尾流区

仪器信息网尾流区专题为您整合尾流区相关的最新文章,在尾流区专题,您不仅可以免费浏览尾流区的资讯, 同时您还可以浏览尾流区的相关资料、解决方案,参与社区尾流区话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

尾流区相关的耗材

  • 微板流路控制技术 G2855B
    产品特点:微板流路控制技术反吹* 改善数据质量,以获得更好的分析结果 * 通过消除对于强保留化合物的长时间烘烤缩短了分析周期 * 通过保护色谱柱和检测器减少了维护,降低了操作成本Deans Switch* 可以实现二维 GC ("中心切割") * 分析复杂基质中的痕量化合物可获得更低的检测限 * 可实现反吹QuickSwap* 在不对质谱仪放空和不损失真空的条件下安全拆卸色谱柱 * 可使您在约 30 秒钟内更换色谱柱 * 可实现反吹流路分流* 将样品送至多个检测器,从一次运行中获得最多的信息 *更快地确定目标化合物峰的位置,获得目标峰的更好的积分结果 * 当鉴定未知物时,使用多个检测器有更高 的可靠性 * 可实现反吹订购信息:微板流路控制技术说明部件号7890 选件编号Deans SwitchG2855BG3440A #888带补充气的分流器G3180BG3340A #8893 通分流器,带补充气G3183BG3440A #890MSD QuickSwapG3185B两通接头,吹扫(在中间点)允许在串接的两根色谱柱之间进行反吹G3186B 流路调制器附件(用于 GC X GC 分析)G3486A流路调制器检验工具包G3487A分流器,不吹扫G3181B用于 MSD 传输管线的无吹扫三通G3184B无吹扫两通接头,平板型G3187B用于微板流路控制技术装置的柱温箱壁挂架固定挂架,用于 G3187B(可使用多达 4 个 CFT 板)G2855-60120 Ultimate Union 套件,脱活带柱温箱安装挂架的柱接头G3182-61580 1/16 英寸管线套件从 GC 阀到 CPM 系统的连接G1580-61060
  • 安捷伦 微板流路技术接头和密封垫圈 部件号 :160-2625-10 熔融石英,去活,0.15 mm × 10 m 其他色谱配件
    微板流路技术接头和密封垫圈部件号 :160-2625-10熔融石英,去活,0.15 mm × 10 m接头、密封垫圈和备件如果希望微板流路控制附件,如Deans Switch 和QuickSwap MS 接口,与色谱柱的连接无泄漏、低死体积、高惰性,采用SilTite 密封垫和专用螺帽。对于微板流路控制装置,要使用脱活的熔融石英管。不要使用涂渍了固定相的毛细管。接头、密封垫圈和备件说明单位部件号内螺帽G2855-20530Swaging 螺帽,适用于带可塑金属密封垫圈的MS 接口G2855-20555三通,惰性G3184-60065色谱柱存储接头G2855-20590UltiMetal Plus 可塑金属密封垫圈,内径0.4 mm 10 个/包G3188-27501UltiMetal Plus 可塑金属密封垫圈,内径0.5 mm 10 个/包G3188-27502UltiMetal Plus 可塑金属密封垫圈,内径0.8 mm 10 个/包G3188-27503密封圈预成形工具G2855-60200柱/保留间隙安装备件说明部件号250 μm 保留间隙管,5 m 长的一段160-2255-5320 μm 保留间隙管,5 m 长的一段160-2325-5530 μm 保留间隙管,5 m 长160-2535-5熔融石英,脱活,0.15 mm x 1 m 160-2625-1熔融石英,脱活,0.15 mm x 5 m 160-2625-5熔融石英,脱活,0.15 mm x 10 m 160-2625-10
  • 惰性三通,用于微板流路控制技术
    专为微板流路设备而设计安捷伦提供了一系列基于我们的专利微板流路控制技术的气相色谱附件。这些附件提高了系统的工作效率和性能。若要得到与惰性色谱柱无渗漏连接、死体积低的微板流路附件(例如 Deans Switch 或 QuickSwap MS 接口),只能采用 SilTite 密封垫圈和专用螺母。对于微板流路设备,请使用脱活处理的熔融石英管。不要使用涂渍了固定相的毛细管。Deans Switch 中心切割装置简化了复杂样品的分析带吹扫的流出物分流器用于无泄漏惰性色谱柱流出物的分流

尾流区相关的仪器

  • LH-JE103射流萃取仪1、功能特点1》操作简单:免安装,一键完成萃取操作;2》工作效率高:自动萃取,即开即用,提高实验人员的工作效率;3》安全环保:免于手工操作,避免直接接触溶剂,优化了工况环境;4》萃取效果好:高效射流萃取,萃取效率≥95%;5》能耗低:30W超低功率,大幅度节省能耗;6》应用范围广:应用范围广,可用于所有液-液萃取工作。2.技术参数仪器名称射流萃取仪仪器型号LH-JE103萃取效率≥95%萃取重复性≤5%取样体积(100-1000)ml萃取时间(0-999)s样 品 数1-3组(可自行设定)整机功率30W工作电源 AC220V±10%/50Hz重 量17Kg外形尺寸(550×260×824)mm
    留言咨询
  • 微区 XRF 是 SEM 中 EDS 分析的互补分析技术扫描电子显微镜 (SEM)的微区 X 射线荧光 (Micro-XRF) 技术是与传统能量分散光谱 (EDS)能力补充的无损分析技术。这种分析技术对于未知样品中元素成分的表征非常重要,而未知样品的尺寸可以从厘米尺寸的不均匀样品到微米尺寸的颗粒X射线激发源为微量元素的检测带来了更高的灵敏度(对于某些元素,检出限可低至 10ppm)。同时,光谱范围可以拓延(高达40 keV)以及探测深度可以更深配备 X 射线管,结合微聚焦 X 射线光学器件,可产生 30 μm 的小束斑和高强度通量模块化基于压电的样品台,专门设计用于安装在现有SEM 样品台上,使大面积高速元素X射线面分析"飞一样地"运行, 速度高达4毫米/秒。这使得在 50 x 50 mm(或更大)的样本面积上采集 X 射线面分布数据成为可能。同时,轻元素光谱数据以及微量元素和/或更高能量的 X 射线数据也纳入快速且用户友好的工作流中X射线激发的样品深度更深,这让多层系统的表征成为可能。1 nm 到 高达40μm 的薄膜样品均可以分析,而这是用电子束源激发无法实现的
    留言咨询
  • 微流控可视化研究石油驱替系统针对微流控石油驱替(Enhanced Oil recovery, EOR)可视化研究,我们基于德国Cetoni公司提供的低压、中压、高压和超高压四种注射泵(压力最gao可达890bar),结合高压阀门、EOR芯片等组件搭建的微流控石油驱替系统,可十分完mei的模拟超高压驱替环境,实现驱替实验的可视化或者多孔介质的传质传热研究。在这套系统中,客户还可以选配可加热注射器,来应对常温下粘度较高的试剂,搭配加热套管,实现对流体从注入到传输的全程控温,温度最da可达200℃。我们也可根据用户需求,定制属于用户的超高性价比解决方案。功能图解微流控可视化石油驱替系统分为低压款和高压款,主要由微流体进样系统、流量压力传感器、温控模块、微流控芯片及配套夹具等部件构成。低压微流控石油驱替平台:低压款可实现恒压或恒流两种控制模式,低压状态下可快速开始驱替实验,满足油气水多相流动驱替实验多路进样的要求。高压微流控石油驱替平台:高压款可满足高温高压下油气水多相流动驱替实验,可模拟岩层环境,实现驱替实验的可视化或者多孔介质的传质传热研究。应用系统石油驱替研究多孔介质传质传热水库工程环境研究规格参数系统可定制,具体参数需结合配件确定。
    留言咨询

尾流区相关的方案

尾流区相关的论坛

  • 尾流的光学特性研究与测量

    【题名】: 尾流的光学特性研究与测量【期刊】:【年、卷、期、起止页码】:【全文链接】:https://cdmd.cnki.com.cn/Article/CDMD-80142-2001008678.htm

  • 出售二手微粒分析仪(带视频)

    低价出售天河GWF-5J微粒分析仪,设备状态完好,闲置出售卖给需要的朋友。[b]【仪器名称】:[/b][font=&]天河GWF-5J微粒分析仪[/font][b]【新旧程度】:[/b][font=&]见图,设备状态完好[/font][b]【价格范围】:低价出售楼主未留详细信息,请跟帖交流【质保期限】:楼主未留信息,请跟帖交流【交易地点】:楼主未留信息,请跟帖交流【联 系 人】:楼主未留信息,请跟帖交流【联系方式】:[/b][font=&]楼主未留信息,请跟帖交流[/font][b]【信息有效性】:[/b][font=&]楼主未留信息,请跟帖交流[/font][img]https://ng1.17img.cn/bbsfiles/images/2020/06/202006261154060145_4778_4211695_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2020/06/202006261154060451_3400_4211695_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2020/06/202006261154059445_333_4211695_3.png[/img]

尾流区相关的资料

尾流区相关的资讯

  • 来自激光尾流场加速光子的多毫焦耳太赫兹辐射
    近日,韩国基础科学研究所的Taegyu Pak等人观察到高功率太赫兹辐射从被100太瓦级激光脉冲照射的气体喷射器中发射出来,用于电子的激光视场加速。在氮气靶上,小于10太赫兹时产生了超过4毫焦耳的能量,激光到太赫兹的转换效率约为0.15%。这种强大的太赫兹辐射被认为是由等离子体电子产生的,这些电子在激光脉冲时间尺度上加速。该模型通过粒子在细胞中的模拟和分析计算进行研究,以更好地理解激光尾流场加速中高能太赫兹辐射的产生机制。太赫兹(THz)是位于电磁波谱的微波和红外区域之间的一个频段,这个频段下传统技术在产生和检测辐射方面效率低下,人们正在通过开发新的太赫兹源和检测器来弥补这一缺口。基于激光的太赫兹源由于能够产生相干的、单周期到多周期的、宽带(或窄带)辐射而备受关注。这种源也可以提供与驱动激光的自然同步,允许超快时间分辨光谱和成像。最近,高功率飞秒激光器被用来产生强大的太赫兹辐射,以及探索新的太赫兹驱动的现象,如分子排列,谐波生成和分子加速等。在许多基于激光的源中,基于激光等离子体的源很适合于高功率太赫兹的产生。等离子体已经被电离,因此可以维持高电磁场,当高功率激光脉冲被聚焦到一个小的体积中用于产生能量可存储的太赫兹时,几乎不需要材料损坏。从激光产生的气体和固体密度等离子体中产生的相干太赫兹已经被广泛地研究。在气体中,单色或双色激光产生的等离子体可以通过超快的激光驱动电流产生相干的宽带太赫兹辐射。在双色激光混合中,通过使用中红外激光驱动器,激光到太赫兹的转换效率提高到百分比水平。最近,从一个被高能量皮秒激光脉冲照射的金属箔中观察到了几十毫焦耳的太赫兹能量。然而,与气体靶材不同,高密度的靶材往往会带来靶材碎片和靶材重装的问题,这使得它们不利于用于连续或高重复率的操作。激光尾流场加速器(LWFA)是一种基于气态等离子体的紧凑型电子加速器方案,可以产生宽带电磁辐射。在激光尾流场加速器中产生的相对论性电子束,当它通过相干过渡辐射离开等离子体-真空边界时,可以发射出太赫兹辐射。当电子束的长度与发射的太赫兹辐射的波长可比拟或小于辐射波长时,就会出现这种情况,且单个电子产生的太赫兹场在辐射方向相干叠加。在实验中,用10 TW级激光器从激光尾流场加速器中观察到小于100纳焦的太赫兹能量,太赫兹辐射的波形被单次测量,也被利用来诊断电子束本身。然而到目前为止,激光尾流场加速器输出的太赫兹能量尚未超过微焦水平,人们也没有研究过太赫兹能量的扩展。韩国基础科学研究所的Taegyu Pak等人通过使用相对论激光科学中心(CoReLS)的150太瓦激光器,在激光尾流场加速器中明显增强了太赫兹的产生,达到了多毫焦耳水平。研究人员测试了激光尾流场加速器和各种目标条件下太赫兹的生成,并同时表征了两种光束,以便更好地了解激光尾流场加速器中太赫兹产生的起源。实验结果表明,多兆焦耳的太赫兹生成并不完全由相干跃迁辐射模型解释。研究人员研究了太赫兹产生的另一种可能机制,即由激光推动力和等离子体加速的等离子体电子的相干辐射。实验装置示意图如图1所示,激光脉冲电离气体射流并通过激光尾流场加速器加速等离子体电子,同时产生太赫兹辐射。在电子束通过带有偶极磁铁的电子光谱仪后,测量电子能谱。从等离子体发出的太赫兹辐射被准直,传送到真空室外,然后重新聚集到热释电检测器上进行检测。图1 激光驱动的电子加速和太赫兹生成示意图发出的太赫兹辐射通过其光谱、能量和偏振进行了表征,得到的太赫兹光谱在图2(a)中以散射形式显示,水平误差条代表滤波器传输带的光谱宽度,红线表示放置在光束路径上所有过滤器的整体传输曲线。其偏振通过一个带有热释电探测器的线栅偏振器来表征,收集35个热释电信号并取其平均值,结果显示在图2(b)中。测量的偏振分布是各向同性的,与电子的径向加速所预期的偏振相一致,沿垂直偏振方向有一些明显的增强。图2 太赫兹辐射的光谱和偏振表征
  • 中国科学技术大学在相干测风激光雷达系统研制方面取得重大突破
    日前记者从中国科学技术大学获悉,该校地球和空间科学学院教授薛向辉团队在相干测风激光雷达系统研制方面取得重大突破,首次实现空间分辨率3米、时间分辨率0.1秒的风场探测。据悉,这是迄今为止有报道的全球最高精度的风场连续探测。相关成果发表在国际知名光学期刊《光学快报》。测风激光雷达的封装样机 课题组供图 米级-亚秒级分辨率的大气风场探测在航空航天安全、高价值目标保障、数值天气预报等方面具有重大意义,但高时空分辨的连续风场观测对激光雷达仍是一个挑战。比如,为获取3米和0.1秒时空分辨率的风场观测结果,需要将现有激光雷达信号检测灵敏度提高2个数量级以上。 为了实现“看的远、看的细,测的快、测的准”的高时空分辨测风激光雷达,团队通过在激光光源、光学收发系统、高速数据采集电路和数据处理算法上对激光雷达进行全面优化,并在时频分析、脉冲编码基础上提出一种新的反演算法,大大提高了风场反演精度和稳健性,最终实现了一套全国产化的“产品级”测试样机。图1 3米距离分辨率相干测风雷达实验装置:(a)实验装置实物;(b)白天观测;(c)夜间观测;(d)光学系统及电路控制示意图;(e)连续5分钟观测的阵风结构图(时间分辨率为1秒)。图2 高铁尾流风场结构观测及模拟结果:(a)雷达观测的0.1秒分辨率尾流中风场结构图;(b)基于CCM+模拟的300km/h运行列车的尾流风场结构。 据介绍,雷达样机工作波长为1550.1纳米,具有人眼安全、设备轻便(整装设备40公斤)、工作稳定、环境适应性强等特点。通过外场对比试验,该雷达样机风场观测结果与定标设备对比误差小于0.5米每秒。 为进一步测试雷达观测性能和环境适应性,团队在安徽省宿州市高铁站实地测量了高速列车尾流中的风场结构。雷达在无人值守下连续稳定工作超过100小时,获得了3米和0.1秒高时空分辨率下的350公里每小时的高铁尾流连续观测,并首次利用激光雷达捕捉到高铁尾流中类似于冯卡门涡街的风场结构,与计算流体力学模拟结果高度一致。 审稿人认为,“观测结果是引人注目和印象深刻的”、“迄今为止首次实现连续观测的高分辨率结果”。
  • 我国科学家在激光雷达系统研制上获突破
    记者获悉,中国科学技术大学地球和空间科学学院教授薛向辉团队在相干测风激光雷达系统研制方面首次实现空间分辨率3米、时间分辨率0.1秒的风场探测。据了解,米级-亚秒级分辨率的大气风场探测在航空航天安全、高价值目标保障、数值天气预报等方面具有重大意义,但高时空分辨的连续风场观测对激光雷达仍是一个挑战。据介绍,薛向辉团队雷达样机工作波长为1550.1纳米,通过外场对比试验,该雷达样机风场观测结果与定标设备对比误差小于0.5米每秒。为进一步测试雷达观测性能和环境适应性,薛向辉团队在安徽省宿州市高铁站实地测量了高速列车尾流中的风场结构。雷达在无人值守下连续稳定工作超过100小时,获得了3米和0.1秒高时空分辨率下的350公里每小时的高铁尾流连续观测,并首次利用激光雷达捕捉到高铁尾流中类似于冯卡门涡街的风场结构,与计算流体力学模拟结果高度一致。相关成果发表于国际光学期刊《光学快报》。审稿人认为,“观测结果是引人注目和印象深刻的”“迄今为止首次实现连续观测的高分辨率结果”。中科大地球和空间科学学院博士研究生梁晨为该论文第一作者,王冲副研究员和薛向辉教授为论文共同通讯作者。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制