3端侧翼序列为向导RNA,在目标DNA序列执行切割功能。为此,他们构建了Fz OMEGA系统,并与质粒文库匹配进行切割实验。实验结果可见,不同Fanzor蛋白具有特定的切割模式,并具有针对双链DNA(dsDNA)的特异性。不同Fanzor蛋白具有特定的切割模式Fanzor表现出ωRNA引导的、TAM和靶序列依赖的dsDNA切割研究者在人类细胞中测试了Fz OMEGA的编辑效率,针对8个不同基因位点,4个Fanzor同源物中有3个表现出了可测量的编辑活性,效率最高达11.8%,总体水平与AsCas2f1相当。编辑效率最高达11.8%为提升编辑效率,研究者还尝试了修饰ωRNA和向Fanzor中引入突变。多方尝试之下,可将编辑效率最高提升至18.4%。不同修饰ωRNA(上)和Fanzor突变(下)后的编辑效率研究者还通过冷冻电镜技术分析了SpuFz1的结构,在2.7Å下可见典型的双球形结构,REC和WED结构域识别包含TAM的DNA双链,NUC和RuvC结构域则形成了类似Cas的沟槽,容纳ωRNA与DNA形成的异源双链。Fanzor结构最后,研究者还对SpuFz1的天然ωRNA结构进行了分析,确定其中tem2的区域是功能所不需的,去除后ωRNA总长为96nt,可令结构更紧凑、便于应用。ωRNA结构中tem2不影响活性不过,目前为止,研究者们还没有搞清楚Fanzor蛋白的生理功能,仅猜测与转座有关。Fanzor的真核生物起源和它相较Cas12等更小的大小,使得它有潜力成为新一代的基因编辑手段,但是它的天然功能使其可能面对在生物体内活性低、作用严重受控等问题。研究者认为,这可以通过基因工程改造来优化。参考资料:[1]Saito, M., Xu, P., Faure, G. et al. Fanzor is a eukaryotic programmable RNA-guided endonuclease. Nature (2023). https://doi.org/10.1038/s41586-023-06356-2[2]https://www.broadinstitute.org/news/researchers-uncover-new-CRISPR-like-system-in-animals-that-can-edit-the-human-genome
  • 新品发布:核酸蛋白浓度测定仪产品说明
    【核酸蛋白浓度测定仪←点击此处可直接转到产品界面,咨询更方便】核酸蛋白浓度测定仪仪器功能:1.选择带宽可调的仪器,可以针对不同样品及不同的测试要求;2.光度测量:吸光度、透过率。多波长定点测试最多可同时测定30个波长;3.定量分析:自动建立标准曲线,并可存储标准曲线,方便以后测试调用;4.定性分析:扫描速度可调,滤色片位置可微调,图谱可处理;5.动力学测验:酶动力学反应率计算;6.DNA/蛋白测量:内置专用计算公式,直接得到最终结果,轻松进入生命科学研究领域;7.配合PC反控工作站,功能及数据处理能力更为强大。核酸蛋白浓度测定仪仪器特点1.采用10英寸LED炫彩液晶显示器,显示清晰直观;2.配合样品控温系统,可将样品温度控制在-5℃--200℃;3.灯源校正机构,仪器每次自检时会将灯源位置定位到最佳位置,此功能可修复仪器在运输过程光源可能因震动偏移聚焦位置及用户自己更换灯源后无需调试光源;4.光学系统设计和电路控制系统设计十分严谨,元器件的选用控制严格,具有高标准的准确度、重复性、低噪声和低杂散光指标;5.开放式的样品室,可选配反射样品架、自动5联、6联、8联样品池架,固体样品架、恒温水浴和自动进样器等适合于不同的应用。技术参数:型号 HD-UV90 HD-UV90A 波长范围 190-1100nm 光谱带宽 1.8nm/1nm(可选) 0.5nm/1nm/2nm/4nm/5nm(可调) 光学系统 双光束,CT式光路;1200线/毫米激光全息衍射光栅 波长精度 ±0.1nm(656.1nmD2),±0.3nm(全波段) 波长重复率 ±0.1nm 波长分辨率 0.1nm 光度范围 -4to4A 0-200%T -9999to9999C 光度精度 ±0.002A(0~0.5A);±0.004A(0.5~1.0A);±0.2%T(0~100%T) 光度重复性 ±0.001A(0~0.5A);±0.002A(0.5~1.0A);±0.1%T(0~100%T) 杂散光 ≤0.03%T 基线平直度 ±0.0008A(190~1100nm) 稳定性 ±0.0004A/hr@500nm,0A 光度噪声 ±0.0003A 显示屏幕 10英寸炫彩液晶显示器 数据输出 USB输出、软件输出 电源 80V~250V(功率:120W) 外形尺寸 550×400×260 净重 24kg 25kg
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制