当前位置: 仪器信息网 > 行业主题 > >

硒化镉量子点

仪器信息网硒化镉量子点专题为您整合硒化镉量子点相关的最新文章,在硒化镉量子点专题,您不仅可以免费浏览硒化镉量子点的资讯, 同时您还可以浏览硒化镉量子点的相关资料、解决方案,参与社区硒化镉量子点话题讨论。

硒化镉量子点相关的仪器

  • 国仪量子高速数字化仪DAQ2100DAQ2100是一款双通道、1GSa/s采样率、14bit垂直分辨率的高速数字化仪,数据传输采用PCIe×8 Gen3接口,为高级测量应用提供完整和多样化的解决方案,可广泛应用于通信、测试测量、生物医学、光学检测及粒子物理研究、雷达等应用领域。产品特征支持2通道同步采集每通道1GSa/s采样率、14bit垂直分辨率支持交/直流耦合支持6档输入范围调节:±50mV到±2.5V可编程直流偏置2GB板载存储器支持用户自定义FPGA输出处理逻辑开发集成累加、数据反转、噪声基线抑制等实时信号处理模块 关键技术指标参数名称参数信号输入通道数2接口类型SSMC输入阻抗50Ω输入耦合方式AC/DC耦合输入信号范围±2.5V、±1V、±500mV、±250mV、±100mV、±50mV采样率1GSa/sADC位数14bitENOB≥8bit通道带宽DC-500MHz每通道存储深度512Mpts触发输入触发输入通道数1接口类型SSMC输入阻抗50Ω信号电平0~5V灵敏度0.1V触发输出通道数1接口类型:MMCX输出阻抗50Ω信号电平3.3V/LVTTL外部时钟输入通道数1接口类型MMCX输入阻抗50Ω时钟频率1GHz耦合方式AC 信号电平 0.5V~3.3V外部参考时钟输入通道数1接口类型MMCX输入阻抗50Ω时钟频率10MHz/100MHz耦合方式AC 信号电平 0.5V~3.3V内部时钟参考输出通道数1接口类型MMCX输出阻抗50Ω时钟频率10MHz/100MHz耦合方式AC信号电平3.3V/LVTTL多用途I/O通道数3接口类型MMCX输入阻抗10kΩ最大输入电平3.3V/TTL输入带宽125MHz输出阻抗50Ω输出信号电平3.3V/LVTTL通信通信接口类型PCIE3.0×8 应用方向l 雷达/激光雷达l 通信及信号分析l 超声无损检测l 光学相干层析l 光谱分析l 高性能成像l 时间飞行质谱l 粒子物理
    留言咨询
  • 量子钻石单自旋谱仪是一台以NV色心自旋磁共振为原理的量子实验平台。该谱仪通过控制光、电、磁等基本物理量,实现对钻石中氮—空位(NV色心)发光缺陷的自旋进行量子操控与读出,与传统顺磁共振、核磁共振相比,具有初态是量子纯态、自旋量子相干时间长、量子操控能力强大、量子塌缩测量实验结果直观等独特优势。带有负电的NV色心具有优良的量子特性。当施加532nm的绿色激光,电子从基态跃迁到激发态,从激发态衰减到基态的过程中,会发出红色荧光。ms=0态的荧光强度比较强,而ms=±1态发出的荧光比较弱,可以通过荧光强度区分自旋状态。量子钻石单自旋谱仪具有超高灵敏度与纳米级超高分辨率,能在室温大气条件下运行,可以完成单分子、单细胞的微观磁共振谱学和成像。该谱仪具备高保真度量子自旋态调控技术,通过自主研发的50ps时间精度脉冲发生器以及宽带高功率微波调制器件,能够实现对自旋低噪声、高效、快速的量子相干操控。与谱仪配套的高智能化控制与信号采集软件,能够实现自动光路调节、自动磁场调节以及长时间的无人值守自动测样实验,是科研实验的好搭档。公司同时具有完善的高品质金刚石探针制备工艺,可以自主制备长相干时间、高稳定度的金刚石探针。产品参数:产品特点:欢迎下载样本了解更多产品详情。
    留言咨询
  • 量子自旋磁力仪利用碱金属原子外层电子自旋性质,以泵浦激光作为操控手段,使碱金属原子产生自旋极化。在外界弱磁场的作用下,碱金属原子发生拉莫尔进动,改变对检测激光的吸收,从而实现高灵敏度的磁场测量。量子自旋磁力仪具有灵敏度高、体积小、能耗低、易于携带的特点,未来将引领人类在科学研究、生物医学等磁传感领域进入量子时代。应用案列:1.生物医学领域量子自旋磁力仪主要应用于心磁和脑磁研究。量子自旋磁力仪通过采集人体心脏磁场信号,获得心磁分布图像,可对心肌缺血、冠脉微循环障碍心肌病等进行功能性诊断及预后研究。脑磁比心磁的磁信号更弱,量子自旋磁力仪能够测量神经电流产生的磁场,实现人脑的电生理直接成像,为临床提供宝贵的信息。2.地球物理领域量子自旋磁力仪通过精确捕捉地球磁场的变化,获得地磁异常信息,可用于石油工业的定向钻井、地质灾害监测、矿产资源勘探等方向。
    留言咨询
  • 太阳能电池量子效率测试系统——SolarCellScan100系列系统功能系统可以实现测试太阳电池的:光谱响应度、外量子效率、内量子效率、反射率、透射率、短路电流密度、量子效率Mapping、反射率Mapping。系统适用范围1、适用于各种材料的太阳电池包括:单晶硅Si、多晶硅mc-Si、非晶硅α-Si、砷化镓GaAs、镓铟磷GaInP、磷化铟InP、锗Ge、碲化镉CdTe、铜铟硒CIS、铜铟镓硒CIGS、染料敏化DSSC、有机太阳电池Organic Solar Cell、聚合物太阳电池Polymer Solar Cell 等2、适用于多种结构的太阳电池包括:单结Single junction、多结multi junction、异质结HIT、薄膜thin film、高聚光HPV 等不同材料或不同结构的太阳电池,在测试过程中会有细节上的差异。比如说:有机太阳电池的测试范围主要集中在可见光波段,而GaAs 太阳电池的测试范围则很可能扩展到红外1.4um 甚至更长波段;单晶硅电池通常需要测内量子效率,而染料敏化太阳电池通常只需要测外量子效率;有机太阳电池测试通常不需要加偏置光,而多结非晶硅薄膜电池则需要加偏置光… … SolarCellScan100 通过主机与各种附件的搭配,可以实现几乎所有种类电池的测试。这种模块化搭配的方式,适合科研用户建立测试平台。 选型列表:型号名称和说明主机SCS1011太阳能电池量子效率测量系统,含直流、交流测量模式,氙灯光源SCS1012太阳能电池量子效率测量系统,含直流测量模式,氙灯光源SCS1013太阳能电池量子效率测量系统,含直流、交流测量模式,溴钨灯光源SCS1014太阳能电池量子效率测量系统,含直流测量模式,溴钨灯光源SCS1015太阳能电池量子效率测量系统,含直流、交流测量模式,氙灯溴钨灯双光源SCS1016太阳能电池量子效率测量系统,含直流测量模式,氙灯溴钨灯双光源附件QE-A1偏置光附件,150W氙灯QE-A2偏置光附件,50W溴钨灯QE-B1标准太阳电池(单晶硅)QE-B1-SP标准太阳电池QE-B2标准铟镓砷探测器(800-1700nm,含标定证书)QE-B3标准硅探测器(300-1100nm,含标定证书)QE-B4标准铟镓砷探测器(800-2500nm,含标定证书)QE-B7透过率测试附件(300-1100nm)QE-B8透过率测试附件(800-1700nm)QE-BVS偏置电压源(±10V可调)QE-C2漫反射率测试附件(300-1700nm)QE-C7标准漫反射板QE-D1二维电动调整台QE-D2手动三维调整台QE-IV-Convertor短路电流放大器专用机型介绍系统功能部分太阳能应用方向的研究人员需要测量量子效率,但本身却不是光电测量方面的行家,卓立汉光在测量平台SolarCellScan100的基础上,进一步开发出以下几套极具针对性的专用机型配置,方便客户使用。以下的专用配置也适合产业化的工业客户使用。1、通用型太阳电池QE测试系统SCS100-Std系统特点符合IEC60904-8国际标准;测量结果高重复性;内外量子效率测量功能;快速导入参数功能;适用于科研级别小样品测试适用范围: 晶体硅电池、非晶硅薄膜电池、染料敏化电池、CdTe薄膜电池、CIGS薄膜电池等; 光谱范围: 300~1100nm; 电池结构: 单结太阳电池; 可测参数: 光谱响应度、外量子效率、内量子效率、反射率、短路电流密度; 可测样品面积: 30mm×30mm 2.通用型太阳电池QE测试系统SCS100-Exp系统特点符合IEC60904-8国际标准;测量结果高重复性;高度自动化测量;双光源设计;红外光谱范围扩展;薄膜透过率测试功能;小面积、大面积样品测试均适用;适用范围: 晶体硅电池、非晶硅薄膜电池、染料敏化电池、有机薄膜电池、CdTe薄膜电池、CIGS薄膜电池、三结砷化镓GaAs电池、非晶/微晶薄膜电池等; 光谱范围: 300~1700nm; 电池结构: 单结、多结太阳电池; 可测参数: 光谱响应度、外量子效率、内量子效率、反射率、透射率、短路电流密度; 可测样品面积: 156mm×156mm以下 3.晶体硅太阳电池测试专用系统 SCS100-Silicon系统特点集成一体化turnkey系统晶体硅电池测试专用内外量子效率测试快速Mapping扫描功能快速高效售后服务适用范围: 单晶硅电池、多晶硅电池 光谱范围: 300~1100nm 电池结构: 单结太阳电池 可测参数: 光谱响应度、外量子效率、反射率、内量子效率、短路电流密度、*量子效率Mapping、*反射率mapping 可测样品面积: 156mm×156mm 4.薄膜太阳电池QE测试专用系统 SCS100-Film系统特点集成一体化turnkey系统;大面积薄膜电池测试专用;超大样品室,光纤传导;背面电极快速连接;反射率、内外量子效率同步测试;快速高效售后服务。适用范围: 非晶硅薄膜电池、CIGS薄膜电池、CdTe薄膜电池、非晶/微晶双结薄膜电池、非晶/微晶/微晶锗硅三结薄膜电池等; 光谱范围: 300~1700nm ; 电池结构: 单结、多结太阳电池; 可测参数: 光谱响应度、外量子效率、反射率、透射率、内量子效率、短路电流密度; 可测样品面积: 300mm×300mm 5.光电化学太阳电池测试专用系统 SCS100-PEC系统特点光电化学类太阳电池专用配置方案;直流测量模式;低杂散光暗箱;电解池样品测试附件;经济型价格适用范围: 染料敏化太阳电池; 光谱范围: 300~1100nm; 电池结构: 光电化学相关的纳米晶太阳电池; 可测参数: IPCE; 可测样品面积: 50mm×50mm
    留言咨询
  • 测量原理PAR 主要用于测量光合有效,采用光量子传感器。光在植物和作物生长中发挥着至关重要的作用。吸收的光(主要由叶绿素)驱动光合作用过程,二氧化碳和水转化为葡萄糖和氧气。使用光的这个过程称为光合有效辐射(PAR)。实际响应效果取决于植物或农作物。一个标准化的PAR在可见光光谱响应范围在400 nm和700 nm,是由McCree(1972)定义的,在这个区域内的光子被等量的吸收。“蓝”光子相对较短的波长(高频率)比‘红色’长波长有更多的能量。光合有效的量通常表示为光合光量子通量密度(PPFD):摩尔/m2s。在园艺,比如温室为了优化作物生长的时机和质量,需要控制光的强度。在温室为了实现对自然阳光和人工照明的有效监测,采用PAR传感器是必需的。在林业,PAR是一个关键的研究参数,根据植物生理学和叶面积用来测量森林树冠以上,内部,下方的各个有效参数。在农业方面,PAR的测量有助于预测植物生长率和估算作物产量。PQS1的PAR光量子传感器提供室外室内准确、连续测量。坚固的外观使得它在恶劣的天气条件和农药的喷洒下得到很好的保护。PAR光量子传感器是专为连续户外、室内安装或现场便携式使用。给最终用户提供了良好的定向(余弦)反应,容易清洁。在固定法兰结合水泡水平计调整螺丝,很容易校准水平。传感器带5米电缆,也可选15米。配备有放大器,可提供0至2.5V的标准Adcon模拟输出信号。应用场合农作物生长光合潜力研究旅游环保生态温室控制科研院校实验/太阳能研究
    留言咨询
  • 太阳能电池量子效率测试系统——SolarCellScan100系列系统功能系统可以实现测试太阳电池的:光谱响应度、外量子效率、内量子效率、反射率、透射率、短路电流密度、量子效率Mapping、反射率Mapping。系统适用范围1、适用于各种材料的太阳电池包括:单晶硅Si、多晶硅mc-Si、非晶硅α-Si、砷化镓GaAs、镓铟磷GaInP、磷化铟InP、锗Ge、碲化镉CdTe、铜铟硒CIS、铜铟镓硒CIGS、染料敏化DSSC、有机太阳电池Organic Solar Cell、聚合物太阳电池Polymer Solar Cell 等2、适用于多种结构的太阳电池包括:单结Single junction、多结multi junction、异质结HIT、薄膜thin film、高聚光HPV 等不同材料或不同结构的太阳电池,在测试过程中会有细节上的差异。比如说:有机太阳电池的测试范围主要集中在可见光波段,而GaAs 太阳电池的测试范围则很可能扩展到红外1.4um 甚至更长波段;单晶硅电池通常需要测内量子效率,而染料敏化太阳电池通常只需要测外量子效率;有机太阳电池测试通常不需要加偏置光,而多结非晶硅薄膜电池则需要加偏置光……SolarCellScan100 通过主机与各种附件的搭配,可以实现几乎所有种类电池的测试。这种模块化搭配的方式,适合科研用户建立测试平台。 选型列表:型号名称和说明主机SCS1011太阳能电池量子效率测量系统,含直流、交流测量模式,氙灯光源SCS1012太阳能电池量子效率测量系统,含直流测量模式,氙灯光源SCS1013太阳能电池量子效率测量系统,含直流、交流测量模式,溴钨灯光源SCS1014太阳能电池量子效率测量系统,含直流测量模式,溴钨灯光源SCS1015太阳能电池量子效率测量系统,含直流、交流测量模式,氙灯溴钨灯双光源SCS1016太阳能电池量子效率测量系统,含直流测量模式,氙灯溴钨灯双光源附件QE-A1偏置光附件,150W氙灯QE-A2偏置光附件,50W溴钨灯QE-B1标准太阳电池(单晶硅)QE-B1-SP标准太阳电池QE-B2标准铟镓砷探测器(800-1700nm,含标定证书)QE-B3标准硅探测器(300-1100nm,含标定证书)QE-B4标准铟镓砷探测器(800-2500nm,含标定证书)QE-B7透过率测试附件(300-1100nm)QE-B8透过率测试附件(800-1700nm)QE-BVS偏置电压源(±10V可调)QE-C2漫反射率测试附件(300-1700nm)QE-C7标准漫反射板QE-D1二维电动调整台QE-D2手动三维调整台QE-IV-Convertor短路电流放大器专用机型介绍系统功能部分太阳能应用方向的研究人员需要测量量子效率,但本身却不是光电测量方面的行家,卓立汉光在测量平台SolarCellScan100的基础上,进一步开发出以下几套极具针对性的专用机型配置,方便客户使用。以下的专用配置也适合产业化的工业客户使用。1、通用型太阳电池QE测试系统SCS100-Std系统特点符合IEC60904-8国际标准;测量结果高重复性;内外量子效率测量功能;快速导入参数功能;适用于科研级别小样品测试适用范围: 晶体硅电池、非晶硅薄膜电池、染料敏化电池、CdTe薄膜电池、CIGS薄膜电池等; 光谱范围: 300~1100nm; 电池结构: 单结太阳电池; 可测参数: 光谱响应度、外量子效率、内量子效率、反射率、短路电流密度; 可测样品面积: 30mm×30mm 2.通用型太阳电池QE测试系统SCS100-Exp系统特点符合IEC60904-8国际标准;测量结果高重复性;高度自动化测量;双光源设计;红外光谱范围扩展;薄膜透过率测试功能;小面积、大面积样品测试均适用;适用范围: 晶体硅电池、非晶硅薄膜电池、染料敏化电池、有机薄膜电池、CdTe薄膜电池、CIGS薄膜电池、三结砷化镓GaAs电池、非晶/微晶薄膜电池等; 光谱范围: 300~1700nm; 电池结构: 单结、多结太阳电池; 可测参数: 光谱响应度、外量子效率、内量子效率、反射率、透射率、短路电流密度; 可测样品面积: 156mm×156mm以下 3.晶体硅太阳电池测试专用系统 SCS100-Silicon系统特点集成一体化turnkey系统晶体硅电池测试专用内外量子效率测试快速Mapping扫描功能快速高效售后服务适用范围: 单晶硅电池、多晶硅电池 光谱范围: 300~1100nm 电池结构: 单结太阳电池 可测参数: 光谱响应度、外量子效率、反射率、内量子效率、短路电流密度、*量子效率Mapping、*反射率mapping 可测样品面积: 156mm×156mm 4.薄膜太阳电池QE测试专用系统 SCS100-Film系统特点集成一体化turnkey系统;大面积薄膜电池测试专用;超大样品室,光纤传导;背面电极快速连接;反射率、内外量子效率同步测试;快速高效售后服务。适用范围: 非晶硅薄膜电池、CIGS薄膜电池、CdTe薄膜电池、非晶/微晶双结薄膜电池、非晶/微晶/微晶锗硅三结薄膜电池等; 光谱范围: 300~1700nm ; 电池结构: 单结、多结太阳电池; 可测参数: 光谱响应度、外量子效率、反射率、透射率、内量子效率、短路电流密度; 可测样品面积: 300mm×300mm 5.光电化学太阳电池测试专用系统 SCS100-PEC系统特点光电化学类太阳电池专用配置方案;直流测量模式;低杂散光暗箱;电解池样品测试附件;经济型价格适用范围: 染料敏化太阳电池; 光谱范围: 300~1100nm; 电池结构: 光电化学相关的纳米晶太阳电池; 可测参数: IPCE; 可测样品面积: 50mm×50mm
    留言咨询
  • 测量原理PAR 主要用于测量光合有效,采用光量子传感器。光在植物和作物生长中发挥着至关重要的作用。吸收的光(主要由叶绿素)驱动光合作用过程,二氧化碳和水转化为葡萄糖和氧气。使用光的这个过程称为光合有效辐射(PAR)。实际响应效果取决于植物或农作物。一个标准化的PAR在可见光光谱响应范围在400 nm和700 nm,是由McCree(1972)定义的,在这个区域内的光子被等量的吸收。“蓝”光子相对较短的波长(高频率)比‘红色’长波长有更多的能量。光合有效的量通常表示为光合光量子通量密度(PPFD):摩尔/m2s。在园艺,比如温室为了优化作物生长的时机和质量,需要控制光的强度。在温室为了实现对自然阳光和人工照明的有效监测,采用PAR传感器是必需的。在林业,PAR是一个关键的研究参数,根据植物生理学和叶面积用来测量森林树冠以上,内部,下方的各个有效参数。在农业方面,PAR的测量有助于预测植物生长率和估算作物产量。PQS1的PAR光量子传感器提供室外室内准确、连续测量。坚固的外观使得它在恶劣的天气条件和农药的喷洒下得到很好的保护。PAR光量子传感器是专为连续户外、室内安装或现场便携式使用。给最终用户提供了出色的定向(余弦)反应,容易清洁。在固定法兰结合水泡水平计调整螺丝,很容易校准水平。传感器带5米电缆,也可选15米。配备有放大器,可提供0至2.5V的标准Adcon模拟输出信号。应用场合农作物生长光合潜力研究旅游环保生态温室控制科研院校实验/太阳能研究技术指标光谱范围:400~700nm±4nm 灵敏度: 10~50 μv/μ moL/m2.s电阻值:240 Ω(典型)信号输出范围(0-3000μ moL/m2.s):0~30mV/0-2.5V最大运行光照:10000μ moL/m2.s响应时间 1μS不稳定性(改变/年) 2%非线性(0-10000μmoL/m2.s):1%定向反应(最大到80°在1000 μ moL/m2.s 光照):30μ moL/m2.s 响应温度 -.12%/°C视野 180°气泡水平仪的精度:0.2°检测器类型:光电二极管工作温度:-30°C to +70°C存储温度:-30°C to +70°C温度范围:0-100%非结露保护等级:IP67订购信息:200.733.023:PQS光合有效传感器
    留言咨询
  • 太阳能电池量子效率测试系统功能 适用电池:全系列太阳能电池 光谱范围:300-1100nm,可扩展至1700nm 可测量参数:光谱响应度、外量子效率、光子电子转换效率、内量子效率、反射率、透射率、积分短路电流密度、光束诱导电流、量子效率制图、反射率制图、光束诱导电流制图 可测样品尺寸:156mmX156mm 可测样品模式:交、直流测试法、交、直流偏置光测试法 太阳能电池量子效率测试系统特点 1. 全光谱太阳光模拟,双光源切换可选,高光强稳定性 系统采用符合最新IEC60904 标准的双光源配置,采用氙灯和溴钨灯来覆盖太阳光谱的整个范围。无论是氙灯还是溴钨灯,都可以提供超高的光强稳定性,从而保证系统测试结果的高重复性。当不同的波段光谱测量时,选择合适的光源波长与相匹配的标准探测器,可以最大限度的优化太阳能电池量子效率的测试结果。 1000s 的持续光强测试与局部放大图测试光源:氙灯或溴钨灯 测试时间:1000s 光源时间不稳定度:0.8% 2. 高重复性测试结果系统从光源的稳定性、单色仪的波长准确性与重复性、特有的光路设计、样品的加持、数据的采集方式上确保测试结果的高重复性。 5 次每次间隔1 小时的测试结果与全波段重复性测试 3. 窗口化软件设计 在系统软件设计中,将实用的仪器控制部分汇总到一个界面,将实用的仪器参数设置部分汇总到另一个界面,从而最大限度的将控制操作简化,实现一键运行。 仪器参数设置可以按照不同样品的测试需求保存为独立的配置文件并导出,从而实现快速还原与测试的功能,随时调出原有保留的参数设置。同样配置的不同系统之间也可以统一相互调用。系统软件可以准确得到理论积分电流密度值,并按照需求保存原始数据,支持ASCII、Excel、XML 等多种格式数据导出。以便使用主流数据处理软件调用,方便后续数据处理与分析。 4. 快速Mapping功能快速Mapping 功能包括:1)量子效率Mapping 功能2)反射率Mapping 功能3)光束诱导电流(LBIC)功能该功能针对100mmX100mm 以上的较大面积的成品太阳能电池片,用户可以从Mapping 功能获得的数据中得到关于电池片的少子扩散情况、电池片缺陷分布等信息。缺陷分布等信息 上图显示6 寸单晶硅电池IQE mapping,样品右上角IQE 数值明显低于其他区域,因为那里有肉眼无法直接观察到的缺陷上图显示单晶硅电池的反射率mapping,均匀度明显不好,这显示出酸洗过程中酸液有残留,影响了整个电池的反射率均匀性 上述Mapping 数据是在同一个电池片上用400nm、650nm 和950nm 三个波长做QE(LBIC) 扫描得到的。650nm 和950nm 的扫描数据显示电池具有良好的均匀性,但400nm 扫描数据上,我们发现电池边缘有不均匀区域。 不同的测试波长对样品的穿透深度不同。蓝光波长短,穿透深度浅,因此很容易将样品制备过程中产生的表面裂痕等问题反映出来; 近红外光波长相对较长,穿透深度更深,更加适用于扩散长度的计算,从而能反映样品材料内部的缺陷等问题。
    留言咨询
  • 量子点喷胶机是一种将量子点材料以喷雾的形式均匀涂覆在目标表面的设备。量子点是一种纳米级的半导体颗粒,具有特殊的光学和电学性质。以下是量子点喷胶机的介绍及应用:介绍:工作原理: 量子点喷胶机通过将量子点溶液喷雾在目标表面,使得量子点均匀地附着在基底上。材料选择: 喷胶机通常使用量子点溶液,其中包含了被喷覆表面所需的量子点材料。精准控制: 这种设备可以实现对喷雾过程的高度控制,确保量子点均匀分布在表面上。应用: 量子点喷胶机在半导体芯片上的应用涉及到纳米技术和半导体制造的领域。量子点是纳米尺度的半导体颗粒,具有特殊的电子结构,因此在半导体芯片制造中有一些特定的应用。以下是量子点喷胶机在半导体芯片上的一些可能应用:光电子学应用: 量子点具有优异的光学性能,可以用于制造高效的光电子器件。通过喷胶机在芯片上精确涂覆量子点,可以实现更高分辨率和灵敏度的光电子元件,如光探测器和激光器。显示技术: 量子点在显示技术中被广泛应用,特别是在液晶显示(LCD)和有机发光二极管(OLED)屏幕中。通过量子点喷胶机,可以实现在半导体芯片上的精确位置涂覆量子点,以提高显示屏的色彩饱和度和色域。量子点传感器: 量子点还可以用于制造高灵敏的传感器。通过喷胶机将量子点精确地集成到芯片上,可以实现在微观尺度上检测环境变化的传感器,例如气体传感器或生物传感器。量子点标记: 在生物医学领域,量子点被用作细胞和生物分子的标记剂。喷胶机可以在芯片上实现微小尺度的标记,用于生物成像和分析。量子点量子计算: 量子点也可以在量子计算领域发挥作用。通过在半导体芯片上精确部署量子点,可以实现更复杂的量子比特排列,用于量子计算的研究和开发。这些应用说明了量子点喷胶机在半导体芯片制造中的多样性和灵活性,为各种领域提供了创新的解决方案。 量子点是一种通常仅由几千个原子组成的晶体,就大小而言,它与足球的比例就相当于足球与地球的比例。这么小的粒子,我们肉眼是看不见的,但它们却有着非常特殊的性质。我们都知道,物质是由原子组成的,原子又由核和电子组成。电子在原子中运动时,会受到核的吸引力和其他电子的排斥力。这些力会限制电子运动的范围和能量。当物质被光照射时,电子会吸收光的能量,并跃迁到更高的能级。当电子从高能级回到低能级时,会释放出光。
    留言咨询
  • Thorlabs 宽带法布里-珀罗量子级联激光器 QF4050D2其它通用分析特性宽带法布里-珀罗量子级联激光器(QCL)紧凑型D-Mount封装 QF4050D2:12.0 mm x 6.0 mm x 2.1 mm(0.47英寸 x 0.24英寸 x 0.08英寸)QF4050D3和QF4600D4:12.0 mm x 7.5 mm x 2.1 mm(0.47英寸 x 0.29英寸 x 0.08英寸)QF4600D3: 12.0 mm x 7.5 mm x 2.1 mm(0.47英寸 x 0.30英寸 x 0.08英寸)典型中心波长4.05 µ m(2469 cm-1)或4.6 µ m(2174 cm-1)典型连续波输出功率为800 mW、1200 mW、2500 mW或3000 mW内置热敏电阻,用于芯片温度的测量用于中红外照明/测试和信号模拟可以定制封装和3 - 12 µ m波长的QCL,详情请联系技术支持Thorlabs的高功率D-Mount法布里-珀罗量子级联激光器(QCL)专为OEM客户设计,是我们最小型的一种中红外激光器。这些激光器典型中心波长为4.05 µ m或4.60 µ m,安装在铜钨材质的D-mount封装上,为空间有限的应用节省空间。与具有4.5 mm腔长的D-mount DFB激光器相同,这些D-mount FP激光器的发射高度也为2.6 mm(从D-mount的底部到激光器),但腔长为6.0 mm或7.5 mm。每个封装经过加工带有两个沉头安装槽。QF4050D2的沉头孔槽长度为1.5 mm,而QF4050D3、QF4600D4和QF4600D3的沉头孔槽长度为2 mm。与我们的C-mount FP激光器相比,这些D-mount激光器具有更高的光学输出功率。驱动电压和电流由两个较大的金制接触片供应,这些金接触片适合接合导线或连接探针。每个QCL都与它的D-mount绝缘。内置热敏电阻为控制电路提供实时温度测量。这些激光器的热负荷最高可达25 W,因此必须安装在导热外壳中,以防止热积聚。这些法布里-珀罗QCL的输出功率是整个光谱带宽上的总和。它们非常适用于中红外照明和测试,以及热信号模拟。发货之前,通过自动化测试站测量每个编号装置的输出光谱、光功率和L-I-V曲线图。每个D-mount QCL背面镀有高反(HR)膜,前面镀有部分反射(PR)膜。虽然这些QCLzhi定为连续波输出,但脉冲输出也是可能的。它们没有内置监测光电二极管,因此无法在恒功率模式下工作。更多关于性能的信息请联系我们。对于工业和学术研究,Thorlabs可生产安装在双接片C-mount封装上的分布反馈量子级联激光器和法布里-珀罗量子级联激光器。这些封装使用了LDMC20 C-Mount激光安装座,比D-mount更易于操作,且可接合我们的SM1透镜套管、30 mm笼式系统和60 mm笼式系统。
    留言咨询
  • 尖端光传感器的尖端工具 量子效率与参数分析先进光电探测器APD-QE随着 5G 与移动装置的兴起与普及,越来越多新型光传感器被应用于我们的日常生活中,为了能更好的应用在行动装置上,这些先进光传感器的组件感光面积越做越小。但这些应用却对先进光传感器的光感测性能要求却越来越高,在感光面积微缩的过程中,也带来量子效率精准测量的挑战;例如,传统聚光型小光斑在不同波长下,色散差造成焦点位移可到 mm 等级。难以将所有的光子都聚焦到微米等级的感光面积中。因此,难以准确测得全光谱量子效率曲线。 APD-QE 采用独家光束空间均匀化技术,利用 ASTM 标准的 ”Irradiance Mode” 测试方式,与各种先进探针台形成完整的微米级光传感器全光谱量子效率测试解决方案。APD-QE 已被应用于多种先进光传感器的测试中,例如在 iPhone 光达与其多种光传感器、Apple Watch 血氧光传感器、TFT 影像传感器、有源主动像素传感器(APS)、高灵敏度间接转换 X 射线传感器等。客制化光斑尺寸与光强度光焱科技 APD-QE 光传感器量子效率测试系统在光斑直径 25mm、工作距离 200mm 条件下量测,可以达到光强度与光均匀度如下。在波长 530nm 时,光强度可以达到 82.97uW/(cm2)。在光斑直径25mm、工作距离200mm条件下,APD-QE光传感器量子效率测试系统测得的光强度。WL (nm)半宽高 (nm)光均 U%=(M-m)/(M+m)5mm×5mm3mm×3mm47017.651.6%1.0%53020.131.6%1.2%63019.851.6%0.9%100038.891.2%0.5%140046.051.0%0.5%160037.401.4%0.7%在光斑直径25mm、工作距离200mm条件下,APD-QE光传感器量子效率测试系统测得的光均匀度。光焱科技具备自主光学设计能力。光斑大小与光强度在一定范围内,可以接受客制化,如有需要请与我们联系。Contact Us定光子数控制功能APD-QE光传感器量子效率测试系统具有 “定光子数” 功能 (选配),使用者可以透过控制各个单色光的光子数,让各波长的光子数都一样,并进行测试。这也是光焱科技APD-QE光传感器量子效率测试系统的独家技术,其他厂家都做不到。客户在不同的constant photon flux条件下,进行的光谱测试结果。使用定光子数控制模式 (CP 控制模式),光子数变异可以 1%以上图为例,灰色的Normal 线是氙灯光源在各波长下的光强度分布,呈现氙灯的光谱曲线特征。如采用CP控制模式,可控制不同光子数在不同波长下,保持一致的输出特性。以橘色线CP=15000为例,在不同波长下输出的光子数都是15,000 photons/s/um2。样品测试分析范例a-Si photo-FET 样品不同光强条件下,测试出来的不同光谱响应确实会不一样,可参考下面的测试结果。OPV或是钙钛矿PV样品对于OPV或是钙钛矿PV样品,一般模式或是CP控制模式的测试结果没有差异,可参考下面的测试结果。系统架构系统规格主要系统:● 量子效率测试系统– 300nm ~ 1100nm – 可扩展到 2500nm● 测量软件– PDSW 软件– 可选配 FETOS 软件( 3T 或 4T 组件)● (选配)探针台系统– 4” 标准探针台 (MPS-4-S)● 可客制化探针台系统整合与屏蔽暗箱均光系统与探针台整合高均匀度光斑  采用独家专利傅立叶光学组件均光系统,可将单色光光强度空间分布均匀化。在 10mm x 10mm 面积以 5 x 5 测量光强度分布,不均匀度在 470nm、530nm、630nm、850nm 均可小于 1%。而在 20mm x 20mm 面积以 10 x 10 矩阵测量光强度分布,不均匀度可以小于 4%。PDSW 软件  PDSW 软件采用全新 SW-XQE 软件平台,可进行多种自动化测量,包含 EQE、SR、I-V、NEP、D*、频率噪声电流图(A/Hz1/2)、噪声分析等。▌EQE 测试  EQE 测试功能,可以进行不同单色光波长测试,并且可自动测试全光谱 EQE。▌I-V 测试  软件可支持多种 SMU 控制,自动进行照光 I-V 测试以及暗态 I-V 测试,并支持多图显示。▌D* 与 NEP  相较于其它 QE 系统,APD-QE 可以直接测量并得到 D* 与 NEP。▌频率-噪声电流曲线▌可升级软件  升级 FETOS 软件操作画面(选配),可测试 3 端与 4 端的 Photo-FET 组件。内部整合探针台  APD-QE 系统由于其出色的光学系统设计,可以组合多种探针台。全波长光谱仪的所有光学组件都集成在精巧的系统中。单色光从光谱仪引导到探针台屏蔽盒。图片显示了 MPS-4-S 基本探针台组件,带有 4 英寸真空吸盘和 4 个带有低噪声三轴电缆的探针微定位器。  集成探针台显微镜,手动滑块切换到被测设备的位置。使用滑动条后,单色光均质器被 “固定” 在设计位置。 显微图像可以显示在屏幕上,方便用户进行良好的接触。可客制化整合多种探针台与屏蔽暗箱A. 客制化隔离屏蔽箱。B. 因为先进的 PD 讲究响应速度快,所以有效面积就要小(降低电容效应),因此,多会有需要整合探针台的需求。C. 可整合不同的半导体分析仪如 4200 或 E1500。应用范围LiDAR 中的光传感器– InGaAs 光电二极管 / SPAD苹果手表的光传感器用于高增益传感和成像的光电二极管门控晶体管高光电导增益和填充因子光传感器高灵敏度间接转换 X 射线探测器表征硅光子学– InGaAs APD应用 1:iPhone 12 的 LiDAR 和其他传感器中光电二极管的外部量子效率应用 2 : APPLE Watch 6 血氧传感器中光电二极管的外量子效率  全新 Apple Watch Series 6 配备血氧传感器和配套应用程序,为您提供更多监测心脏和呼吸系统健康的方式,内置于 Apple Watch 的背面。 它使用四组红、绿、红外 LED 灯和四个光电二极管,这些器件可以将光转换为电流。 光照射到手腕上的血管,光电二极管测量反射回来的光量。 基本上,含氧和脱氧的血液以不同的方式吸收红光和红外光,因此 Apple Watch 可以通过反射光来确定血液的颜色。   采用 APD-QE 系统对血氧传感器中的光电二极管进行研究和分析,包括可见光和红外波长范围。  APD-QE 可以提供这些光电二极管的信息:外部量子效率 EQE(300nm~1700nm)光谱响应 SR (A/W)NEP 和 D*频率-噪声曲线(A/Hz1/2)噪音类型  如果您想了解更多关于移动设备中血氧传感器的光学传感器/光电二极管测试的详细信息,请立即联系 Enlitech。应用 3: 用于高增益传感和成像的光电二极管门控晶体管  在光学传感和成像应用中,为了提高灵敏度和 SNR,APS (active pixel sensor) 包括一个光电探测器或一个光电二极管和几个晶体管,形成一个多组件电路。其中一个重要的单元:像素内放大器,也称为源追随者是必须使用。 APS 自诞生之日起,就从三管电路演变为五管电路,以解决晕染、复位噪声等问题。除了 APS,雪崩光电二极管 ( APD )及其相关产品:硅光电倍增器(SiPM)也可以获得高灵敏度。然而,由于必须采用高电场来启动光电倍增和碰撞电离,因此在这些设备中高场引起的散粒噪声很严重。   最近,提出了亚阈值操作光电二极管(PD)门控晶体管的器件概念。它无需高场或多晶体管电路即可实现高增益。增益源自光诱导的栅极调制效应,为了实现这一点,必须进行亚阈值操作。它还以紧凑的单晶体管( 1-T ) APS 格式将 PD 与晶体管垂直集成,从而实现高空间分辨率。这种器件概念已在各种材料系统中实施,使其成为高增益光学传感器的可行替代技术。  APD-QE 系统致力于研究和分析光电二极管门控非晶硅薄膜晶体管:不同光强下的光转移曲线特性。光强度函数的阈值电压变化(ΔVth)。有/无曝光的晶体管输出特性。量子效率与光敏增益光谱。(a) a-Si:H 光电二极管门控 LTPS TFT 结构示意图;(b) 等效电路图,显示具有高 SNR 的 APS(a) 像素的显微照片; (b) 部分阵列的显微照片; (c) 图像传感器芯片的照片如果您想测试 TFT 型图像传感器或了解更多测试细节,请立即联系 Enlitech。Contact Us3-D 双栅光敏 a-Si:H TFT 的光传输特性在各种光子通量下,作为波长函数的光敏 TFT 增益。曝光和没有曝光的 TFT 输出特性。推荐的系统组合APD-QE 系统QE波长范围 300nm ~ 1100nm恒光子 / 恒能光控模块高度均匀的光束均化器Keysight B2912 半导体分析仪 x 2探针台: MPS-4-S 探针台系统与暗屏蔽盒软件升级: FETOS-SW应用 4: 高光电导增益和填充因子光学有源像素传感器  可应用于”间接转换 X 射线成像”、 “光学指纹成像”和”生物医学荧光成像”的光学有源像素传感器。应用 5: 高灵敏度间接转换 X 射线探测器表征高灵敏度间接转换 X 射线探测器。高分辨率背照式 (BSI) 型 X 射线探测器面板。  高灵敏度大面积 X 射线探测器是低剂量医学诊断 X 射线成像的关键,例如数字射线照相、透视和乳房 X 线照相术。 X射线的探测方式一般有直接转换和间接转换两种。在直接转换模式中,光电导体(例如,非晶硒)用于将 X 射线光子直接转换为电荷。在间接转换模式中,这些电荷由非晶硅薄膜晶体管 (TFT) 进一步读出。X 射线光子首先通过闪烁体如碘化铯 (CsI:Tl)、锗酸铋晶体 (Bi4Ge3O12) 或 Gd2O2S:Tb 荧光粉,然后,通常由非晶硅光电二极管和开关 TFT 形成的光学成像传感器检测。在任一模式下,为了实现高灵敏度,必须从材料 / 设备级别或像素电路级别进行信号放大。例如,最近研究了高度敏感的直接 X 射线光电导体,例如钙钛矿,因为与市售的直接转换 a-Se 光电导体相比,它利用光子的效率高,从而导致高量子产率。然而,钙钛矿具有高漏电流并且也遇到稳定性 / 可靠性问题。在 X 射线成像应用中,可靠性和稳定性至关重要,因为每年必须进行数千次扫描。在高灵敏度的间接转换 X 射线探测器的情况下,由于许多闪烁体的量子产率已达到其极限,然而,由于 TFT 电路和光电二极管之间的占用面积竞争,空间分辨率和填充因子通常会受到影响,因此其灵敏度和高空间分辨率需要权衡。因此,拥有同时获得高灵敏度和高空间分辨率的检测器或像素架构是具有挑战性的。 APD-QE 系统用于高灵敏间接侦测型的X射线探测器的开发:不同光强下的光转移曲线特性。有/无曝光的晶体管输出特性。量子效率与光敏增益光谱。不同 VTG(-12 V、-18 V、-24 V)阈值电压变化的光强依赖性。橙色线是实测的 CsI:Tl 的 X 射线激发光致发光发射光谱,蓝色线是光敏双栅 TFT 的光增益 (Gph),紫色线是经典pin光电二极管的外部量子效率 (EQE) 曲线 。推荐的系统组合APD-QE 系统QE波长范围 300nm ~ 1100nm恒光子 / 恒能光控模块高度均匀的光束均化器Keysight B2912 半导体分析仪 x 2探针台: MPS-4-S 探针台系统与暗屏蔽盒软件升级: FETOS-SW如果您想测试间接转换 X 射线探测器或了解有关测试的更多详细信息,请立即联系 Enlitech。Contact Us应用 6: 高光电导增益和填充因子有源像素传感器(APS)有源像素传感器(APS)  垂直堆栈了一个 a-Si:H p-i-n 光电二极管和一个低温多晶硅(LTPS)读出 TFT 通过使用 p-i-n 光电二极管门控 TFT 架构并在亚阈值范围内操作 TFT,所提出的 APS 器件提供高填充因子和高内部光电导增益。垂直积分导致像素中的高填充因子( 70% )和扩大的感光区域。 在传感器的光电二极管门控 TFT 结构中,通过在亚阈值状态下操作 TFT 来放大输出电流。 在可见光波长处获得了弱波长相关的光导增益 10,从而实现大面积低强度光检测。   大面积光学成像和传感设备可以在间接转换 X 射线成像 光学指纹成像和生物医学荧光成像的许多应用中找到。而高增益与高填充因子的 APS 深具商业应用的潜力。APD-QE 系统有源像素传感器( APS ):不同光强下的光转移曲线特性。有/无曝光的晶体管输出特性。量子效率与光敏增益光谱。(a) SNR = AS/(N+n) 的混合有源像素传感器和 (b) SNR = S/(N + n) 的传统无源像素传感器的等效像素电路; A是放大系数,N是像素噪声,n是数据线噪声。高光电导增益和填充因子光学传感器混合传感器的光子传输特性。在 VBG = &minus 6.3V 下测得的光电导增益和外部量子效率作为各种光子通量的波长函数。采用 APD-QE 系统测量有源像素传感器的外量子效率。推荐的系统组合APD-QE 系统QE波长范围 300nm ~ 1100nm恒光子 / 恒能光控模块高度均匀的光束均化器Keysight B2912 半导体分析仪 x 2探针台: MPS-4-S 探针台系统与暗屏蔽盒软件升级: FETOS-SW
    留言咨询
  • Thorlabs 量子级联激光器QD5500CM1 其它通用分析特性单波长分布反馈量子级联激光器(QCL)典型输出功率范围40 - 100 mW,取决于设备中心波长4.00 µ m - 11.00 μm(波数2500 cm-1-909 cm-1)小型双接片C-Mount封装与C-Mount电气隔离可选择定制波长和安装座Thorlabs的分布反馈式量子级联激光器(QCL)发射的是单波长激光。通过调节输入电流和工作温度,输出频率可以在1 cm-1 到5 cm-1的窄范围内调节。这些激光器极其适用于化学传感、光通信和其它相关应用。Thorlabs也生产宽带发射的法布里-珀罗量子级联激光器和带间级联激光器。发货之前,会在自动测试站测量每个序列号激光器的测量输出光谱、功率和L-I-V曲线。测量结果在下方提供,也包含在激光器附带的数据表中。这些QCL专门用于连续输出。虽然脉冲输出是可行的,但是这种应用会限制电流调节,而且性能无法保证。请注意一些光功率通过后腔面产生,这项输出不用于应用中。封装每个DFB量子级联激光器安装在双接片C-mount上,能够提供较高的热导率,可使用2-56或M2螺丝通过Ø 2.4 mm(Ø 0.09英寸)通孔安装。从C-mount底部开始测量,根据选择的QCL不同,发射高度为7.15 mm或7.39 mm。定制&OEM量子级联和带间级联激光器Thorlabs的半导体制造工厂可制造完全封装的中红外激光器和增益芯片。我们的工程团队进行内部外延生长、晶圆制造和激光器封装。芯片标准库存为3 µ m至12 µ m,我们还具有齐全的垂直整合设施,可以满足独特的需求,如有定制需求可联系我们。
    留言咨询
  • 深圳市芬析仪器制造有限公司生产的量子点荧光定量检测仪适用于荧光法制成的各类检测项目试纸条。 产品名称:量子点荧光定量检测仪仪器型号:CSY-YG技术参数:测试条宽度:2-6mm(支持定制)屏幕:真彩触摸屏检测结果:半定量、定量检测结果可排除无效检测结果,能对数据结果、原始扫描曲线进行保存和打印浓度结果和浓度单位检测项目参数:用户可以从仪器功能选项中读取仪器的配置参数检测结果报告:可准确报告出被测物质的浓度,可在触摸屏上显示,可通过仪器内置打印机输出连接方式:USB接口,串口,网口(支持定制)测量原理:光电测量反射衰减信号强度(扫描)检测速度:240次/小时重复性:DR值不大于1%(标准卡)仪器批间差:3%以内(标准卡)数据传输:USB 以及网口屏幕显示:7英寸、10英寸(支持定制)LED光源波长:365nm/610nm整机支持按客户要求定制(ODM加工及OEM项目合作) 自主知识产权产品:农药残留快速测试仪、真菌毒素定量分析仪、ATP荧光检测仪、ATP荧光检测仪、胶体金读数仪、荧光定量分析仪、荧光定量PCR检测仪、多功能食品安全检测仪、酶联免疫检测仪、药物残留及动物疫病检测仪、农产品质量安全检测仪、注水肉快速检测仪、食用油品质检测仪、环境监测设备、水质检测仪器等有毒有害物质残留检测设备。
    留言咨询
  • Thorlabs 量子级联激光器(QCL) QD7500DM1 其它通用分析特性单波长分布反馈量子级联激光器(QCL)小型D-Mount(12.0 mm × 4.5 mm × 2.8 mm),适合小型组件中心波长范围:7.00 - 8.00 µ m(1429 - 1250 cm-1)输出可调范围:1 - 2 cm-1典型连续输出功率:100 mW内置热敏电阻,用于芯片温度的测量用于化学分析、传感和红外对抗可以定制封装和3-12 µ m的波长Thorlabs的D-Mount分布反馈式量子级联激光器(QCL)专为OEM客户设计,属于我们最小型的一种中红外激光器。与我们腔长为6.0 mm或7.5 mm的D-mount FP激光器一样,从D-mount底部测量时,这种D-mount DFB激光器的发射高度为2.6 mm,但腔长为4.5 mm。铜钨材质的D-mount具有高导热性,便于散热,还有两个宽度为1.4 mm的沉头孔槽,以便在安装时为空间有限的应用节省空间。驱动电压和电流由两个较大的金制接触片供应,这些金接触片适合导线接合或探针连接。每个激光器都与它的D-mount绝缘。内置的热敏电阻为控制电路提供实时的温度测量。这些激光器的热负荷最高可达7.2 W,因此必须安装在导热外壳中,以防热积聚。驱动电压和电流由两个较大的金制接触片供应,这些金接触片适合导线接合或探针连接。每个激光器都与它的D-mount绝缘。内置的热敏电阻为控制电路提供实时的温度测量。这些激光器的热负荷最高可达7.2 W,因此必须安装在导热外壳中,以防热积聚。分布反馈式量子级联激光器以明确的中心波长发射,基横模操作。通过调节输入电流和操作温度,输出频率可以在1 - 2 cm-1的窄范围内调节。因此它们极其适合化学传感和样品分析应用。发货前,每个序列号的激光器都会通过自动检测站测量其输出光谱、功率和L-I-V曲线。这些测量数据,激光器会附带一份数据表。每个D-mount QCL具有一个未镀膜的后表面和一个未镀膜或镀了增透膜的前表面。这些QCL专门用于连续波输出。虽然脉冲输出是可行的,但是这种应用会限制电流调节,且性能无法保证。这些激光器没有内置监测光电二极管,因此,无法在恒功率模式下工作。对于工业和学术研究,Thorlabs可生产安装在双接片C-mount封装上的分布反馈量子级联激光器和法布里-珀罗量子级联激光器。这些封装比D-mount更易于操作,并可用LDMC20 C-Mount激光安装座连接我们的SM1透镜套管、30 mm笼式系统和60 mm笼式系统 。定制&OEM量子级联和带间级联激光器Thorlabs的半导体制造工厂可制造wan全封装的中红外激光器和增益芯片。我们的工程团队进行内部外延生长、晶圆制造和激光器封装。芯片标准库存为3 µ m至12 µ m,我们还具有齐全的垂直整合设施,可以满足du特的需求,如有定制需求可联系我们。
    留言咨询
  • 【设备参数】 通过量子点免疫荧光技术进行食品安全、医疗卫生、农林牧渔、药物残留等项目的全定量检测。1)检测迅速:检测时间(单样)5s2)检测精准:重复性CV值<3%,仪器批间差<3%3)检测原理:量子点荧光免疫层析法4)便捷人机操作:7寸触电容摸屏,内置、可外接条形码扫描枪5)高度集成信息化:配备多种通讯接口:USB、WIFI、蓝牙模块、以太网、串口等,与HIS、LIS无缝对接,自带热敏打印机模块6)外观尺寸:280*240*130(mm)7)重量:2kg8)电源:220V,50Hz9)工作环境:5℃-40℃ 湿度 10-80%【检测设备特点】1)轻巧便携,利于现场检测2)采用内标技术,无需使用标准品3)多重质控,确保检测结果准确、可信4)联卡检测,操作便捷、节约时间、成本5)智能化管理,自动识别产品信息,数据传输
    留言咨询
  • 总览量子点短波红外相机型光束质量分析仪,超高速USB 3.0,400-2000nm,采用量子点传感器,对1550nm或2000nm处进行优化,多种有效面积可供选择,最高可至1920 x 1080,15×15 μm像素点,14位A/D转换,是连续和脉冲短波红外激光光束分析的理想工具。WinCamD-QD 量子点短波红外相机型光束质量分析仪(轮廓仪),WinCamD-QD 量子点短波红外相机型光束质量分析仪(轮廓仪)通用参数仪器特点采用量子点传感器,对1550nm或2000nm处进行优化覆盖波长范围400nm-1700nm 或 350nm-2000nm多种有效面积可供选择,最高至1920 x 1080像元尺寸达15 µ m14位ADC全局快门;支持脉冲和连续光束动态范围 2100:1内置固件NUC可在多台相机上进行并行捕获M² 测量GigE 或 USB 3.0,带有3米长可螺钉锁紧的导线支持GigE Vision 或 USB3 Vision应用领域1550nm / 2000nm 激光的光束分析1550nm / 2000nm激光和激光系统的现场测试光学组装和仪器校准光束漂移和记录使用 M2DU 平台测量 M² 技术参数波长范围S-WCD-QD-1550系列: 400-1700 nmS-WCD-QD-2000系列: 350-2000 nm像素点&sbquo H x VS-WCD-QD-1550/2000: 640x512S-WCD-QD-1550/2000-L: 1280x1024S-WCD-QD-1550/2000-XL: 1920x1080传感器CMOS ROIC 上的胶体量子点 (CQD)成像区域S-WCD-QD-1550/2000: 9.5x7.68 mmS-WCD-QD-1550/2000-L: 19.2x15.36 mmS-WCD-QD-1550/2000-XL: 28.8x16.2 mm像元尺寸15 x 15 µ m最小光斑 (10像素)~150 µ m快门类型全局**帧率*S-WCD-QD-1550/2000: 25 fpsS-WCD-QD-1550/2000-L: 25 fpsS-WCD-QD-1550/2000-XL: 25 fps信噪比≥2100:1光学/电子dB33/66ADC14-bit可测量源CW光束&sbquo 脉冲源带触发同步可测量的光斑功率详见图表手动光束衰减器包含ND-1, ND-2, 和 ND-4 C接口衰减器可显示的光斑轮廓2D & 3D点阵以10&sbquo 16, 256 或**色彩或灰度显示10 色和 16 色的轮廓显示测量和显示的轮廓参数原始图形和经过平滑后的图形三角运算平均滤波器高达 10% FWHM光束直径两个用户设置切片级别的直径高斯 & ISO 11146 二次矩光束直径高于用户定义的切片级别的等效直径等效狭缝和刀刃直径光束拟合高斯 & Top Hat 轮廓拟合 & % 拟合等效狭缝轮廓光束椭圆度长轴,短轴和平均值. 轴的自动定向.质心位置相对与绝对强度加权平均后的质心和几何中心光束漂移的显示和统计测量精度 (不限于像元的尺寸)用于内插直径的5µ m 处理分辨率绝对精度是取决于光束轮廓 ~ 通常可以达到 10 µ m 精度.质心精度也取决于光束 (可以精确至 ±10 µ m,因为这是从质心切面上所有像元经算术计算而来的).处理选项图像与轮廓平均,1&sbquo 5&sbquo 10&sbquo 20&sbquo 连续.背景光捕获和扣除用户设置用于捕获的矩形捕获块用户设置的,或带有光束追踪的自动椭圆包含区域来进行处理*.ojf 文件保存了所有WinCamD用于特定测量所进行的自定义设置通过/失败显示通过/失败显示,可通过屏幕上选择不同的颜色。 质量保证和生产的理想选择。日志数据和统计最小,**,平均,标准差,4096个样本数据相对功率测量基于用户初始输入的滚动直方图。 单位为 mW、µ J、dBm、% 或用户选择(相对于参考测量输入)流畅度用户自定义认证RoHS&sbquo WEEE&sbquo CE多路相机最高可达4台相机,并行捕获.1 至 8 台相机,串行捕获相机尺寸&sbquo 宽 x 高 x 深61 x 61 x 99 mm光学深度-从外壳或衰减器至传感器的距离17.5 mm固定8-32螺纹, 8 mm深重量407 g* Capture block size dependent典型测试数据
    留言咨询
  • 量子点激光器由于内部的特殊结构可以有效减少温度对激光器输出参数的影响,波长范围主要集中在1300nm附近的通讯波段。产品序列中QLF1339是波长1310nm法布里玻罗腔(FP)激光器,QLD123x 为波长范围在1240nm-1270nm的DFB激光器,激光器的封装形式有TO封装或蝶形封装产品特点量子点 FP/DFB 激光波长范围1240-1310nmTO-56 CAN 封装形式主要应用激光通信气体传感激光显示激光雷达产品参数产品编号波长功率LD类型封装产品参数备注QLD1261-40051240nm5mWDFB14pin Butterfly-QLD123F-40101240nm10mWDFBTO-56-QLF1339-AA1310nm6mWFPTO-56-QLF1312-P101310nm10mWFPchip-QLF131F-P161310nm16mWFPchip
    留言咨询
  • 高度灵敏、准确和稳定的分析仪,用于可靠地测量 N2O、δ15N、δ15Nα、δ15Nβ 、δ18O 和 δ17O*。特点和优点&bull 同时测量 N2O 及其稳定同位素&bull 准确度和精度最高,漂移小&bull 几分钟内即可安装运行&bull 拥有通过气体自动进样器或手动进样进行批量操作的选项&bull 抗交叉干扰能力强&bull 极宽的动态范围&bull 无与伦比的可靠性&bull 实时诊断&bull N2O 测量速度可选择,使用高流量模式时最高达到10 Hz(有两种使用模式可选)GLA451-N2OI2 和 GLA451-N2OI3 性能增强型量子级 联 (EP QC) 台式分析仪,可直接对 N2O 的位点特异性 同位素比值 δ15N α、δ15N β 、δ18O 和 δ17O* 进行持续而 精确的分析,无需进行任何预浓缩处理或水冷却。它们 可供区分两种含有一种重氮同位素的结构异构体 —— 即,14N15 N16 O 和 15N14 N16O,分别被简称为 15N α 和 15N β。因为许多生物化学过程都有不同的同位素特征,所以, 通过了解 15N 在 N2O 分子内的分布,可帮助了解 N2O 的地球化学循环。这可被用于阐明与土壤中的氮循环相 关的过程,或分析水中及环境空气中的硝酸盐含量,以 确定氮的来源。ABB 的性能增强型(EP)OA-ICOS 分析仪还拥有专有 的内部温度控制功能,能以无与伦比的精确度、准确度 和漂移实现超稳定的测量。而且,ABB 的分析仪能在 无需额外校准的情况下,对摩尔分数是典型环境浓度 20 倍以上的气体进行可靠的、有保证的测量。GLA451-N2OI2 和 GLA451-N2OI3 配有内部计算机, 能几乎无限期地保存数据(用于实现长期无人值守的运 行),并能通过其模拟和数字(RS232)输出将记录的 数据实时发送至数据采集器。该分析仪包含控制和分析 软件。
    留言咨询
  • 详细参数光致发光测量波长范围300-950nm单色光源光源150W氙灯激发波长250-800 nm 带宽10 nm以下(FWHW) 激发波长控制手动 多通道光谱仪测量波长范围200-950 nm波长分辨率 2 nm感光器件通道数1024 ch制冷温度-15 摄氏度A/D分辨率16 bit光谱仪类型Czerny-Turner型光纤类型光纤束(1.5 m)光纤接收面积直径 1 mm积分球 材料 Spectralon 尺寸 3.3 inch 样品夹持器(可选) 薄膜 A10095-01/-03 (不包含基底) 溶液(室温) 光致发光溶液测量夹持器A10104-01 溶液(低温)-196摄氏度(77K)光学低温测量 A11238-01 温度控制室温(RT)到+180摄氏度带样品夹持器的温度控制 样品盒(可选) 粉末 采用光致发光粉末测量皿A10095-01/-03 溶液(室温) 采用光致发光溶液测量侧臂盒A10095-02 溶液(低温) -196摄氏度(77K)采用样品管低温测量A10095-04 软件 测量项目光致发光量子效率荧光材料发光发光测量(量子效率X吸收)量子效率和激发波长的关系(-02G,-03G)光致发光谱(峰值波长,FWHM)光致发光激发谱(-02G,-03G)色彩测定(色度、色温、显色指数等)EEM(激发-发射矩阵) 特性●测量发光材料光致发光的绝对量子效率在开发新的发光材料过程中,提高他们的光致发光效率是至关重要的。提高该效率就需要测量量子效率*的精确技术。Quantaurus-QY系统包含了一个氙灯型激发光源、一个单色仪、一个氮气流可选的积分球和一个能同步测量多个波长的多通道探测器,并将所有元件集成到一个封装里。系统采用专用软件用于测量。探测器采用制冷型背照式CCD传感器,能进行高灵敏度的瞬时测量。Quantaurus-QY能处理溶液、薄膜和粉末样品,并能将溶液样品冷却到液氮温度。*光致发光过程发射光子数与发光材料吸收光子数的比值●瞬时测量多通道探测器能捕获灵敏度补偿型光谱,并且通过计算快速获得量子效率数值。对话框型专用软件使得测量过程变得更简单。●全自动硬件软件控制的单色仪可以选择激发波长以使样品能被多种波长激发。基于波长的量子效率和激发谱可以自动测定。●分析不同形式的样品Quantaurus-QY能处理溶液、薄膜和粉末样品,并能将溶液样品冷却到-196摄氏度(77K)。●波长范围:300 nm – 950 nm●测定发光材料的绝对光致发光量子效率(光致发光测量)●采用积分球测量整个谱域●制冷型背照式CCD传感器实现超高灵敏度和高信噪比测量●激发波长的自动控制●空间集约的紧凑型设计●可选择多种分析功能 ?光致发光的量子效率测量 ?激发波长关系 ?光致发光谱 ?光致发光激发谱●量子效率测量原理 量子效率和荧光寿命的关系右图的Jablonski能级图描述了普通有机分子的电子能级,并标示了能级间的电子跃迁。S0、S1和T1分别代表基态,最低单态和最低三重态。光激发后,激发态分子可以沿几种跃迁路径,包括辐射过程和非辐射过程而回到基态。辐射过程涉及了光发射,例如荧光和磷光。非辐射过程涉及内转换和系统间热释放。辐射过程和非辐射过程相互竞争。当荧光速率常数、内转换和系统间交换分别用kf, kic, and kisc来简写时,荧光寿命Tf可以用下式表示:Tf = 1/ (kf + kic + kisc) (1)同时荧光量子效率Φf可以用下式表示:Φf = kf / (kf + kic + kisc) (2)因此等式(3)可以从等式(1)和(2)推导出:kf = Φf / Tf (3)从以上的等式可以看出,荧光寿命和量子效率之间有密切的关系。这些参数在控制荧光材料的发光特性上有着基础而重要的作用。滨松集团开发了Quantaurus系列用于不同的发光材料的评估。现有的Quantaurus-Tau和Quantaurus-QY可分别用于测量荧光寿命和量子效率。这两个系统的支持性分析可以推动用户对光致发光材料的开发。您可以在下面的推荐产品区域获取紧凑型荧光寿命光谱仪Quantaurus-Tau的细节信息。应用 量子效率测量能在诸多领域满足开发和研究的应用需求。典型应用包括:包括有机EL材料、白光LED和FPD荧光粉等多种类型的发光材料的性能提升,有机金属复合物的研究,染料敏化型太阳能电池的基础特性评估,生物领域的荧光探针效率测量等。有机金属复合物荧光探针染料敏化型PV材料OLED材料量子点LED荧光粉测量程序图分析功能激发波长自动扫描左图展示了光致发光量子效率和激发波长的关系。通过机动型单色仪易于测定样本的光致发光量子效率对激发波长的函数关系。 光致发光的激发谱 样品产生的激发谱可以在激发光照射下由机动型单色仪测定。通过选择两条光标线的范围可以轻松获取某个激发波长范围内的光致发光激发谱。 光致发光谱 光致发光谱是在减去激光光后显示的。量子效率测量过程中样品的发光谱线常包含未被样品吸收的激发光成分。减去这种激发光就可以显示仅由样品本身发射的光谱。 光致发光量子效率测量 左图是量子效率测量的基本界面。荧光量子效率在测量后自动计算。激发带和发射带由光标调整来界定。量子效率的数值显示在图表下方,紧邻发光强度、峰值波长、峰值计数和峰值带宽(FWHM)。 X-Y坐标轴 除了显示光致发光谱和计算量子效率,该软件也包括彩色坐标功能。除了被测样品的色度(x,y),三刺激值(X, Y, Z)也被显示。外形尺寸发表文献应用发表文献作者标题期刊名卷号页数年份OLEDsA. Endo, K. Suzuki, T. Yoshihara, S. Tobita, M. Yahiro. and C. Adachi Measurement of phosphorescence efficiency of Ir(III) phenylpyridine derivatives in solution and solid-state filmsChem. Phy. Lett.460 155 2008T. Sajoto, P. I. Djurovich, A. B. Tamayo, J. Oxgaard, W. A. Goddard III, and M. E. Thompson Temperature Dependence of Blue Phosphorescent Cyclometalated Ir(III) ComplexesJ. Am. Chem. Soc. 1319813 2009H.-F. Chen, S.-J. Yang, Z.-H. Tsai, W.-Y. Hung, T.-C. Wang, and K.-T. Wong1,3,5-Triazine Derivatives as New Electron Transport-type Host Materials for Highly Efficient Green Phosphorescent OLEDs J. Mater. Chem. 19 8112 2009H. J. Bolink, L. Cappelli, S. Cheylan, E. Coronado, R. D. Costa, N. Lardies, Md. K. Nazeeruddin, and E. OrtiOrigin of the Large Spectral Shift in Electroluminescence in a Blue Light Emitting Cationic Iridium(III) ComplexJ. Mater. Chem. 17 5032 2007R. D. Costa, F. J. Cespedes-Guirao, H. J. Bolink, F. Fernandez-Lazaro, A. Sastre-Santos, E. Orti, and J. Gierschner A Deep-Red-Emitting Perylenediimide-Iridium-Complex Dyad: Following the Photophysical Deactivation PathwaysJ. Phys. Chem. C 113 192922009 R. D. Costa, F. Fernandez, L. Sanchez, N. Martin, E. Orti, and H. J. Bolink Dumbbell-Shaped Dinuclear Iridium Complexes and Their Application to Light-Emitting Electrochemical CellsChem. Eur. J 16 9855 2010R. D. Costa, E. Orti, H. J. Bolink, S. Graber, C. E. Housecroft, and E. C. Constable Efficient and Long-Living Light-Emitting Electrochemical CellsAdv. Funct. Mater. 20 1511 2010R. D. Costa, E. Orti, D. Tordera, H. J. Bolink, S. Graber, C. E. Housecroft, L. Sachno, M. Neuburger, and E. C. Constable Stable and Efficient Solid-State Light-Emitting Electrochemical Cells Based on a Series of Hydrophobic Iridium ComplexesAdv. Funct. Mater. 1 282 2011 荧光粉T. Nakajima, M. Isobe, T. Tsuchiya, Y. Ueda, and T. Kumagai Direct fabrication of metavanadate phosphor films on organic substrates for white-light-emitting devicesNature Materials 7 735 2008T. Ogi, Y. Kaihatsu, F. Iskandar, W.-N. Wang, and K. Okuyama Facile Sunthesis of New Full-Color-Emitting BCNO Phosphors with High Quantum Efficiency Adv. Mater 203235 2008荧光探针H. Ito, M. Matsuoka, Y. Ueda, M. Takuma, Y. Kudo, and K. Iguchi Quinolinecarboxylic acid based fluorescent molecules: ratiometric response to Zn2+ Tetrahedron 65 4235 2009S. Kamino, H. Ichihara, S. Wada, Y. Horio, Y. Usami, T. Yamaguchi, T. Koda, A. Harada, K. Shimanuki, M. Arimoto, M. Doi, and Y. Fujita Degign and Synthesis of Regioisomerically Pure unsymmetrical Xanthene Derivatives for Staining live Cells and Their Photochemical Properties,Bioorg. Med. Chem. Lett. 18 4380 2008Y. Mikata, A. Yamashita, A. Kawamura, H. Konno, Y. Miyamoto, and S. Tamotsu Bisquinoline-based fluorescent zinc sensorsDalton Trans. 3800 2009Takahisa Suzuki, Seisuke Arai, Mayumi Takeuchi, Chiye Sakurai, Hideaki Ebana, Tsunehito Higashi, Hitoshi Hashimoto, Kiyotaka Hatsuzawa, Ikuo Wada Development of Cysteine-Free Fluorescent Proteins for the Oxidative EnvironmentPLoS ONE 7 e37551 2012 有机复合物K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishi, and S. Tobita Reevaluation of Absolute Luminescence Quantum Yields of Standard Solutions Using a Spectrometer with an Integrating Sphere and a Back-Thinned CCD DetectorPhys. Chem. Chem. Phys. 119850 2009 R. Kato, K. Suzuki, A. Furube, M. Kotani, and K. Tokumaru Fluorescence quantum yield of aromatic hydrocarbon crystalsJ. Phys. Chem. C 113(7) 2961 2009N. Hayashi, Y. Saito, H. Higuchi, and K. Suzuki Comparative Studies on Electronic Spectra and Redox Behaviors of Isometric Benzo[1,2-b:4,5-b’] difurans and Benzo[1,2-b:5,4-b’]difransJ. Phys. Chem. A 113(18) 5342 2009K. Tani, C. Ito, Y. Hanaka, M. Uchida, K. Otaguro, H. Horiuchi, and H. Hiratsuka Photophysical Property and Photostability of J-Aggregate Thin Films of Thiacyanine Dyes Prepared by the Spin-Coating Method,J. Phys. Chem. B 112(3) 836 2008M. Shimizu, K. Mochida, and T. Hiyama Modular Approach to Silicon-Bridged Biaryls: Palladium-Catalyzed Intramolecular Coupling of 2-(Arylsilyl)aryl TriflatesAngew. Chem. Int. Ed 47 9760 2008M. Shimizu, Y. Takeda, M. Higashi, and T. Hiyama 1,4-Bis(alkenyl)-2,5- dipiperidinobenzenes: Minomal Fluorophores Exhibiting Highly Efficient Emission in the Solid StateAngew. Chem. Int. Ed 48 3635 2009A. Fukazawa, M. Hara, T. Okamoto, E.-C. Son, C. Xu, K. Tamao, and S. Yamaguchi Bis-Phosphoryl-Brigged Stilbenes Synthesized by an Intramolecular Cascade Cyclization, Org. Lett 10(5) 913 2008C.-H. Zhao, A. Wakamiya, Y. Inukai, and S. Yamaguchi Highly Emissive Organic Solids Containing 2,5-Diboryl-1,4-phenylene UnitJ. Am. Chem. Soc. 128 15934 2008金属-有机化合物 A. Ishii, K. Habu, S. Kishi, H. Otsu, T. Komatsu, K. Osaka, K. Kato, S. Kimura, M. Tanaka, M. Hasegawa, and Y. Shigesato Novel Emission Properties of Melem Caused by the Heavy Metal Effect of Lanthanides(III) in a LB FilmPhotochem. Photobiol. Sci. 6 804 2007K. Matsumoto, N. Matsumoto, A. Ishii, T. Tsukuda, M. Hasegawa, and T. Tsubomura Structual and Spectroscopic Properties of a Copper(I)-bis(N-heterocyclic)carbene ComplexDalton Trans. 6795 2009Y. Matano, T. Miyajima, N. Ochi, Y. Nakao, S. Sakai, and H. Imahori Synthesis of Thiophene-Containing Hybrid Calixphyrins of the 5,10-Porphodimethene TypeJ. Org. Chem. 73(13) 5139 2008D. Kuzuhara, J. Mack, H. Yamada, T. Okujima, N. Ono, and N. Kobayashi Synthesis, Structures, and Optical and Electrochemical Properties of BenzoporphycenesChem. Eur. J 15 10060 2009D. Maeda, H. Shimakoshi, M. Abe, M. Fujitsuka, T. Majima, and Y. Hisaeda Synthesis of a Novel Sn)IV) Porphycene-Ferrocene Triad Linked by Axal Coordination and Solvent Polarity Effect in Photoinduced Charge Separation ProcessInorg. Chem. 49 2872 2010D. Maeda, H. Shimakoshi, M. Abe, and Y. Hisaeda Synthesis and photophysical behavior of porphyrin isomer Sn(IV) complexesInorg. Chem. 48 9853 2009H. Shimakoshi, T. Baba, Y. iseki, I. Aritome, A. Endo, C. Adachi, and Y. Hisaeda Photophysical and photosensitizing properties of brominated porphycenes Chem. Commun. 2882 2008
    留言咨询
  • 关键特征●采用黑体球形反应器,辅助U形光窗,光子无逸出,被溶液完全吸收;●采用激光光源,具有良好的单色性,可由光功率准确计算光量子数;●反应器具有温度与湿度检测,可监测反应体系内温湿度变化;●反应器具有外接循环水功能,可实现反应温度的控制;●内置真空泵与调压阀,实现实验背景气的置换功能与反应器内压力调节功能;●具有测试数据U盘导出功能,方便用户自行分析数据; 应用领域▲特别适用 ●较为适用 ○可以使用▲光催化产氢:量子产率测试及产氢速率测试 技术参数●反应气体:置换气体为N2,0.4~0.45 MPa ●反应压力:20~130 kPa ●激光光源:405 nm 激光发生器(标配),可选配其它波长 ●反应体积:反应空余体积约150 mL(具体见标定值) ●反应溶液:100 mL,可配置不同体积溶液 ●置换次数: 0~255 ●置换效率:100 ppm ●搅拌速度:250~1250 rpm ●反应温度:0~60 ℃ ●量子产率:0.05%~100%
    留言咨询
  • LZ9000THz中药太赫兹量子指纹一致性评价系统1、产品简介:LZ9000THz中药太赫兹量子指纹一致性评价系统是一款基于太赫兹时域光谱分析仪(TDS)及中药光谱量子指纹一致性数字化评价系统4.0的检测产品。产品搭配透射、反射成像模块,可即刻获取物质的时域谱、频域谱、折射率等光学物理参数及太赫兹量子指纹图谱信息,通过系统指纹定量法揭示中药质量变异情况,适用于中药材、中药饮片、中药提取物、中成药固体制剂以及中药配方颗粒的快速测定,用于中药质量一致性评价及中药均一化投料控制,确保中药生产过程质量一致性和稳定性。2、产品特点: 多功能模块灵活切换,支持透射、反射成像模块; 测量精密准确,检测前处理过程简单,绿色无污染; 开发window界面软件,软件操作简单,功能布局美观; 多类型计算分析方法和评价报告,数据量化直观。3、产品原理:飞秒激光器输出激光脉冲,经过分光片后光束分为两路,一束作为泵浦光,另一束作为探测光;泵浦光经反射传输到发射天线上,在偏置电压的作用下产生太赫兹波,该太赫兹波经透射或反射等方式携带着被测样品的信息被接收,分析得到频域谱、吸收谱、折射率谱、相位谱等参数。搭载中药光谱量子指纹一致性数字化评价系统4.0软件,获取太赫兹光谱连续曲线的光量子信息,将连续曲线变成可量化的峰点,通过系统指纹定量法等算法模型进行中药成分定性定量分析。THz吸收系数图和THz量子化图对比图 4、产品参数和功能表1 仪器参数参数LZ9000THz中药太赫兹量子指纹一致性评价系统太赫兹源LT-GaAs 100μm antenna太赫兹探测器LT-GaAs 10μm antenna激光780nm飞秒激光器光谱范围0.05THz-5THz扫描范围1200ps(可设置)动态范围≥ 90dB最小扫描间隔40μm扫描精度2μm光谱分辨率20GHz外型尺寸L670*W640*H380重量75Kg工作环境温度15℃-30℃工作环境湿度20%-80%表2 操作系统参数模块功能开始模块保存、新建、打开、关闭、删除图表,将谱图正规化,拟合谱图,显示/隐藏峰,打印谱图,绘制变换指纹图谱等; 谱图模块对峰匹配,峰串联,色谱图的移动、剪切、复制、粘贴、改变颜色,显示/隐藏峰、时间、峰号,还可以进行谱图的命名等。计算与报告模块包含多种不同的计算分析方法,主组分参数,系统指纹定量法等。量子指纹峰模块可以新建/删除一组量子指纹峰,显示量子指纹峰及量子指纹峰组的相关信息,设参比峰。坐标模块对坐标轴标尺和轴文本进行操作,可以垂直翻转,可以设置标尺数值,颜色。字体及主副标尺网格线的颜色和格式。5、典型应用:不同厂家药物鉴定、原创药鉴定;中药材真伪、道地性快速判定;快速有效鉴别手性药物和中药;药物成分快速定量/定性分析;药物生产质量一致性、稳定性快速判定。
    留言咨询
  • 一,中红外量子阱QWIP超快探测器 5um 26.5GHzMIR QWIP是基于先进的QWIP技术而研发的一款超快速中红外探测器。它的响应速度高达数十GHz,是市场上最快的检测器。它是表征QCL频率梳、构建外差仪器、开发中红外高带宽光学通信链路的完美工具。QWIP的技术是卡洛瑟托里教授在Pierre Aigrain实验室研发的。我们对包装和设备进行了优化,以适应低温下的超高速运行。同时,我们开发并优化专用偏置器和宽带射频放大器,以匹配设备的高端性能。技术参数产品特点市面上最快的中红外探测器响应速度至少 26.5 GHz基于QWIP技术工作温度77K波长:5 μm响应速度高达数十GHz高响应度专用和优化偏置器即插即用产品应用:QCL频率梳外差仪器高速中红外光学链路二,中红外量子级联超快光电探测器 20GHz 4.65 µ m这是一款超快中红外光电探测器,响应带宽超过20GHz (-3 dB)。它无偏压工作,不需要冷却,因此不需要外部电源。安装过程只需两个简单步骤:将SMA装置连接到测量仪器(示波器等),并将入射光定向到内部聚焦透镜。中红外量子级联超快光电探测器 20GHz 4.65 µ m,中红外量子级联超快光电探测器 20GHz 4.65 µ m技术参数特征响应超过20GHz的超快中红外光电探测器频率响应范围 (-3 dB): 直流到 20 GHz敏感波长峰值: 4.65 µ m光敏性: 1 mA/W (典型值)无需冷却,无需偏置操作应用 外差检波高频/高时间分辨测量 一般参数参数描述单位连接器类型SMA—冷却非冷却—镜头聚焦透镜 *1—光圈4.5mm偏振方向在机身有标记 *2—*1入射光必须准直。*2 见 "表 4" 绝对最大额定值参数符号值单位工作温度*1Topr-10 至 +50°C储存温度*1Tstg-10 至 +50°C入射光水平Pmax1W/cm2*1 无凝结* 无需偏置操作* 环境温度: Ta=25 °C 电气和光学特性参数符号条件最小值典型值最大值单位敏感波长峰值P—4.604.654.70µ m光敏性Sλ=λp, f0=1200 Hz, Δf=1 Hz0.51.0—mA/W探测率D*λ=λp, f0=1200 Hz, Δf=1 Hz8.0 × 1081.5 × 109—cmHz1/2/W噪声等效功率NEP λ=λp, f0=1200 Hz—3.0 × 10-101.0 × 10-9W/Hz1/2截止频率fc-3 dB down, Zi=5Ω 1820—GHz终端电容Ctf=1 MHz—1.11.5pF并联电阻RshVmeas=10 mV7090110k * 环境温度: Ta=25 °C
    留言咨询
  • 小型量子纠缠源实验系统上海昊量光电推出一款商业化小型量子纠缠源实验系统。这款小型量子纠缠源实验系统是一套完整的产生和分析偏振纠缠光子对的装置。它的设计结合了量子光学的新成果,易于大学老师及研究人员使用。这套装置完全匹配高等院校量子实验应用,也可以集成到现代科学实验和商业应用中。小型量子纠缠源实验系统的核心采用自发参量下转换过程生产偏振纠缠光子对。光纤耦合单光子探测器结合偏振滤波器探测光子对,分析偏振方向以及验证相关性。小型量子纠缠源实验系统包含一个计数器和符合计数模块记录单光子事件,并显示相应的计数率。关键特性:高准确度偏振纠缠光子对产生与分析验证贝尔不等式违背实验完备系统量子现象亲身动手研究学习容易使用,无需专业技能要求定制化配置方式应用实验(请查看参考文献):光粒子性/量子随机产生 Franson干涉 光波粒二象性/量子擦除 HOM干涉+HBT测量 系统配置:光纤耦合偏振纠缠光子源两个硅基雪崩二极管准直模块(含辅助低功率激光模块)集成符合逻辑单元的三通道计数器两个偏振旋转光学支撑架控制和读出电路模块主要技术参数标准型高计数型单一计数率10kHz50kHz符合计数率1kHz5kHz纠缠质量S2.2S2.2工作波长810nm810nm泵浦激光功率15mW50mW相位匹配TyPe I and TyPe IITyPe I and TyPe II
    留言咨询
  • C11347-11绝对量子效率测量系统,Quantaurus-QY Quantaurus-QY是一款紧凑而易用的仪器,用于测量光致发光材料的量子效率。它能胜任绝对量子效率的测量,而且无需传统相关方法所必需的已知参考标准。不同形式的样品,包括薄膜、固体、粉末和溶液等均能被分析。液氮能将液体样品冷却到-196摄氏度(77 K)。欢迎您登陆滨松中国全新中文网站 查看该产品更多详细信息!详细参数光致发光测量波长范围300-950nm单色光源光源150W氙灯激发波长250-800 nm 带宽10 nm以下(FWHW) 激发波长控制手动 多通道光谱仪测量波长范围200-950 nm波长分辨率 2 nm感光器件通道数1024 ch制冷温度-15 摄氏度A/D分辨率16 bit光谱仪类型Czerny-Turner型光纤类型光纤束(1.5 m)光纤接收面积直径 1 mm积分球 材料 Spectralon 尺寸 3.3 inch 样品夹持器(可选) 薄膜 A10095-01/-03 (不包含基底) 溶液(室温) 光致发光溶液测量夹持器A10104-01 溶液(低温)-196摄氏度(77K)光学低温测量 A11238-01 温度控制室温(RT)到+180摄氏度带样品夹持器的温度控制 样品盒(可选) 粉末 采用光致发光粉末测量皿A10095-01/-03 溶液(室温) 采用光致发光溶液测量侧臂盒A10095-02 溶液(低温) -196摄氏度(77K)采用样品管低温测量A10095-04 软件 测量项目光致发光量子效率荧光材料发光发光测量(量子效率X吸收)量子效率和激发波长的关系(-02G,-03G)光致发光谱(峰值波长,FWHM)光致发光激发谱(-02G,-03G)色彩测定(色度、色温、显色指数等)EEM(激发-发射矩阵) 特性 ●测量发光材料光致发光的绝对量子效率在开发新的发光材料过程中,提高他们的光致发光效率是至关重要的。提高该效率就需要测量量子效率*的精确技术。Quantaurus-QY系统包含了一个氙灯型激发光源、一个单色仪、一个氮气流可选的积分球和一个能同步测量多个波长的多通道探测器,并将所有元件集成到一个封装里。系统采用专用软件用于测量。探测器采用制冷型背照式CCD传感器,能进行高灵敏度的瞬时测量。Quantaurus-QY能处理溶液、薄膜和粉末样品,并能将溶液样品冷却到液氮温度。*光致发光过程发射光子数与发光材料吸收光子数的比值●瞬时测量多通道探测器能捕获灵敏度补偿型光谱,并且通过计算快速获得量子效率数值。对话框型专用软件使得测量过程变得更简单。●全自动硬件软件控制的单色仪可以选择激发波长以使样品能被多种波长激发。基于波长的量子效率和激发谱可以自动测定。●分析不同形式的样品Quantaurus-QY能处理溶液、薄膜和粉末样品,并能将溶液样品冷却到-196摄氏度(77K)。●波长范围:300 nm – 950 nm●测定发光材料的绝对光致发光量子效率(光致发光测量)●采用积分球测量整个谱域●制冷型背照式CCD传感器实现超高灵敏度和高信噪比测量●激发波长的自动控制●空间集约的紧凑型设计●可选择多种分析功能 ?光致发光的量子效率测量 ?激发波长关系 ?光致发光谱 ?光致发光激发谱●量子效率测量原理 量子效率和荧光寿命的关系右图的Jablonski能级图描述了普通有机分子的电子能级,并标示了能级间的电子跃迁。S0、S1和T1分别代表基态,最低单态和最低三重态。光激发后,激发态分子可以沿几种跃迁路径,包括辐射过程和非辐射过程而回到基态。辐射过程涉及了光发射,例如荧光和磷光。非辐射过程涉及内转换和系统间热释放。辐射过程和非辐射过程相互竞争。当荧光速率常数、内转换和系统间交换分别用kf, kic, and kisc来简写时,荧光寿命Tf可以用下式表示:Tf = 1/ (kf + kic + kisc) (1)同时荧光量子效率Φf可以用下式表示:Φf = kf / (kf + kic + kisc) (2)因此等式(3)可以从等式(1)和(2)推导出:kf = Φf / Tf (3)从以上的等式可以看出,荧光寿命和量子效率之间有密切的关系。这些参数在控制荧光材料的发光特性上有着基础而重要的作用。滨松集团开发了Quantaurus系列用于不同的发光材料的评估。现有的Quantaurus-Tau和Quantaurus-QY可分别用于测量荧光寿命和量子效率。这两个系统的支持性分析可以推动用户对光致发光材料的开发。您可以在下面的推荐产品区域获取紧凑型荧光寿命光谱仪Quantaurus-Tau的细节信息。应用 量子效率测量能在诸多领域满足开发和研究的应用需求。典型应用包括:包括有机EL材料、白光LED和FPD荧光粉等多种类型的发光材料的性能提升,有机金属复合物的研究,染料敏化型太阳能电池的基础特性评估,生物领域的荧光探针效率测量等。?有机金属复合物?荧光探针?染料敏化型PV材料?OLED材料?量子点?LED荧光粉
    留言咨询
  • 本源量子氧化钌温度传感器:一款应用在极低温领域的温度测量传感器,其测温范围为10mk-40k,并且在10mK左右的温度下,具备±1.5mK的测量精度,接线使用的插头和低温线缆均可定制,可以方便的安装在稀释制冷机等极低温环境中。外形结构尺寸详细参数测温范围10mK-40K推荐激励5mK-50mK≤6.3μV50mK-100mK≤20μV100mK-1.2K≤63μV100mK-1.2K≤200μV1.2K-100K≤632μV测量精度10 mK±1.5 mK20 mK±2 mK50 mK±4 mK1.4 K±16 mK4.2 K±17 mK10 K±50 mK常规参数重量60g尺寸60mm×12mm×14mm储存环境非工作环境下需干燥保存测试数据1.电阻温度曲线2.灵敏度曲线
    留言咨询
  • 产品应用量子效率测量能在诸多领域满足开发和研究的应用需求。典型应用包括:包括有机EL材料、白光LED和FPD荧光粉等多种类型的发光材料的性能提升,有机金属复合物的研究,染料敏化型太阳能电池的基础特性评估,生物领域的荧光探针效率测量等。有机金属复合物;荧光探针;染料敏化型PV材料;OLED材料;量子点;LED荧光粉;有机LEDs的开发。基本材料的光子发光量子效率;内量子效率测量;薄膜和器件的量子效率。LEDs的开发和显示;无机LED材料;白光LED的荧光材料;平板显示(等离子显示、场激发显示等)的荧光材料。基础研究:物理和化学场中的样本特性;光谱学;荧光量子效率;磷光量子效率。生物研究:荧光探针;量子点。详细介绍量子效率测量系统CEL-EQE外量子效率测量系统CEL-QYQE绝对量子效率测量系统应用方向:量子效率测量能在诸多领域满足开发和研究的应用需求。典型应用包括:包括有机EL材料、白光LED和FPD荧光粉等多种类型的发光材料的性能提升,有机金属复合物的研究,染料敏化型太阳能电池的基础特性评估,生物领域的荧光探针效率测量等。有机金属复合物;荧光探针;染料敏化型PV材料;OLED材料;量子点;LED荧光粉;有机LEDs的开发。基本材料的光子发光量子效率;内量子效率测量;薄膜和器件的量子效率。LEDs的开发和显示;无机LED材料;白光LED的荧光材料;平板显示(等离子显示、场激发显示等)的荧光材料。基础研究:物理和化学场中的样本特性;光谱学;荧光量子效率;磷光量子效率。生物研究:荧光探针;量子点。CEL-EQE外量子效率测量系统发光材料可以由荧光量子效率进行表征。对于有机/无机LED等发光器件,对应的物理参数是通过电致发光法测得的外量子效率(EL,electroluminescence)。针对这种应用,外量子效率测量系统应运而生。OLED器件的发光效率受多种因素的影响,包括各层和玻璃基底的吸收、表面发射、辐射角和基底波导通量等。这些因素通过作为样品室的积分球进行测量。样品放置在球内,并被固定的电流或电压激发。产品特点1) 积分球的采用能使外量子效率(EQE)的测量不受样本发光角特性的影响2) 软件控制能量源(KEITHLEY 2400系列)3) 对应于每一步加载电压/电流的光谱能被瞬时测量(I-V-L测量)4) 背照式制冷型CCD实现高灵敏度测量5) 直观的软件易于操作,用于测量、计算和系统控制。6) 可以在不同图表中绘制多种变量(电流、电流密度、电压、发光效率、色度等)。7) 系统易于被扩展到绝对光致发光量子效率测量系统和光分布测量测量系统。详细参数 型号, CEL-EQE外量子效率测量系统 积分球, 3.3-8 inch 内径, 发射材料: Spectralon,可定制 探测器, AULTT-P4000 软件控制能量源, KEITHLEY 2400系列 感光器件通道数, 2048 ch 波长范围, 200 nm ~ 1100 nm 光纤长度, 1.2 m光纤直径, 0.8mm 光通量测量范围, 0.00013 lm 到 0.12 lm (白光,发射面积 2x2 mm2)光功率测试, CEL-NP2000-2标准接口, 1inchCEL-QYQE绝对量子效率测量系统测量发光材料光致发光的绝对量子效率在开发新的发光材料过程中,提高他们的光致发光效率是至关重要的。提高该效率就需要测量量子效率的精确技术。QYQE系统包含了氙灯激发光源、单色仪、一个氮气流可选的积分球和一个能同步测量多个波长的多通道探测器,并将所有元件集成到一个封装里。系统采用专用软件用于测量。探测器采用制冷型背照式CCD传感器,能进行高灵敏度的瞬时测量。QYQE能处理溶液、薄膜、半导体和粉末样品。系统能用于多种领域,包括工业、生物和学术研究等。光致发光过程发射光子数与发光材料吸收光子数的比值。产品特点:1) 瞬时测量:多通道探测器能捕获灵敏度补偿型光谱,并且通过计算快速获得量子效率数值。对话框型专用软件使得测量过程变得更简单。2) 全自动控制设置:软件控制的单色仪可以选择激发波长以使样品能被多种波长激发。基于波长的量子效率和激发谱可以自动测定。3) 分析不同形式的样品:QYQE能处理溶液、薄膜、半导体和粉末样品。4) 波长范围:200 nm – 1100 nm;5) 测定发光材料的绝对光致发光量子效率(光致发光测量);6) 采用积分球测量整个谱域;7) 制冷型背照式CCD传感器实现超高灵敏度和高信噪比测量;8) 激发波长的自动控制;9) 空间集约的紧凑型设计;10) 可选择多种分析功能:光致发光的量子效率测量;激发波长关系;光致发光谱;光致发光激发谱;11) 量子效率测量原理。详细参数 型号, CEL-QYQE绝对量子效率测量系统光致发光测量波长范围, 200-110nm单色光源, 光源, CEL-S150/S500氙灯光源激发波长, 250-1100 nm 带宽, 2 - 10 nm(随狭缝变化) (FWHW) 激发波长控制, 软件自动控制 多通道光谱仪, CEL-IS151 双光束测量波长范围, 200-1100 nm波长分辨率, 2 nm感光器件通道数, 2048 chA/D分辨率, 16 bit光谱仪类型, AULTT-P4000型光纤类型, 光纤束(1.2m)光纤接收面积, 直径0.8 mm积分球, 3.3-8 inch 内径, 发射材料: Spectralon,可定制 软件 测量项目, 光致发光量子效率荧光材料发光发光测量量子效率和激发波长的关系光致发光谱(峰值波长,FWHM)光致发光激发谱色彩测定(色度、色温、显色指数等EEM(激发-发射矩阵)
    留言咨询
  • 关键特征● 作为关键器件的斩波器与紫外探测器均采用所处领域技术领先的原装进口设备;● 系统采用全自动软件控制,软件具有控制单色仪,测量仪表读数,数据比对与处理等功能;● 标准太阳能电池由计量部门提供,可追溯到ISO9000,是得到准确测量数据的关键保障。应用领域 ▲特别适用 ●较为适用 ○可以使用▲ 太阳能电池量子效率(QE)测量▲ 太阳能电池IPCE测量技术参数● 光源波长范围:300 ~1100 nm;● 标定辐照度:1000 W/m2;● 焦距:300 mm;● 相对孔径:f/3.9;● 分辨率: 0.1 nm;● 倒线色散: 2.7 nm/mm;● 斩波频率: 8.4 Hz~3.7 kHz;● 工作频率范围:1 mHz-102.4 kHz● 稳定性:5 ppm/℃;● 相位分辨率:0.01°;● 时间常数:10 s-30 ks,同步参考源信号;● 辐照不均匀度:±5%;● 标准电池转换效率:>16%,FF>0.7;● 光伏器件尺寸: 20 x 20 mm2;● 滤光片轮:7.550 nm ● 日本滨松S1337标准紫外探测器1只;● 进口单光束和双光束调制(含计量证书);● 低相位抖动频和差频参考信号输出;
    留言咨询
  • LZ9000FTIR 中药红外量子指纹一致性评价系统中药面临着伟大复兴,回顾历史,开创中药红外量子指纹评价体系,把中药发展为世界性医药文化的主体之一。中药是中华民族几千年文化的瑰宝,有着悠久的历史,经过数千年的医疗实践,中药的安全性、有效性已经得到验证,但是还没有得到国际上的普遍认可,为了使中药走向世界,必须解决质量控制这一关键问题。在现有条件下,采用单一的化学成分分析方法无法适用于成分复杂的中药体系,而要解决这一难题的有效手段就是建立质量控制新方法和新控制模式,加强中药质量评价的科学化与标准化。目前应用现代仪器分析手段,建立于中药整体系统上的光谱量子指纹图谱技术是中药质量一致性评价的新方法。特别FTIR红外光谱测定快速,指纹特征性强,是开展中药原料药物和中成药质量控制的简单易行方法,红外量子指纹使其定性和定量功能产生飞跃,红外量子指纹用于中药一致性评价大有可为。 图1 复方甘草片红外量子指纹图谱 图2 蓉蛾益肾口服液FTIR红外量子指纹图谱(在不同点数合并时红外量子谱) 图3 退热解毒注射液的红外量子指纹图谱(在不同点数合并时红外量子谱)红外量子指纹能鉴别药材质量特征,比如药材的种属、形态、产地和采收期等;再者能对药材重要活性成分进行识别、定性和定量,尤其对能反映中药质量并可作为质量控制的指标成分的定性和定量方便快捷,测试成本低;建立红外量子指纹要进行仪器精密性、方法重复性和样品稳定性的考察,以确保红外量子指纹建立方法的可靠性和建立的红外量子指纹能够反映药材的特征属性;然后要保证所建立的红外光谱量子指纹能有效、全面地反映药材的质量和药效。因为中药具有复杂性特点,所以对于大部分中药材都不能完全地说明其药效成分,在实际工作中往往多针对其中含量较多或特征指标成分定量,而红外光谱能有效地全面地反应各类型化学单键和不饱和化学键的整体信息,因此通过红外量子指纹完全能有效地控制中药整体质量。 【LZ9000FTIR中药红外量子指纹一致性评价系统】通过FTIR红外光谱法原理,对中药红外光谱指纹进行分析测试,把连续光谱量子指纹化属于光谱领域的颠覆性创新技术。为建立中药红外量子指纹图谱提供了大量特征信息数据,通过对其准确分析进行评价可揭示数据背后的质量变异而作为中药的质控依据。因此,该系统作为研究中药红外量子指纹图谱是一种很好的技术工具,它能按照官能团量子指纹特征峰类型对化合物进行官能团分类的定性和定量分析。红外量子指纹适应中药信息质控的要求,也是数字化中药红外量子化的现代中药质量控制模式和一种重要技术工具与强有力的技术载体平台。 产品特点可对中药红外光谱进行量子指纹化的多类型方法的计算分析和评价报告,分析准确,评价数据可以作为中药质量控制的依据。适用于中药原料药物、中间体和中成药质量分析与鉴别。功能全面而强大,可以即刻获得中药红外光谱量子指纹参数信息,并可以导出多种图谱格式。方便的快捷键功能,将主要操作都集中到快捷图标上,使用户能更加快速的上手使用软件,方便用户操作。一种功能可以通过快捷键实现,还可以通过菜单命令实现。有良好的界面以及美观的功能布局,操作简便,多数功能都可以通过点击目标对象,直接跳转菜单栏,使用快捷图标完成操作。是分析中药红外光谱量子指纹的软件。计算与报告模块:包含多种不同的计算分析方法,可以对谱图进行深入的数据信息挖掘,比如中国药典委相似度,主组分参数,系统指纹定量法等等。还可以生成规范化的检验报告单,对文档格式进行自定义修改,对中国药典委相似度、系统指纹定量法等直接生成分析报告。带审计追踪功能,四级用户密码管理,符合国家计算机软件认证要求。本系统测试采用独到的数据采集预览全程监控模式,采集过程一览无余;整机一体化铸模成型,主部件对针定位,无需调整配备智能湿度自动提醒装置,减轻了操作人员对仪器维护的工作量,电子湿度数字直观显示功能,将自动提醒用户更换干燥剂,解决红外使用过程中的隐患硬件实时在线诊断:连续在线监控所有光学部件仪器始终处于良好工作状态,测量谱图准确可靠。硬件实时在线诊断:连续在线监控所有光学部件良好工作状态,软件H2O/CO2自动补偿软件,自动除去空气中水和二氧化碳采用进口高能量、高效率、长寿命光源国内独特带自动休眠功能,提高光源寿命 密封干燥的光学仓,特殊处理的防潮窗口设计,可以有效抵御外部溶剂和水汽;分腔式设计,保证各腔体不相互影响,保证腔体密封干燥;国内独特配置湿度软件自动数字显示装置,自动提醒更换干燥剂 产品应用国家要求仿制与原研药须杂质谱一致、稳定性一致、体内外溶出规律一致。中药物质基础复杂、多数组分尚未明确,所以中药一致性评价有其特殊性,应该从整体角度控制不失为一种全面可行的策略。中药红外光谱量子指纹图谱是实现从整体角度上鉴别中药真实性、评价质量一致性和产品稳定性的可行模式,可用于中药质量一致性评价,同时对单个或局部量子指纹可进行针对性区间定量分析。 LZ9000FTIR中药红外量子指纹一致性评价系统为中药质量控制提供了强有力的工具,同时也为我国的中药现代化建设奠定了光谱量子化控制的基础,因此中药红外光谱量子指纹控制是中药现代化的突破技术之一。中药材和中成药的生产质量管理,就是从中药材的栽培到饮片、中药材的生产质量,以及中成药生产都要按照指纹图谱技术进行全面质量控制。它在中药工业生产上的应用,解决了中药现代化的关键技术。天津能谱推出的中药红外量子指纹一致性评价系统具备中药指纹图谱的分析技术要求,具有广泛的应用前景和实用化高效的可靠的评价结果。
    留言咨询
  • QY绝对量子效率和EQE外量子效率测量系统 产品优点◆体积小巧,可直接放入手套箱内使用 ◆一体化集成稳定性更好 ◆电动进样重复性和准确性高◆操作界面简单,功能实用性好 ◆更高反积分球材料,抗老化经久耐用 ◆更灵活的电致发光夹具,更贴合您的芯片◆多通道软件自动切换,一键测完所有点数据产品应用领域◆半导体发光二极管 LED ◆微型LED发光器件 MircoLED量子点◆发光器件QLED◆有机发光材料和器件OLED◆钙钛矿发光材料和器件PeLED 绝对荧光量子效率测量系统特点◆电动升降台,稳定进出样,让测量重复性、重现性更优且不容易污染积分球。◆整机一体化设计,光路稳定,减少震动对光路带来的扰动。◆采用Spectralon?材料积分球,具有高朗伯效特性,积分球光稳定性更好,抗老化经久不衰。◆0-100%功率可调单色多通道LED,激发光更加稳定◆更简单的操作,简化手套箱内的操作步骤,更快得出测量结果。 电致发光量子效率测量系统特点 ◆操作非常简单,只需培训30-60分钟即可上手操作。软件控制多通道切换器,一键测试完一片芯片上的所有发光点。 ◆夹具设计灵活,根据客户样品尺寸和电极定位量身定制夹具。样品的取放简单,无需打开积分球,减少积分球污染的概率。 ◆仪器可以通过手套箱大仓直接进入手套箱内,体积适中,安装方便。 ◆一体化整机设计,让测试稳定性、重复性、准确性更优异。 ◆器件寿命测量终点可在0-100%L范围内任意设置,可实时查看器件衰减比率。产品设备参数:
    留言咨询
  • 光催化的实质是光电子催化,光生载流子作为反应物参与反应,就光催化反应动力学和机理研究而言,光电化学测试技术是一种非常重要和有效的手段。 半导体光催化技术治理环境污染物是从上世纪80 年代逐渐发展起来的一种高级氧化技术,在常温和常压下,只利用催化剂、光和空气就能将污染物破坏并最终矿化为无毒的二氧化碳、水和无机离子等,有望缓解日益严峻的环境污染问题。 当用能量等于或高于半导体吸收阈值的光照射块状半导体时,半导体的价带电子可被激发跃迁到导,同时在价带产生相应的空穴,从而在半导体内部产生电子-空穴对。 光生电子-空穴对在空间电荷层电场的作用下,空穴迁移到半导体粒子表面与溶液中的电子供体发生氧化反应,而电子与电子受体发生还原反应, 或者向电极基底运动并通过外电路到达对电极参与还原反应。 光激发产生的电子和空穴至少经历以下途径:载流子的扩散、俘获、复合和界面电荷转移. 其中复合和界面电荷转移是两个相互竞争的过程,界面电荷转移最终实现光能的利用。主要应用: 光电化学、光电催化研究的光谱响应IPCE、量子效率QE、样品池的光谱透过率、光谱响应下的量子效率和光电流,实现了直流、交流分析,原电池分析,光电化学实验分析等。测试项目: 光电化学样品的光谱响应IPCE,量子效率QE,光谱透过率,短路电流密度、表面均匀度等,测试样品室内放入样品和不放入样品时标准探测器的光谱电流/电压值,测量光电反应池的光谱透过率,也可以测量玻璃的光谱透过率。 光电实验原理: 光源在不同波长的辐射能量不同,探测器在不同波长的响应度也不同,因此,所测得的响应电流也会有较大的不同。系统采用了相关检测法,利用信号在时间上的相关性,把深埋于噪声中的周期信号提取出来。具体做法是:将光源经过斩波器调制成具有固定频率(参考频率)的周期信号,则探测器也输出具有相同频率的电信号,经过锁相放大器将含有参考频率的电信号检出,而其它频率的信号(噪声)则被抑制掉,从而提高了系统的信噪比,保证了测量准确度。规格参数:1.控制模式:软件控制、全自动扫描、自动消除误差、自动扣除背景;2.光谱范围:300-1100nm(可选200-2500nm);扫描间隔 ≥1nm连续可调;光谱扫描 全自动、连续;3.测试结果重复性RSI 0.3%(光电流)4.工作模式:交流模式AC、电化学直流模式DC,斩波频率 5-1000Hz5.样品台:电动双位样品台(标准参比、样品),自动对比分析,置于屏蔽安室内。6.选配偏置光源 配置一路、两路、可应对复杂的光电分析测试7.单色仪:1)焦距300mm采用非对称水平Czerny-Turner光路,消慧差设计,可确保谱线对称和良好的光学分辨率;2)消二次色散设计,有效抑制杂散光;3)入口可与我公司各种光源配套使用,可配光纤接口连接光纤;4)可连接我公司任意一款单点探测器和其它附件;5)小模数精密研磨蜗轮蜗杆,长寿命设计,运行平稳舒适,噪声低;6)※配有充氮气专用口,便于在紫外和近红外有大气吸收谱的波段范围内使用;7)配有步进电机细分驱动器,光谱准确度和重复性高;8)狭缝设计独特设计,刃口自动保护,宽度调节对称性好,寿命长;9)软件可实现波长的任意调整及延时设置,USB2.0计算机接口;10)内部光学室和机械传动室严格分开,避免后者产生杂散光及润滑油微量挥发对光学件的污染,单色仪机体为铸件一体结构,保证光学系统稳定性。8.光源:500W氙灯光源,采用欧司朗进口灯泡,波动0.01%。9.标准探测器:紫外增强型硅探测器(300-1100nm),选配铟镓砷探测器(800-1600nm)。10.电化学工作站:选配Ivium电化学工作站,及其他品牌;
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制