稳定性评估

仪器信息网稳定性评估专题为您整合稳定性评估相关的最新文章,在稳定性评估专题,您不仅可以免费浏览稳定性评估的资讯, 同时您还可以浏览稳定性评估的相关资料、解决方案,参与社区稳定性评估话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

稳定性评估相关的耗材

  • 反应杯,用于稳定性测定 6.1429.040
    反应杯,用于稳定性测定订货号: 6.1429.040反应杯,用于743/763/873型分析器进行稳定性测试(117只)技术参数:外直径(mm)24材料borosilicate glass 3.3长度(mm)150
  • 温度稳定性表
    产品特点:*该隔垫用于液体注射。无 20mm 型。订货信息:温度稳定性表  最低 温度 °C最高 温度 °C最低 温度°F最高 温度 °FPTFE/红色天然橡胶 -108514185PTFE/红色合成橡胶隔垫: (PTFE/RR)-30110-22230PTFE/ 高性能红色橡胶隔垫-40110-40230PTFE/硅胶隔垫: (T/S)-60200-76392PTFE/硅胶/PTFE 隔垫: (T/S/T) *-60200-76392PTFE 隔垫 * -200250-328482聚乙烯 (PE) * -5080-58176聚丙烯 (PP) * 012132250丁基/氯化丁基/溴化丁基橡胶塞或隔垫-20125-4257Septa    灰色 PTFE/红色橡胶 -40120-40248PTFE/白色硅胶 PurePack 隔垫-60200-76392灰色 PTFE/模制黑色丁基隔垫 (Pharma?x)-20125-4257黑色橡胶隔垫 -20100-4212
  • 高精度高稳定性激光调整架
    高精度高稳定性激光调整架5OM60和5OM61是通用的,经久耐用的,超级稳定光学调整架,它提供高达3arcsec分辨率,广泛用于激光镜片调整。高精度高稳定性激光调整架独立倾斜,两水平轴为6°,灵敏度为3秒。线性平移为5mm,灵敏度为1μm。移动三分之一螺线管代替移动插座和枢轴轴承。高精度高稳定性激光调整架采用三个特殊弹簧块预装平台,大大提高工作稳定性。调整架采用螺旋管推动硬化钢座,并预留有一些M6安装孔。高精度高稳定性激光调整架5OM60有一个直径为42mm的通光口径。固定架5OM60和5OM61通过M6螺钉尖端可以安装到各种安装柱上。此外,高精度高稳定性激光调整架5OM60的背面有一个孔,使用该孔5OM60可以以水平面安装,作倾斜平台使用。平台底座有三个孔M10x1用于驱动螺钉,您可以选择使用。标准螺钉的间距为0.5mm。为了有更大的灵敏度,你可以选择要间距0.35或是0.25的螺线管。孚光精仪公司会根据您的要求对标准型号进行修改,即使只下一个订单也会提供该服务。高精度高稳定性激光调整架型号5OM60-SQ2 有一个50.8mm(2英寸)的方形框架5OM61-RN2 有一个50.8mm(2英寸)的环形框架高精度高稳定性激光调整架要用2到3个螺钉安装。有2个驱动螺钉的变体模型有一个直径8的圆球头作为第三个基准点。标准平台配备的螺钉是9S65M。下单不需要特别标明要购买该螺钉。如果您想购买其他螺钉,请在订单里标明,请将要购买的螺钉代号加在平台编号后面。5OM60-2-9S7C 和5OM61-2-9S127M-10高精度高稳定性激光调整架5OM60和5OM61的材质是黑色阳极氧化铝(默认),黑色成品钢(根据要求提供)。重量为0.35kg。高精度高稳定性激光调整架规格细螺钉安装螺纹 M10x1倾斜范围 6°灵敏度 3角秒线性平移 5 mm灵敏度 1 μm

稳定性评估相关的仪器

  • 895专业型热稳定性测定仪,与StabNet软件配套使用,它是一款先进的可以自动测定聚氯乙烯(PVC)和其他含氯的高分子材料热稳定性的分析系统。 电脑上的StabNet软件完全控制测量仪的运行。在仪器的机身上,每个测量位置都有自己独立的启动按钮。此外,仪器上彩色液晶屏显示每个测量位的状态。一次性的反应管可大大减少实验的清洗工作量,从而节省了时间和成本。特点一览仪器▼ 通过电脑可以控制仪器的所有功能▼ 每个测量位,有独立测量启动键▼ 仪器液晶屏显示每个测量位的状态▼ 独特的配件使仪器具有前所未有的测量可靠性和操作简便性▼ 价格低廉的一次性玻璃测量附件▼ 结实耐用的测量杯盖一体化电导测量池▼ 每台仪器有两个加热模块,八个测量位(每个加热模块有四个测量位)。一台电脑最多可以控制四台仪器。软件▼ 清晰而布局合理的用户界面▼ 数据库有灵活的过滤,排序和统计功能▼ 数据结果透明度高,这是由于数据库存储了所涉及的:▼ 测量结果、方法、仪器设置参数▼ 测量结果的重新评估或重新计算的数据历史▼ 高级别的数据安全,来自操作型数据库和自动备份功能▼ 客户端服务器带来良好的网络兼容功能▼ 用户管理可自由配置的访问权限▼ 符合GLP所有的要求895 聚氯乙烯和其他含氯的高分子材料的热稳定性(脱氯化氢方法) 基于聚氯乙烯制成的塑料制品在测定的温度下分解释放出气态HCl。按照DIN 53381 part 1或ISO 182 Part 3测定PVC的热稳定性时,塑料制品释放的HCl被流动的氮气转移到装有去离子水的测量池中,引起测量池中溶液电导率的变化。 PVC材料的热稳定性通过测定产生HCl的时间来定义的。一般可定义,当测量池的电导率的变化值达到50 s/cm时所需要的时间称为稳定时间。这个方法可以用于整个加工阶段的PVC热稳定性的测定,也可以用来测定其稳定剂的性能。
    留言咨询
  • 895专业型热稳定性测定仪,与StabNet软件配套使用,它是一款先进的可以自动测定聚氯乙烯(PVC)和其他含氯的高分子材料热稳定性的分析系统。电脑上的StabNet软件完全控制测量仪的运行。在仪器的机身上,每个测量位置都有自己独立的启动按钮。此外,仪器上彩色液晶屏显示每个测量位的状态。一次性的反应管可大大减少实验的清洗工作量,从而节省了时间和成本。特点一览仪器通过电脑可以控制仪器的所有功能每个测量位,有独立测量启动键仪器液晶屏显示每个测量位的状态独特的配件使仪器具有前所未有的测量可靠性和操作简便性价格低廉的一次性玻璃测量附件结实耐用的测量杯盖一体化电导测量池每台仪器有两个加热模块,八个测量位(每个加热模块有四个测量位)。一台电脑最多可以控制四台仪器。软件清晰而布局合理的用户界面数据库有灵活的过滤,排序和统计功能数据结果透明度高,这是由于数据库存储了所涉及的:测量结果、方法、仪器设置参数测量结果的重新评估或重新计算的数据历史高级别的数据安全,来自操作型数据库和自动备份功能客户端服务器带来良好的网络兼容功能用户管理可自由配置的访问权限符合GLP所有的要求895 聚氯乙烯和其他含氯的高分子材料的热稳定性(脱氯化氢方法)基于聚氯乙烯制成的塑料制品在测定的温度下分解释放出气态HCl。按照DIN 53381 part 1或ISO 182 Part 3测定PVC的热稳定性时,塑料制品释放的HCl被流动的氮气转移到装有去离子水的测量池中,引起测量池中溶液电导率的变化。PVC材料的热稳定性通过测定产生HCl的时间来定义的。一般可定义,当测量池的电导率的变化值达到50 &mu s/cm时所需要的时间称为稳定时间。这个方法可以用于整个加工阶段的PVC热稳定性的测定,也可以用来测定其稳定剂的性能。
    留言咨询
  • 织物尺寸稳定性测试仪产品信息用途:用于检测织物经过洗涤、蒸汽熏蒸或熨烫后的尺寸稳定性。织物尺寸稳定性测试仪是一种用于测试织物在不同条件下的尺寸变化的仪器。它的主要用途是评估织物在洗涤、干燥、熨烫等过程中的尺寸稳定性。这种测试仪通过将织物样品置于一定的拉力下,模拟实际使用中的拉伸状态,然后在指定的温度和湿度条件下进行测试。测试仪会记录织物样品在不同状态下的尺寸变化情况,包括长度、宽度和形状变化等。织物尺寸稳定性测试仪的使用可以帮助生产厂家和质量控制部门评估织物的质量和性能。通过测试,可以确定织物在不同条件下的尺寸变化程度,从而判断织物是否符合相关标准和要求。同时,测试结果也可以用于改进织物的设计和生产工艺,提高织物的尺寸稳定性。总之,织物尺寸稳定性测试仪是一种用于评估织物尺寸稳定性的重要工具,可以帮助生产厂家和质量控制部门提高织物的质量和性能。符合标准:GB/T8628,GB/T8630,GB/T 8631,GB/T 8632,AATCC135,AATCC 150,AATCC 158,AATCC 179,ISO3795,ISO6330,ISO5077等标准。仪器特性:1、可给待测织物做测试前的打点标记,标记形状、位置可选择。2、采用自动化控制和数字影像相结合的技术。3、测试前后样品的尺寸变化进行自动测量,并自动计算出被测样品尺寸变化率。4、可以更换打印头功能,能根据样品的颜色,更换对应颜色的打印头。5、标记打印头自动旋转、自动挤压功能。6、智能PLC软件,自动完成控制和计算功能;7,自动测量标记点之间的距离,最大标记范围:500mm x 500mm,最大样品范围:610mm x 610mm;8,电源:AC230V 50Hz/60Hz;9、外形尺寸:1100(L)×900(W)×1500(H)mm;10,标记笔自动旋转、自动挤压功能,模拟人手打点功能;11,自动打点装置,精度1mm;12,技术参数控制系统:PLC+Windows系统含电脑(工控机)操作界面:彩色7寸触摸屏,中英文切换;高精度滚珠丝杆驱动,高精度电机,精度0.01MM高精度数字影像相机驱动系统;
    留言咨询

稳定性评估相关的试剂

稳定性评估相关的方案

  • DSC评估电极材料热稳定性
    锂电池的电极材料与电解液之间会发生一系列副反应,这些副反应往往会产生更为剧烈的热效应,引起电池温度进一步升高,此时的电池就有鼓胀、泄露、着火,甚至爆炸的危险,这种现象被称为“热失控”。因此,对锂电池材料的热特性进行分析就变得极为必要。就目前而言,DSC是评估电池材料热稳定性最为重要的手段之一。
  • 油脂氧化稳定性分析仪用于评估天然抗氧化剂对肉类氧化稳定性的影响
    VELP油脂氧化稳定性分析仪OXITEST助力研究者快速评估天然抗氧化剂效果,优化配方,满足消费者对绿色食品的追求!
  • 利用LUM稳定性分析仪对高、低分子量壳聚糖包覆姜黄素脂质体的稳定性评估
    从营养和安全的角度来看,脂质体具有巨大的营养载体潜力。尽管脂质体具有生物相容性、生物降解性、无毒性和非免疫原性等优点,但其较差的理化稳定性严重限制了其在食品工业和制药领域的应用。稳定性差的原因:1、磷脂对酯基水解和不饱和酰基链氧化引起的磷脂化学降解的高度敏感性,这有助于脂质体膜的结构破坏;2、囊泡融合导致囊泡变大和沉淀,由于脂质降解和/或温度波动,疏水性生物活性化合物与脂质双层可能发生相分离,这也会导致嵌入的生物活性化合物泄漏;3、由于脂质降解和/或温度波动,疏水性生物活性化合物与脂质双层可能发生相分离,这也会导致嵌入的生物活性化合物泄漏。因此,如何降低脂质体对环境的敏感性并实现脂质体的有效利用仍然值得关注。与修改脂质体膜组成的繁琐方案相比,在脂质体表面进行涂层被认为是有效提高其稳定性经济且有效的方法。在众多涂层材料中,壳聚糖是形成保护性聚电解质层的最佳选择,因为其正电荷容易与带负电荷的脂质体表面相互作用。选取低(LCS)、高(HCS)分子量壳聚糖以三种梯度浓度(L:低;M:中等;H:高)包衣的脂质体(Cur-LP)进行稳定性评估。

稳定性评估相关的论坛

  • 【原创大赛】快速评估均质条件对粉底液稳定性的影响

    【原创大赛】快速评估均质条件对粉底液稳定性的影响

    [align=center][b][font=等线][size=24px]快速评估均质条件对粉底液稳定性的影响[/size][/font][/b][/align][b][font=等线]实验目的:[/font][/b][font=等线]比较定转子均质机均质[/font]0-10min[font=等线]的粉底液样品[/font]F0[font=等线]、[/font]F2[font=等线]、[/font]F4[font=等线]、[/font]F6[font=等线]、[/font]F8[font=等线]、[/font]F10[font=等线]的稳定性。[/font]Test SOP:[table][tr][td][align=center]谱线数[/align][/td][td][align=center]时间间隔[/align][/td][td][align=center]转速[/align][/td][td][align=center]光强[/align][/td][td][align=center]试验温度[/align][/td][td][align=center]光源[/align][/td][/tr][tr][td][align=center]1000[/align][/td][td][align=center]60 s[/align][/td][td][align=center]4000 rpm[/align][/td][td][align=center]1[/align][/td][td][align=center]25 [font=宋体]℃[/font][/align][/td][td][align=center]865 nm[/align][/td][/tr][/table][font=&][size=13px][b]STEP专利介绍(空间与时间消光谱图)[/b][/size][/font][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111121733354271_47_5247763_3.jpeg[/img]LUMiSizer采用STEP技术可探测与时间,空间相关的光投射强度,记录预选时间内通过整个样品(从底部到顶部)的光透射走向,以及通过可探测的入射光的减弱量化局部分散颗粒浓度的变化。a.通过透光率-位置图谱(指纹图)可定性分析颗粒的分离行为。b.通过不稳定系数柱状图和曲线图可以定性分析样品的稳定性。c.利用软件里分析模块“积分透射率” (澄清速度)和“相界面的位置”可对分离过程进行详细分析。澄清速度和相界面的迁移速度也可定量得到。指纹图谱分析每个透光图谱均定性地显示了其体系的特性,如稳定性,分离行为(上浮,沉降),颗粒间相互作用(如聚并,絮凝等)…所以,这些图谱又可称之为分散体系的指纹图。横坐标对应样品管的位置,左边是样品管的顶部,右边是样品管的底部;纵坐标是透光率数值。谱线从初始谱线(红色)到结束谱线(绿色)随着时间的变化过程。样品原浓度下的指纹图:[img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111121733355160_4408_5247763_3.png[/img]由于样品图谱变化规律显示,以样品F0为例进行分析说明。[img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111121733356585_8968_5247763_3.png[/img]横坐标对应样品管的位置,左边是样品管的顶部,右边是样品管的底部;纵坐标是透光率数值。从初始谱线(红色)到结束谱线(绿色)是随着时间的变化过程。随着离心开始,体系开始分离。从指纹图谱可以看出,样品管顶部透光率逐渐变大,有向右移动的峰。显示体系内颗粒向下迁移,这部分逐渐变澄清。[img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111121733357637_4883_5247763_3.png[/img][align=center]每隔20条谱线显示一条[/align]为了更清晰地观察样品的变化,我们每隔20条谱线显示一条,局部放大样品顶部谱线。发现谱线间距几乎一致,推测体系内的颗粒相对均匀,以相对恒定的速度进行沉降。[b] 稳定性分析[/b]我们应用SEPView软件进行稳定性分析(Stability Analysis)。曲线图横坐标表示分离时间,纵坐标表示在该时间点时样品的不稳定性指数。曲线图的斜率越大,则表示样品分离的速度越快。数值越大,相对越不稳定。当曲线与横坐标平行,说明样品已经分离完全。且样品的不稳定性排序会因为实验时长的不同有差异。利用本公司的STEP技术,可以定量分析稳定性,得出每个样品的“不稳定性指数”。但这个数值也需要和标准样品的不稳定性指数相比较才有实际意义。原浓度样品稳定性分析[img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111121733358792_8895_5247763_3.png[/img][align=center]不稳定性指数随时间变化曲线图[/align][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111121733359845_34_5247763_3.png[/img][align=center]不稳定性指数柱状图[/align]对样品的不稳定性指数随时间的变化图进一步分析,曲线的斜率代表不稳定性指数随时间的变化。斜率越大,表明体系越不稳定。斜率发生变化,可能显示体系的分离速度也发生变化。从样品的不稳定指数柱状图可知,实验结束时样品的不稳定性顺序依次为:F8F4F10F6F2F0,样品F0表现最不稳定。[b]界面追踪[/b]分散体系的分离过程也是分散颗粒和连续相之间的分离。利用SEPView对体系相分离的界面进行追踪(相分离界面的位置随时间变化的斜率为界面迁移速度),结果如下图所示。[img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111121733360968_4339_5247763_3.png[/img][align=center]界面位置随时间的变化[/align][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111121733362091_1175_5247763_3.png[/img][align=center]界面迁移速度[/align]从样品的界面迁移速度可知,到实验结束时样品的界面迁移速度顺序依次为:F2F8F6F4F10F0,样品F0在此时表现最不稳定。[b] 小结[/b]由指纹图谱、不稳定指数和界面迁移速度的数据可知,样品F0的稳定性最差,表明经过定转子均质机处理的粉底液样品稳定性显著提升。

  • 【原创】热重分析稳定性评价方法和指标

    我们的TG 天平稳定性评估方法:实验条件:1室温 RT温度波动 24-28 K 2样品 200mg ( 热稳定材料 ,石英或刚玉块)3载气 N2 100cc/min4实验时间:200小时 (9天)实验结果: 天平波动:199.9955-200.0011mg 稳定性:±0.0015% 合格:0.002% ( 24-48 小时,9天太长了)你的TG 如果达不到此指标,请放入垃圾箱吧!!! 如果不相信,请联系我,我收费给你做此条件实验。费用:3000人民币!!!如果我的设备达不到此标准,我当场砸了我的TG,反正也不准了 。请大家一起来揭露一些劣质的热分析产品!!!hhxx10000@gmail.com [~87435~]

  • 大家帮我看下我这GCMS测试DEHP稳定性如何

    DEHP稳定性评估浓度0.02ppm0.2ppm1ppm面积10290439414392781070464535516992101566420554501311420415565268021313462413547872752862370576971788958318550772sd1950.640629808.35403943944.65445average10160.142956762.57143529100rsd19.198948717.279615418.305547997

稳定性评估相关的资料

稳定性评估相关的资讯

  • 药品研发与生产的稳定之锚:稳定性实验箱的应用
    在现代医药领域,药品的研发、生产和质量控制是一个高度复杂且精密的过程,常常受到诸多外界因素的挑战与考验。药品存放的时间长短、存放环境的空气质量、温度波动、湿度变化以及光照强度等因素,都可能对药品质量产生影响,使得药品中的有效成分逐渐降解,药品的疗效大打折扣,甚至完全失效,产生有害物质。 因此,深入研究药品的稳定性,全面了解影响药品质量的各种因素,显得尤为重要。通过科学的稳定性研究,我们可以为药品的生产、包装、贮存、运输等环节提供有力的科学依据,为患者提供安全、有效的用药保障。 为了全面而精准地评估药品在不同环境条件下的稳定性表现,科研人员常常借助稳定性试验箱这一关键设备来进行测试。这种试验箱具备模拟多种环境条件的强大功能,能够精确控制温度、湿度、光照等重要参数,从而为试验药品提供一个稳定且标准化的测试环境。通过将测试样品置于试验箱中,并暴露于特定环境条件下一段时间后,科研人员可以评估样品是否发生变化,确认其在不同环境下的稳定性表现。Aralab是欧洲标准环境控制设备、药物稳定测试设备和特殊测试设备的主要供应商之一,凭借逾30年的专业研发与生产经验,其各类箱体设备和步入式房间品质卓越,一直深受客户赞誉。「Aralab葡萄牙总部」Aralab FitoClima 600 & 1200系列箱体,为药品稳定性试验提供了卓越而全面的解决方案:这一系列箱体分为600L和1200L两种规格,内部配置灵活多变,可分别搭载4层和8层不锈钢搁板,更可按需升级至10层和20层。每层搁板均可轻松拆卸,清洗维护极为方便。为了满足科研人员在稳定性测试中的多样化需求,FitoClima 600&1200系列还提供了多种型号选择:&bull FitoClima 600/1200 P:专为精准温度控制而设计。&bull FitoClima 600/1200 PH:在温度控制的基础上增加了湿度控制功能,可模拟更加复杂的环境条件。&bull FitoClima 600 PLH:集温度、湿度、紫外线和可见光控制于一体,满足更加全面的需求。&bull FitoClima 600 PLH-R:在PLH的基础上,通过集成辐射计和光传感器,实现了辐照暴露程度的自动控制。&bull FitoClima 1200 PN/PNH:可控制零下温度(-20℃),湿度控制功能可选配。此外,箱体还配备了7英寸的彩色触摸屏,使得科研人员能够直观、便捷地设置所有环境变量。无论是温度、湿度还是光照,都能轻松调节,满足各种实验需求。利用这一系统,科研人员能够设计复杂而全面的环境模拟程序。例如,在生物医药领域,由于疫苗、血清、抗体、细胞因子和酶等制品对温度变化异常敏感,冻融过程可能引发蛋白质变性、聚集或活性丧失等风险,因此冻融测试成为必不可少的环节。借助FitoClima 1200 PN/PNH试验箱,科研人员可通过程序预先设置好从-20℃至60℃的不同温度区间,分别模拟冷冻和融化阶段的环境条件,然后一键启动,即可直接进行冻融循环测试,无需频繁更换试验箱,大大提高了实验效率和准确性。FitoClima 600&1200系列试验箱 技术参数&bull 温度范围:-5℃ 至 60℃1200 PN/PHN型号可以扩展至-20℃至60℃&bull 温度波动 (随时间变化):±0.1°C 至 ±0.2°C&bull 空间温度均匀性:± 0.15°C 至 ± 1.0°C&bull 湿度范围:20% 至 95% rH&bull 湿度波动 (随时间变化):± 1%rH&bull 空间湿度均匀性:± 2%rH作为Aralab的中国区授权经销商,上海昊扩提供Aralab旗下各类高精度的环境控制设备,包括: &bull 低温培养箱/恒温恒湿箱/光照培养箱 &bull 步入式恒温恒湿房间 &bull 环境试验箱 &bull 步入式环境测试室 &bull 高低温冲击箱 &bull 人工气候箱/室想要了解更多相关产品信息,欢迎来电咨询!
  • 干货满满!看 Panta 轻松预测 ADC 稳定性
    话题介绍如何预测稳定性实验?对于ADC研发人员来讲,通过进行一系列蛋白质评估将有助于降低早期开发过程中最终产物不稳定的风险,特别是在优化偶联过程中,这些评估策略显得尤为重要。在本期文章中,我们来重点讲讲如何进行预测稳定性实验。借助PR Panta蛋白稳定性分析仪来推断低浓度样本在提高剂量, 并在更高浓度下用于临床给药后的表现。因为,这对于降低筛选过程的风险和确保筛选过程中获得最稳定的候选分子至关重要。一起看看PR Panta提供的真实数据示例,它们比较了裸抗--Trastuzumab(或称Herceptin),与ADC药物分子Kadcyla,和另一种来源于同类裸抗的ADC药物分子 RC48之间的多个维度预测信息。实验热稳定性实验背景 首先,很重要的第一步,我们要先了解标准的热稳定性实验。在PR Panta上进行这些实验很简单,使用相同的样本收集信息,根据候选分子的热稳定性(如Tm和Ton)以及通过PDI、Tsize和Tagg 的胶体稳定性参数对其进行排名。简单地说,首先比较每种的热变性曲线。Herceptin,裸抗,具有最高的热稳定性,与ADC药物分子Kadcyla相比具有更高的Tm1和更清晰的变性展开转变Kadcyla和RC48都表现出Tm1的峰增宽,表明大多数药物与该展开转变相关的结构域缀合--这是个好现象,因为Tm1对应CH2结构域,而Tm2和Tm3分别是Fab结构域和CH3--尽管它们通常很接近,仅显示单个Tm2RC48是一种由另一个母版裸抗构建的ADC药物,与Kadcyla相比,Tm1略有进一步降低。此外,可以判断它是一种与Herceptin不同的裸抗,因为变性展开的曲线轮廓有很大的变化,包括分别展现出的Tm2和Tm3PR Panta高分辨率的热变性展开数据,对每个ADC或mAb的变性结构展开提供了高度精细的分辨率,使其能够在结构域水平上体现出低至0.2°C的差异。这三种药物都经过了优化,可用于临床,因此稳定性的变化是最佳的,不像在开发过程的早期,需要比较候选药物分子--比如,需要筛选不同的偶联策略。因此,这些数据是了解偶联过程如何影响ADC稳定性的好方法。实验预测数据:3个实验了解ADC当我们已经了解了热变性曲线的数据,接下来是时候看看PR Panta可以解锁的预测参数了。1自缔合自缔合参数kD和第二维里系数B22都是告知生物在高浓度下可能如何表现的参数。其中任何正值都表明药物分子不太可能自我缔合--这是一个理想的结果。自缔合会导致聚集和高粘度,由于许多治疗方法在临床上是以高浓度给药,因此,最好在开发过程的早期就了解ADC是否容易发生自缔合。 自缔合参数kD自缔合参数kD是利用PR Panta的DLS检测模块导出的关于扩散常数的信息,来评估分子与自身相互作用的可能性。正kD表示排斥力(这是好的);负kD是有吸引力的(要避免)。数据显示:裸抗(mAb)具有高度自排斥性,表现出具有强趋势线的正kD。这意味着它不太可能在高浓度下的发生自缔合。在PR Panta中表征的数据结果与其他已发表的数据结果一致Kadcyla也有正kD,尽管它没有那么强的自我排斥。然而,它仍然被认为是一个“好”的结果,kD为正RC48表现出自缔合的倾向,kD为负第二维里系数B22第二维里系数B22是利用PR Panta的SLS检测模块得出的,是着眼于整体情况下自身相互作用的强度。尽管B22和kD之间存在关系,但它们是相互独立的进行判断,因此并不总是完美地一致。SLS的散射数据在用于低浓度样本下更容易出错。然而,一些研究人员更喜欢B22而不是kD,因为B22的数据被认为是对样本内相互作用的更“全局”的测量。如下图所示, B22的趋势看起来与kD的趋势非常相似。PR Panta数据计算出的Herceptin自缔合数值较好地反映了文献值,所提供的自缔合数值为您的分子,在放大工艺生产之前,提供了更宝贵的预测信息。2动力学稳定性动力学稳定性实验,着眼于表征以不同的升温速率设置热变性展开实验时,候选分子的热稳定性行为。通过测量蛋白质随着热升温速率的变化而展开的速度,可以计算出展开的活化能。只需以不同的速率设置一系列热变性曲线,然后比较熔化展开温度如何随速率变化即可。之后,使用Arrhenius方程,将这些信息用于预测构建的分子在不同储存温度下的半衰期。 这三位候选分子的比较情况:&bull 显示动力学稳定性Herceptin Kadcyla RC48,这与自缔合行为趋势相呼应&bull 与Herceptin相比,Kadcyla的半衰期显著缩短,但仍在两个月左右&bull RC48的半衰期非常低,表明偶联方法极不稳定362°C下的等温稳定性等温稳定性是进行加速稳定性研究的另一种方法。与动力学稳定性实验类似,可以使用高温下较短时间的稳定性来推断-20°C、4°C或RT(室温)下的长期稳定性。我们可以看到候选分子的变化趋势:&bull 根据累积半径(Cumulant radius,即纵坐标),可以明显检测到轻微的去折叠展开的变化&bull 在62°C下800分钟(13小时以上)后,Herceptin没有明显的大小变化&bull 两个ADC有着显著尺寸变化,RC48有着更明显的大小变化,再次表明它是所有候选分子中最不稳定的实验总结以上结果展示了除热变性试验参数外,PR Panta提供的其他多维度参数,对于预测长期稳定性是极有价值的。在早期开发和风险评估期间, PR Panta提供了关于如何选择的最佳候选药物的额外预测信息,可以用于进一步推进药物开发。并且与许多其他下游分析技术相比,PR Panta所需的样本更少,因此,从预测分析进而深入了解偶联过程对ADC的影响,PR Panta将会是研究者优先考量的选择。PR Panta蛋白稳定性分析仪(仪器价格咨询)欢迎联系我们,进一步了解PR Panta如何为您的ADC和其他生物制品提供高分辨率、高质量的数据。
  • 【热点应用】揭秘蛋白质的热稳定性!
    #本文由马尔文帕纳科医药业务发展经理 韩佩韦博士供稿# 蛋白质的热稳定性研究对于加深对蛋白质的结构和功能的了解有着非常重要的意义。差示扫描量热技术(DSC)是直接测量热转变过程焓变(ΔH)唯一的分析方法,例如蛋白质,核酸或其他生物多聚物的热变性过程,为表征蛋白质及其他生物分子的热稳定性建立“金标准”技术。 一、焓变对于蛋白质的稳定性意味着什么? 1,什么是焓(hán)变(ΔH)? ΔH(焓变)是在恒压状态下将系统升高至温度T过程中摄取的总能量。对于蛋白质而言,这意味着用于使蛋白质发生去折叠所花费的能量(热量),此过程中 ΔH 是为正值,代表这是一个吸热过程。这种能量与蛋白质中所有原子和分子运动相关,以及维系蛋白质保持折叠构象中的键能。 通过将吸热谱图下方的面积进行积分(见图 1)可以计算得到焓变(ΔH)。焓变用每摩尔蛋白质的吸收的卡路里(或焦耳)来表示。由于蛋白质在 DSC 实验中暴露于升高的温度,因此蛋白质开始发生热变性,并伴随着非共价键的断裂。焓变(ΔH)与维系蛋白质天然(折叠)构象中所需的价键数量有关。焓变(ΔH)也取决于我们测量总蛋白质浓度的准确程度。如果蛋白质浓度不是很准确, 则会影响到计算出的ΔH值。 2,焓变(ΔH)值可以在实践中告诉我们什么? 当您比较不同蛋白质的DSC结果时,具有较大ΔH值的蛋白质不一定比具有较小ΔH的蛋白质更稳定。由于ΔH值会对蛋白质摩尔浓度归一化,因此该值通常与蛋白质的尺寸成比例。大多数蛋白质具有相同的键密度(单位体积内的价键数量),因此,期待具有较大分子量的蛋白质也具有较大的焓变(ΔH)值也是合理的。 3,焓变(ΔH)的决定因素是什么? 焓变(ΔH)取决于溶液中天然蛋白质的百分比。 一个非常重要的考虑是DSC仅测量初始处于折叠(天然)构象中的蛋白质的ΔH值。ΔH值取决于具有折叠(活性)构象的浓度。如果初始折叠蛋白质组分小于总蛋白质浓度(即活性浓度小于100%),则计算出的ΔH值将相应地变小。 下图显示了在储存期间的不同时间测量的相同蛋白质的DSC图谱。蓝色曲线图谱表示新鲜制备的蛋白质,是100%天然(折叠)蛋白质。当蛋白质样品在储存期间发生部分变性时,溶液中的天然蛋白质的比例开始下降,导致DSC图谱的焓变降低。当我们拥有100%天然蛋白质的参考DSC图谱时,我们可以根据不同状态样品的相对ΔH值来估计每个样品中的折叠蛋白质比例。 4,如何判断蛋白质是否失活? 到目前为止,我们已提及的焓变是指通过DSC仪器直接测量到的“热”焓,也就是热力学焓变,通常表示为ΔHcal,这是其他任何非量热技术,例如圆二色谱(CD),表面等离子共振(SPR)等技术不能获取的焓变量。 还有另一种其他技术可以获取的焓变类型,即范霍夫焓变 - ΔHVH,我们同样可以通过DSC数据计算得出。范霍夫焓变(ΔHVH)可从通过DSC非两状态模型(non-2-state model)拟合得到。 两种不同的焓变对蛋白质热稳定性的测定又有什么实际意义呢? 在DSC技术中,ΔHcal仅由DSC热转变峰曲线积分的面积来确定,而ΔHVH仅通过热转变峰曲线的形状来确定。转变峰形越尖锐,ΔHVH越大,反之亦然。ΔHcal是具有浓度依赖性的,但ΔHVH不是。 若ΔHcal/ΔHVH比例为1,通常意味着所研究的热转变状态符合两状态去折叠(Two-state unfolding model)模型。如果ΔHcal/ΔHVH比例大于1,则意味着存在显著密集的中间体存在 而ΔHcal/ΔHVH比小于1,则意味着存在分子间相互作用。 使用ΔHcal/ΔHVH可以帮我们估测是否有很大部分蛋白质是失活的。如果我们有一个简单的单结构域蛋白质,并且假定没有中间体,则我们可以预测,其去折叠过程的ΔHcal/ΔHVH的比值不会远离1。因此,如果ΔHcal显著低于ΔHVH,可以表明很大部分蛋白质已经失活。 综上所述,对DSC中ΔH数据的分析可以让我们了解蛋白质的去折叠机制,以及多少蛋白质处于其活性的天然构象。 二、TM值如何与和蛋白质稳定性相关? 中点转变温度TM我们可以从DSC数据中提取多个热力学参数,例如ΔH,ΔHVH(范霍夫焓变),ΔCP和ΔG,但最广泛使用的参数是TM。顺便提一下,这也是最容易和最准确的值 - TM是最大峰值所对应的温度。 “蛋白质稳定性”有多种定义。最常见的是,对于工业上有重要意义的蛋白质,该术语是指在生理温度下的功能(或操作)稳定性 即,他们可以在37°C下发挥多长时间的生物功能?这可以通过需要花几天或数周时间的等温研究来评估,或者,如果使用差示扫描量热法(DSC),则可以在几分钟内变性蛋白质。 通过DSC获得的哪个热力学参数与功能稳定性相关度最佳?事实证明,是TM值。 热力学稳定性(ΔG)是功能稳定性的较差的预测因子 技术上,ΔG仅适用于可逆去折叠过程,此外,它由TM,ΔH和ΔCP计算得到,后者可能很难获取。 一个例子是TM和ΔG与人肉杆菌蛋白抗原血清型C的半数聚集时间(half time)(作为功能稳定性的量度)的相关性,用作模型蛋白。ΔG与T1 / 2 agg. 相关系数(R)仅为0.4,而TM 与 T1 / 2 agg.的相关系数是0.92。(来自J Pharm Sci的数据,2011 Mar 100(3):836-48) 思考TM的一种方式: 如下图所示,假设我们用 DSC 扫描两种不同配方中的蛋白质或两种不同的蛋白质构建体,则 TM 值向低温方向 5℃ 的负偏移(稳定性下降)实际上反映了在 37℃ 条件下的 Fu (蛋白去折叠比例)由2%增加到 3%。温度 T 下的 Fu 蛋白可以通过图像化的方式估算,即温度 T 以下的曲线下阴影区域面积和整个曲线下方面积的百分比。 由于聚集体的生成可能是浓度依赖的过程,因此较高浓度的去折叠蛋白质(红色扫描曲线)将导致较快的聚合(更大组分的去折叠状态(U)才能转换为不可逆变性状态(I)。参见下面的原理图。 这种解析的一个推论是,曲线的整体形状应该是相似的。我们假定这种情况是对于在不同配方中的相同蛋白质或由一个母分子衍生出来的具有相似构建体的蛋白质。但是,对于完全不同的蛋白质,使用TM值作为用于稳定性比较的预测指标则应该谨慎使用。 扩展阅读(www.malvernpanalytical.com)Differential Scanning Calorimetry (DSC): Theory andpracticeDifferential Scanning Calorimetry (DSC) forBiopharmaceutical Development: Versatility and PowerThe Power of Heat: Digging Deeper with DifferentialScanning Calorimetry to Study Key Protein Characteristics PEAQ-DSC 微量热差示扫描量热仪:DSC差式扫描量热法(DSC)是一种直接分析天然蛋白质或其他生物分子热稳定性的技术,无需外在荧光素或者内源荧光,它通过测定在恒定的升温速率下使生物分子发生热变性过程中的热容变化来实现。 马尔文帕纳科 MICROCLA PEAQ-DSC 微量热差示扫描量热仪能够帮助用户快速确认维持高级结构稳定性的最佳条件,提供简介、无缝的工作流程和自动化批量数据分析,其所提供的热稳定性信息被业内视为“金标准”技术,是一种非标记、全局性的数据。 关于马尔文帕纳科马尔文帕纳科的使命是通过对材料进行化学、物性和结构分析,打造出更胜一筹的客户导向型创新解决方案和服务,从而提高效率和产生可观的经济效益。通过利用包括人工智能和预测分析在内的最近技术发展,我们能够逐步实现这一目标。这将让各个行业和组织的科学家和工程师可解决一系列难题,如最大程度地提高生产率、开发更高质量的产品,并缩短产品上市时间。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制