硒化镉量子点

仪器信息网硒化镉量子点专题为您整合硒化镉量子点相关的最新文章,在硒化镉量子点专题,您不仅可以免费浏览硒化镉量子点的资讯, 同时您还可以浏览硒化镉量子点的相关资料、解决方案,参与社区硒化镉量子点话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

硒化镉量子点相关的耗材

  • 羧基化石墨烯量子点粉末
    羧基化石墨烯量子点粉末 Carboxylated GQDs - Carboxylated GQDs Powder制备方法:前驱体热解法成分:羧化的石墨烯量子点外观:淡黄色粉末粒子尺寸:10纳米规格:100mgEmission Photos (1) of ACS Material Carboxylated Graphene Quantum Dots Excited by Natural Light (left) and UV Light (right)TEM Image (2) of ACS Material Carboxylated Graphene Quantum Dots Size Distribution (3) of ACS Material Carboxylated Graphene Quantum Dots
  • 蓝色荧光石墨烯量子点
    参数:制备方法:自下而上法石墨烯量子点的元素组成(wt%):4(wt%):46(wt%):50量子点大小:15纳米厚度:0.5 nm纯度:80%标准浓度:1毫克/毫升Parameter:Preparation Method:Bottom-up methodElemental compositions of graphene quantum dotsH (wt %) :4C (wt %) :46O (wt %):50Quantum Dots Size:15 nmThickness:0.5-2 nmPurity:~80%Standard Concentration:1 mg/ml
  • 羧基化石墨烯量子点 Carboxylated GQDs
    羧基化石墨烯量子点 Carboxylated GQDs制备方法:前驱体热解法羧基化的石墨烯量子点外观:无色溶液发光峰:487纳米粒度:10纳米浓度:1毫克/毫升(可高达20mg/ml)溶液:水规格:100ml Emission Photos (1) of ACS Material Carboxylated Graphene Quantum Dots Excited by Natural Light (left) and UV Light (right)TEM Image (2) of ACS Material Carboxylated Graphene Quantum Dots Size Distribution (3) of ACS Material Carboxylated Graphene Quantum Dots

硒化镉量子点相关的仪器

  • 国仪量子高速数字化仪DAQ2100DAQ2100是一款双通道、1GSa/s采样率、14bit垂直分辨率的高速数字化仪,数据传输采用PCIe×8 Gen3接口,为高级测量应用提供完整和多样化的解决方案,可广泛应用于通信、测试测量、生物医学、光学检测及粒子物理研究、雷达等应用领域。产品特征支持2通道同步采集每通道1GSa/s采样率、14bit垂直分辨率支持交/直流耦合支持6档输入范围调节:±50mV到±2.5V可编程直流偏置2GB板载存储器支持用户自定义FPGA输出处理逻辑开发集成累加、数据反转、噪声基线抑制等实时信号处理模块 关键技术指标参数名称参数信号输入通道数2接口类型SSMC输入阻抗50Ω输入耦合方式AC/DC耦合输入信号范围±2.5V、±1V、±500mV、±250mV、±100mV、±50mV采样率1GSa/sADC位数14bitENOB≥8bit通道带宽DC-500MHz每通道存储深度512Mpts触发输入触发输入通道数1接口类型SSMC输入阻抗50Ω信号电平0~5V灵敏度0.1V触发输出通道数1接口类型:MMCX输出阻抗50Ω信号电平3.3V/LVTTL外部时钟输入通道数1接口类型MMCX输入阻抗50Ω时钟频率1GHz耦合方式AC 信号电平 0.5V~3.3V外部参考时钟输入通道数1接口类型MMCX输入阻抗50Ω时钟频率10MHz/100MHz耦合方式AC 信号电平 0.5V~3.3V内部时钟参考输出通道数1接口类型MMCX输出阻抗50Ω时钟频率10MHz/100MHz耦合方式AC信号电平3.3V/LVTTL多用途I/O通道数3接口类型MMCX输入阻抗10kΩ最大输入电平3.3V/TTL输入带宽125MHz输出阻抗50Ω输出信号电平3.3V/LVTTL通信通信接口类型PCIE3.0×8 应用方向l 雷达/激光雷达l 通信及信号分析l 超声无损检测l 光学相干层析l 光谱分析l 高性能成像l 时间飞行质谱l 粒子物理
    留言咨询
  • 量子钻石单自旋谱仪是一台以NV色心自旋磁共振为原理的量子实验平台。该谱仪通过控制光、电、磁等基本物理量,实现对钻石中氮—空位(NV色心)发光缺陷的自旋进行量子操控与读出,与传统顺磁共振、核磁共振相比,具有初态是量子纯态、自旋量子相干时间长、量子操控能力强大、量子塌缩测量实验结果直观等独特优势。带有负电的NV色心具有优良的量子特性。当施加532nm的绿色激光,电子从基态跃迁到激发态,从激发态衰减到基态的过程中,会发出红色荧光。ms=0态的荧光强度比较强,而ms=±1态发出的荧光比较弱,可以通过荧光强度区分自旋状态。量子钻石单自旋谱仪具有超高灵敏度与纳米级超高分辨率,能在室温大气条件下运行,可以完成单分子、单细胞的微观磁共振谱学和成像。该谱仪具备高保真度量子自旋态调控技术,通过自主研发的50ps时间精度脉冲发生器以及宽带高功率微波调制器件,能够实现对自旋低噪声、高效、快速的量子相干操控。与谱仪配套的高智能化控制与信号采集软件,能够实现自动光路调节、自动磁场调节以及长时间的无人值守自动测样实验,是科研实验的好搭档。公司同时具有完善的高品质金刚石探针制备工艺,可以自主制备长相干时间、高稳定度的金刚石探针。产品参数:产品特点:欢迎下载样本了解更多产品详情。
    留言咨询
  • 量子自旋磁力仪利用碱金属原子外层电子自旋性质,以泵浦激光作为操控手段,使碱金属原子产生自旋极化。在外界弱磁场的作用下,碱金属原子发生拉莫尔进动,改变对检测激光的吸收,从而实现高灵敏度的磁场测量。量子自旋磁力仪具有灵敏度高、体积小、能耗低、易于携带的特点,未来将引领人类在科学研究、生物医学等磁传感领域进入量子时代。应用案列:1.生物医学领域量子自旋磁力仪主要应用于心磁和脑磁研究。量子自旋磁力仪通过采集人体心脏磁场信号,获得心磁分布图像,可对心肌缺血、冠脉微循环障碍心肌病等进行功能性诊断及预后研究。脑磁比心磁的磁信号更弱,量子自旋磁力仪能够测量神经电流产生的磁场,实现人脑的电生理直接成像,为临床提供宝贵的信息。2.地球物理领域量子自旋磁力仪通过精确捕捉地球磁场的变化,获得地磁异常信息,可用于石油工业的定向钻井、地质灾害监测、矿产资源勘探等方向。
    留言咨询

硒化镉量子点相关的方案

  • LUMiSizer®表征碳量子点材料在不同离子浓度下的稳定性
    量子点(Quantum Dot)又称为半导体纳米晶体,由数百或者数千原子组成的直径小于20nm(纳米,10-9米)的晶体颗粒。最常见的量子点由II - VII族、III - VI族或I - III - VII族元素组成。量子点具有独特的光学性能,其中之一便是不同尺寸的量子点会发出不同颜色的光,其发光颜色可以覆盖从蓝光到红光的整个可见区,具有色纯度高、寿命长、稳定性好、可定制颜色等特点。事实上,量子点技术早已率先在显示产业应用落地。并且,显示只能算量子点技术应用的一道“开胃菜”,未来,生物成像、传感器、太阳能电池、载药等都将成为量子点技术的应用落地场景。通常,制造量子点的材料是有毒的硫化镉,而镉制造的量子点的商业应用前景不广。但是碳量子点的出现让量子点的应用场景一下子开阔了起来,而且拓宽了我们对碳这种元素的认识。碳量子点是2004年才被发现的物质,发现者是南卡罗莱纳大学的一位叫做 Xiaoyou XU 的华裔化学家。合成CQDs的方法有很多,包括常见的溶剂热合成法,微波合成法,化学氧化法,模板法等。研究人员使用溶剂热合成法合成CQDs材料,并通过LUMiSizer®分散体分析仪分析所得分散液材料的稳定性。
  • 量子点研究之滨松解决方案
    量子点是一类纳米颗粒,其中电子的能级呈现量子化、不连续的状态。当能级之间的能量差别对应可见到近红外的光子能量时,一些量子点就可以被光或者电能激发,发出可见到近红外的荧光。由于电子能级之间的能量差与颗粒尺寸相关,所以即使同一种材料的量子点,大小不同,荧光的颜色也可以不一样(如图1)。而材料本身(如CdSe、碳)、量子点的结构(如核壳结构)对其荧光特性也有着不可忽略的影响。量子点的一大应用是作为荧光探针用于生物成像;此外在显示屏幕领域,量子点可以替代LED中的荧光粉(荧光粉应用背景参考),而新一代的QLED屏幕则直接采用了能够电致发光的量子点材料。
  • 微波合成氮化碳量子点及其在测汞中的应用
    量子点(quantum dot)是准零维的纳米材料,由少量的原子所构成。量子点三维度的尺寸都在 100nm 以下,其内部电子在各方向上的运动都受到局限。由于具有显著的量子效应,它们已在众多领域中引起广泛的关注。例如生物成像、生物传感器、金属离子检测光催化等。这里我们何成了氮化碳量子点并讨论了它在汞离子检测中的应用。

硒化镉量子点相关的论坛

  • 【转帖】量子点的“战争”不可避免

    量子点的“战争”不可避免随着现在一种被称为量子点的纳米材料越来越多地受到电子以及生命科学产业的重视,分析人士担心在量子点技术领域复杂的专利权问题将引发一场昂贵且没有赢家的法律战争。 纽约市雷克斯研究公司的副总裁Matthew Nordan认为,“在未来三年内很有可能会发生一场针对量子点技术的法律大战。” 然而,有专家称,也许有方法可以避免这些无谓的法律战争。 Stephen Maebius是美国华盛顿纳米科技行业法律顾问公司Foley & Lardner公司的主席,他表示“研究量子点的那些公司可以通过专利交换的方式来避免由诉讼引起的干扰,把原本花在长达数年官司的百万美元投入到研究中去。” 量子点是半导体纳米微晶体,大小只有十亿分之一米,仅仅由10个原子组成。这种材料在吸收了少量的光线后能够发出明亮的荧光。科学家们能够改变量子点吸收的光线颜色,然后再对量子点的体积和结构进行调整就能让这种材料散发出颜色极为精确的荧光。例如,直径大于6纳米的硒化镉量子点能够发出红色的荧光,而直径小于3纳米的硒化镉量子点则会发出绿色的荧光。 量子点能够帮助科学家们对细胞和器官的行为成像,而成像细节级别在价值5亿美元的全球生物探测试剂市场中是前所未有的。生命科学研究中所使用的传统的光燃料分子是作为分子标签使用,帮助科学家们监测细胞与器官生长、发展,而它们通常在几秒钟内就会失去发光能力。而量子点的发光时间却更长,让研究者们能够实时监测细胞与器官在死亡与健康情况下的表现。 美国加利福尼亚州海达德地区的Quantum Dot(量子点)公司刚成立不久,它已经和诸如Genentech,, Roche 和GlaxoSmithKline几个业界巨头开始合作。 量子点还能够通过吸收光线产生电子。美国科罗拉多州戈尔登地区的国家可再生能源实验室的研究人员在五月份一期的《纳米快讯》中解释说,这将使新的太阳能系统性能提高到现有最好的太阳能电池性能的两倍。目前我们生产的太阳能电池吸收光线中的一个光子,然后,最多把它转换成一个电子,而剩下的能源就被白白浪费掉。而量子点能够将太阳光中的单个高能量光子转换成多达三个电子。这意味着,理论上来说基于量子点的太阳能电池能够将太阳能中65%的能量转换成为电能,而今天最好的电池也只能够达到33%。 纳米技术法律与商业周刊的一位编辑John Miller解释说:“现在一些公司注册的专利含盖范围很广,几乎包括了所有的半导体纳米晶体,有的公司甚至在专利申请书上仅仅描述像硒化镉这样特殊的材料。” 和Quantum Dot公司一样,另一家位于加利福尼亚州帕洛阿尔托地区的Nanosys公司声称,拥有量子点领域中除Quantum Dot独家关键专利外的所有专利。 Quantum Dot公司的执行总裁 George Dunbar表示,“如果有人阻止我们获得知识产权,那我们一定会把他们揪出来。” 然而,几家研究量子电的公司针对这些排他主义性宣言已经想出了几个对策。 纽约州托伊地区Evident科技公司的总裁Clinton Ballinger说:“我们并没有看到有关专利重叠的声明,我们感觉每向前迈进一步,都好像是跨进了新的领域。虽然花费了很多时间在这片雷区探索,但是我们觉得手中好像有一份地图在指引我们前进。在那里我们几乎没有束缚。” 例如,Evident公司发布了第一个利用非重金属制成的量子点。 “日本和欧洲都十分反对使用镉,而大多数的量子点都是由镉或铅制” Ballinger说,他还指出美国很快也会开始限制这些金属的使用。 Nordan强调说“在量子点技术领域,人们谈论最多的就是诉讼,而不是专利授权。这就像是笼罩在这一领域上空的一片黑云一样,而在诸如富勒烯这类的领域中,你所听到的大多是竭尽全力的诉讼大战,而不是专利交换授权,和平相处。正确的解决办法是专利交换授权,专利交换在信息产业领域的运行非常成功,但是你必须把自己的骄傲抛在脑后。” 虽然以生命科学应用为目的出售量子点是明显的事实,但是Ballinger认为针对量子点技术的法律大战并不会出现。他说“我们完全接受专利授权,这是理智之选。” Dunbar并没有排除采用专利交换解决问题的可能性,但是他认为:“只有和那些财务状况稳定的公司进行交易时,专利交换才有用。而据我所知,目前达到这一标准的公司并不多。” 转载出处:中国科技信息网

  • 量子点电视

    什么是量子点电视?量子点电视听上去很高深莫测,其实就是QLED电视的另外一个名称,QLED是"Quantum Dot Light-Emitting Diode"的简写,中文译名是“量子点发光二极管”,这是一项家电厂商期待在未来取代OLED的新技术,原理是通过蓝色背光源照射照射直径不同的红色和绿色量子点,从而形成红绿蓝(RGB)三原色,然后再通过滤光膜等呈像系统和驱动系统形成图像。说白了,量子点电视其实还是一种LED电视。量子点是一种纳米材料,其晶粒直径在2-10纳米之间,量子点受到电或光的刺激会根据量子点的直径大小,发出各种不同颜色的单色光。可以借助量子点发出能谱集中、非常纯正的高质量红/绿单色光。那么什么是LED电视呢?首先我们先来说说液晶电视的根源性产品——LCD电视。LCD(Liquid-Crystal Display)最开始其实是液晶显示器,加入收看电视功能后成为LCD电视。这种电视通过背光源照射液晶面板,RGB三色液晶分子通过不同排布完成成像。请记住一点:在LCD阶段,液晶电视重要的背光源是CCFL冷阴极背光灯,可以暂时理解为我们的灯管,我们将这时的LCD电视称之为CCFL冷阴极背光源液晶电视。随后LED电视出现了,其实LED依旧是一种LCD液晶电视,它的准确名称是LED背光源液晶电视,LED电视和LCD电视的成像原理完全相同,只是背光源由CCFL改为了LED,相比而言厚度更薄、更加节能,但没有本质区别。量子点电视有何优势?要说到量子点电视的优势,首先我们得来说说OLED。OLED有机发光二极管(Organic Light-Emitting Diode)的屏幕是由有电流通过时能够发光的有机材料组成,它让电视机更轻薄,甚至可以弯曲。不过,因为成本高、良品率低、有机材料易氧化、无法适应户外和强光环境、以及某些场景下能耗过高等问题,采用OLED技术的电视一直未能普及。OLED技术当前主要掌握在两家全球最大家电厂商LG和三星电子手中。这两家韩国厂商是老对手,同时也是重要的液晶面板生产厂商。LG押宝OLED,希望借此超越三星电子的全球电视厂商老大的地位。然而因为OLED现阶段的高价,导致市场销量一直难以达到预期。此时,三星电子决定将研发重心转移到QLED上来。与OLED电视相比,量子点电视有四大优势:更宽广色域显示、更精准色彩控制、更长使用寿命以及更强节能性。由于量子点受到电或光的刺激,会根据其直径大小,发出各种不同颜色的非常纯正的高质量单色光,这一点甚至比OLED显示屏更强,众所周知OLED显示屏是通过滤镜得到纯色,而通过过滤的色彩虽然更纯、但也会有失真的情况,而量子点并不需要过滤,也就不会出现这种情况。同时可以在更低的电压下工作,能耗会降到最低。此外,由于量子点电视使用的无机材料不易被氧化,因此其显像寿命比OLED多出两万小时。当前量子点电视值得买吗?当前暂时只有TCL一家厂商推出了量子点电视,且55英寸的量子点电视的官方售价高达12999元人民币,而TCL 55英寸的4K超高清LED电视的官方零售价格只有5599元人民币。一台量子点电视的售价是同尺寸同分辨率的LED电视售价的2倍还要高。TCL此时推出量子点电视,打造自己品牌的意味更浓。而三星电子和LG要明年才能加入量子点电视阵营,届时消费者可选的余地将会更大。同样,新推出的技术还有可能有缺陷,具体如何有待市场检验,所以综上所叙,现在量子点电视并不值得购买,建议消费者持币观望。此外,业界也有观点认为,85%以上的色域普通人的肉眼实际是很难分辨的,因此厂商强调的高色域效果消费者并非都能感受到,也就是说,OLED电视的色域已经完全能满足普通用户的需求了。http://img1.mydrivers.com/img/20141222/5d677d4db4334f2d8e207c471c7bdd82.jpg

  • 新方法可生产形状尺寸可控的石墨烯量子点

    科技日报 2012年05月19日 星期六 本报讯 (记者张巍巍)据物理学家组织网5月18日(北京时间)报道,美国堪萨斯州立大学的研究人员开发出一种新方法,可生产出大量形状和尺寸可控的石墨烯量子点,这或将为电子学、光电学和电磁学领域带来革命性的变化。相关研究报告发表在近日出版的《自然·通讯》杂志上。 由于边缘状态和量子局限,石墨烯纳米结构(GN)的形状和大小将决定它们的电学、光学、磁性和化学特性。目前自上而下的GN合成方式有平板印刷术、超声化学法、富勒烯开笼和碳纳米管释放等。但这些方法都具有生产率低、形状尺寸不可控、边缘不光滑、无法轻易转移至其他基底或溶解于其他溶剂等问题。 该校化学工程系的维卡斯·贝里教授等科研人员利用钻石刀刃对石墨进行纳米切割,使其变成石墨纳米块,这是形成石墨烯量子点的前提。这些纳米块随后将呈片状脱落形成超小的碳原子片,生成的ID/IG比值介于0.22和0.28之间,粗糙度低于1纳米的石墨烯结构。科研团队通过高分辨率的透射电子显微镜和模拟证明,生成的GN边缘笔直、光滑,而通过控制GN的形状(正方形、长方形、三角形和带状)和尺寸(不超过100纳米),研究人员能够大范围控制石墨烯的特性,使其应用于太阳能电池、电子设备、光学染料、生物标记和复合微粒系统等方面。 贝里表示,新型石墨烯量子点材料在纳米技术领域具有巨大的发展潜力,他们期望能通过此次研究进一步促进石墨烯量子点的发展。 总编辑圈点 石墨烯出现短短几年,产业界已有很多人预言它将成为未来电子业的中坚材料。制造纳米级的石墨烯点以代替硅晶单元,是石墨烯在电子业应用的关键一步,也是现在各国科学家竞相探索的目标。今年年初,美国莱斯大学成功利用碳纤维制造了纳米级的石墨烯圆片,效率比以往大为提高。这次堪萨斯大学实验成功的“石墨纳米切割”方式,进而能够控制石墨烯纳米点的形状,无疑开辟了一条新的技术思路。

硒化镉量子点相关的资料

硒化镉量子点相关的资讯

  • 高效的碲化镉量子点/钨酸铋纳米片复合半导体材料作为光催化剂用于治理有机污染物
    1. 文章信息标题:CdTe Quantum Dot/Bi2WO6 Nanosheet Photocatalysts with a Giant Built-In Electric Field for Enhanced Removal of Persistent Organic Pollutants期刊:ACS Applied Nano Materials 20222. 文章链接ScienceDirect专用链接:https://doi.org/10.1021/acsanm.2c00155或https://pubs.acs.org/doi/abs/10.1021/acsanm.2c001553. 期刊信息期刊名:ACS Applied Nano Materials2021年影响因子:5.097分区信息:中科院2区;JCR分区(Q2)涉及研究方向:工程技术:材料4. 作者信息:杨朋启(首要作者),吴正岩(首要通讯作者);张嘉(第二通讯)5. 光源型号:北京中教金源CEL HXF300(300 W氙灯,可见光范围)和CEL-NP2000-2A(光密度测量仪)文章简介:近年来,由于各种有机污染物的大量使用导致水体环境污染加剧。针对此类污染,课题组设计并开发了一种高效的碲化镉量子点/钨酸铋纳米片复合半导体材料作为光催化剂用于治理有机污染物。由于低维半导体材料内部存在强的激子效应,严重抑制了电子-空穴的分离和转移。作者通过在材料内部构建内置电场作为内在驱动力,促进激子的解离和光生电子-空穴的转移,从而提高对苯酚、罗丹明B、四环素的降解效率,并且在短时间内基本可以达到完全降解的目的。同时,该催化剂又展现出良好的循环利用率,多次催化后仍可保持较高的光催化效率。因此,该催化剂在水体污染物治理方面展现出一定的应用前景。 我们一致认为本文的创新之处有以下几点:1、首次在2维钨酸铋(200)晶面和碲化镉量子点(111)晶面构建了内置电场。2、实验和DFT理论计算双向证明了内置电场的构建调节了激子效应,促进了激子的解离。3、在水体环境中各种可持续存在的有机物治理方面展现优异的性能。
  • 观测到胶体量子点的激子型布洛赫—西格特位移
    近日,中国科学院大连化学物理研究所研究员吴凯丰与副研究员朱井义团队在胶体量子点超快光物理研究中再获新进展。团队观测到CsPbI3量子点在红外飞秒脉冲作用下的布洛赫—西格特位移,并揭示了激子效应对相干光学位移的调制作用。上述工作发表在《自然—通讯》上。  强光场能够对物质的光学跃迁产生调制,例如旋波近似下的光学斯塔克效应和反旋波近似下的布洛赫—西格特位移。由于二者通常同时出现,且前者往往远强于后者,在实验中观测较为纯净的布洛赫—西格特位移颇具挑战。近期,有研究人员报道了单层过渡金属硫化物二维材料中的谷极化布洛赫—西格特位移。然而,低维材料中一般存在着较强的多体相互作用,带来显著的激子效应,这些效应如何影响布洛赫—西格特位移仍然未知。  研究团队选定铅卤钙钛矿量子点作为观测布洛赫—西格特位移,并研究其中激子效应的模型体系。一方面,旋轨耦合和量子限域效应的结合使得该体系可被近似为具有自旋极化选律的二能级系统;另一方面,相比于衬底敏感的二维材料,胶体量子点能够均匀地分散在低折射率的溶剂中,从而避免了介电无序对激子效应造成的干扰。  基于此,研究团队以CsPbI3量子点为研究对象,利用圆偏振飞秒瞬态吸收光谱,在室温下成功观测到了其布洛赫—西格特位移。在红外飞秒脉冲作用下,该位移可以高达4毫电子伏特。布洛赫—西格特位移与光学斯塔克位移的比值随着失谐量的增大而增大,定性符合(反)旋波近似的图像。然而,该比值总是大于忽略多体相互作用的准粒子模型所预测的数值。  为了解释实验和理论值的偏离,研究团队在激子图像下建立了描述布洛赫—西格特位移的新模型,精确再现了实验测量结果。该模型还深刻指出,光学斯塔克效应、双激子光学斯塔克效应以及布洛赫—西格特位移在激子图像下是彼此混合和相互影响的。考虑到量子限域材料普遍具有较强的激子效应,该模型对于正确处理其中的相干光学现象,以及将这些现象应用于光学调制、信息处理和量子材料Floquet工程具有重要启示意义。
  • 大连化物所实现量子点—分子杂化体系的近红外热延迟发光
    近日,大连化物所光电材料动力学研究组 (1121组) 吴凯丰研究员与杜骏副研究员团队在量子点—有机分子能量传递机制与应用的研究中取得新进展,采用低毒性的CuInSe2量子点结合并四苯分子,实现了该类杂化体系在近红外波段的热延迟发光。研究团队前期对量子点—有机分子的三线态能量转移(TET)机制研究表明,通过提升量子点与分子间的波函数交叠,在较低能量转移驱动力的条件下,仍可获得较高的TET效率。根据化学热力学平衡,在这种情况下,从分子三线态回到量子点激子态的吸热反向传能(rTET)速率也较快。当rTET速率远大于三线态本身衰减速率时,大多数三线态都会重新回到量子点激子态辐射出延迟发光(TADPL),原理上类似于有机分子中的热活化延迟荧光现象(TADF)。团队前期也观测到可见波段的TADPL(ACS Energy Lett.,2021),并揭示了其熵调控机制(JPCL,2021)。近红外光在生物成像、光纤通讯、国防安全等诸多领域具有重要意义。基于量子点—有机分子杂化体系的近红外TADPL迄今未见报道,其根本难点在于有机分子的能隙定则:能量越低的激发态,其非辐射衰减速率一般越快。这就要求rTET的速率足够快,才能与之有效竞争。针对该难题,团队通过同时优化量子点和三线态受体分子的手段,采用低毒CuInSe2-并四苯的体系,观测到近红外波段(约900nm)的TADPL。研究发现,在室温下TADPL寿命达到60微秒,相比于CuInSe2量子点激子态的寿命提升了3个数量级。得益于量子点本身高达40%的发光效率,TADPL的量子效率可达9%。这些参数可媲美可见光波段的TADPL体系。得益于CuInSe2量子点无重金属的优势,该体系相比传统的铅基近红外量子点可能具有更好的应用前景。吴凯丰团队近年来致力于量子点与有机分子间的电荷/能量转移动力学研究:揭示了量子点与有机分子电荷转移中的累积电荷效应(JACS,2018;JACS,2018),并在单电荷转移体系中观测到Marcus反转区间(Nat. Commun.,2021);揭示了量子点尺寸和分子构型对三线态传能的影响及其物理机制(JACS,2019;Angew,2020);建立了电荷转移介导三线态传能的各类新机制(Nat. Commun.,2020;JACS,2020;Nat. Commun.,2021),并阐明了电子自旋在其中起到的关键角色(JACS,2020;Chem,2022);面向实际应用开发了低毒性的CuInS2、InP和ZnSe等量子点作为各波段的三线态敏化剂(JACS,2019;JACS,2020;ACS Energy Lett.,2022);探索了这些电荷/能量转移机制在光催化合成中的新型应用(Chem,2021;Angew,2022;Angew,2022)。上述最新工作以“Thermally Activated Delayed Near-Infrared Photoluminescence from Functionalized Lead-Free Nanocrystals”为题,发表在《德国应用化学》(Angew. Chem. Int. Ed.)上,并被选为VIP(Very Important Paper)文章。该工作的第一作者是大连化物所1121组博士后何山。该工作得到国家自然科学基金、国家重点研发计划、中科院稳定支持基础研究领域青年团队计划等项目的资助。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制