人视网膜神经胶质瘤细胞

仪器信息网人视网膜神经胶质瘤细胞专题为您提供2024年最新人视网膜神经胶质瘤细胞价格报价、厂家品牌的相关信息, 包括人视网膜神经胶质瘤细胞参数、型号等,不管是国产,还是进口品牌的人视网膜神经胶质瘤细胞您都可以在这里找到。 除此之外,仪器信息网还免费为您整合人视网膜神经胶质瘤细胞相关的耗材配件、试剂标物,还有人视网膜神经胶质瘤细胞相关的最新资讯、资料,以及人视网膜神经胶质瘤细胞相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

人视网膜神经胶质瘤细胞相关的资料

人视网膜神经胶质瘤细胞相关的论坛

  • 显微镜下的人体---视网膜血管

    http://www.people.com.cn/mediafile/pic/20110923/76/6160573819760328908.jpg这是经染色处理的视网膜血管,从呈黑色的视盘中伸出。视盘即视神经盘,是眼睛上的一块盲区,这是因为在视网膜的这一区域没有感光细胞,视神经和视网膜血管都要从这里穿过。

  • 不用开刀就能“精确定位”脑胶质瘤

    最新发现与创新 科技日报讯 一项可能取代有创诊断脑胶质瘤的新诊式——生理和代谢成像技术,经第三军医大学大坪医院野战外科研究所影像中心主任张伟国和他的科研团队历经9年攻关,取得重大进展。他们研究建立了功能及生理代谢成像脑胶质瘤术前分级和鉴别诊断体系,为临床正确评估脑胶质瘤级别、治疗方式的选择、预后评估等“准确打击”脑胶质瘤进行“精确定位”;研制的胶质瘤分子靶向造影剂已完成动物实验,有望应用于临床。 脑胶质瘤常用的诊断方式主要是病理活检,但由于病理取材为有创过程,手术取材误差和对手术切除后残留肿瘤组织不灵敏度、特异度,病理诊断仍有一定的局限性。 张伟国团队联合应用DWI(磁共振扩散加权成像)、MRS(磁共振波谱)及灌注技术,通过551例次胶质瘤病例影像与病理对照研究,对脑胶质瘤与单发脑转移瘤、脑内结核瘤、局限性脑炎、不典型脑梗塞和脑脓肿等其它疾病进行了甄别,对鉴别诊断进行了深入研究和探讨,在此基础上,建立了胶质瘤分级诊断影像报告体系,并将DWI技术、MRS技术及灌注成像技术常规应用于患者的临床检查,使其对胶质瘤分级诊断的敏感性提高至84.2%,特异性为85.1%。 研究团队还发现不同级别和类型胶质瘤间肿瘤的微血管表现差异较大,管腔径线也明显不同,从无明显管腔到巨大血窦样管腔。该团队运用MRS技术判断胶质瘤的边界、Cho/NAA升高对肿瘤瘤周浸润和单纯性水肿做出了明确的鉴别诊断,进一步明确胶质瘤的边界和范围,对明确病理性质和手术及放疗计划的制定提供重要参考。研究者还发现SPI0(超顺磁性氧化铁)标记的EPCs(内皮祖细胞)能快速归巢至肿瘤区域,对肿瘤的生长和血流灌注无明显影响,同时能被核磁共振成像有效示踪,判定肿瘤浸润范围,有望研发出SPI0—EPCs为载体的诊断胶质瘤的新型分子靶向造影剂。(邹争春 朱广平 记者陈磊) 《科技日报》(2013-06-16 一版)

人视网膜神经胶质瘤细胞相关的方案

  • 人视网膜母细胞瘤抑制蛋白(pRB)检测试剂盒
    人视网膜母细胞瘤抑制蛋白(pRB)检测试剂盒人视网膜母细胞瘤抑制蛋白(pRB)检测试剂盒使用说明书本试剂盒仅供研究使用。检测范围: 规格:96T/48T使用目的:本试剂盒用于测定人血清,血浆及相关液体样本中人视网膜母细胞瘤抑制蛋白(pRB)含量。实 验 原 理 本试剂盒应用双抗体夹心酶标免疫分析法测定标本中人视网膜母细胞瘤抑制蛋白(pRB)水平。用纯化的抗体包被微孔板,制成固相抗体,往包被单抗的微孔中依次加入人视网膜母细胞瘤抑制蛋白(pRB)抗原、生物素化的人视网膜母细胞瘤抑制蛋白(pRB)抗体、HRP标记的亲和素,经过彻底洗涤后用底物TMB显色。TMB在过氧化物酶的催化下转化成蓝色,并在酸的作用下转化成最终的黄色。颜色的深浅和样品中的人视网膜母细胞瘤抑制蛋白(pRB)呈正相关。 使用酶标仪在450nm波长下测定吸光度(OD值),计算样品浓度。
  • 人胶质细胞系来源神经营养因子(GDNF)ELISA试剂盒
    人胶质细胞系来源神经营养因子(GDNF)ELISA试剂盒人胶质细胞系来源神经营养因子(GDNF)ELISA试剂盒使用说明书本试剂盒仅供研究使用。检测范围: 规格:96T/48T使用目的:本试剂盒用于测定人血清,血浆及相关液体样本中人胶质细胞系来源神经营养因子(GDNF)含量。实 验 原 理 本试剂盒应用双抗体夹心酶标免疫分析法测定标本中人胶质细胞系来源神经营养因子(GDNF)水平。用纯化的抗体包被微孔板,制成固相抗体,往包被单抗的微孔中依次加入人胶质细胞系来源神经营养因子(GDNF)抗原、生物素化的人胶质细胞系来源神经营养因子(GDNF)抗体、HRP标记的亲和素,经过彻底洗涤后用底物TMB显色。TMB在过氧化物酶的催化下转化成蓝色,并在酸的作用下转化成最终的黄色。颜色的深浅和样品中的人胶质细胞系来源神经营养因子(GDNF)呈正相关。 使用酶标仪在450nm波长下测定吸光度(OD值),计算样品浓度
  • 人胶质细胞系来源的神经营养因子(GDNF)检测试剂盒
    人胶质细胞系来源的神经营养因子(GDNF)检测试剂盒人胶质细胞系来源的神经营养因子(GDNF)检测试剂盒使用说明书本试剂盒仅供研究使用。检测范围: 规格:96T/48T使用目的:本试剂盒用于测定人血清,血浆及相关液体样本中人胶质细胞系来源的神经营养因子(GDNF)含量。实 验 原 理 本试剂盒应用双抗体夹心酶标免疫分析法测定标本中人胶质细胞系来源的神经营养因子(GDNF)水平。用纯化的抗体包被微孔板,制成固相抗体,往包被单抗的微孔中依次加入人胶质细胞系来源的神经营养因子(GDNF)抗原、生物素化的人胶质细胞系来源的神经营养因子(GDNF)抗体、HRP标记的亲和素,经过彻底洗涤后用底物TMB显色。TMB在过氧化物酶的催化下转化成蓝色,并在酸的作用下转化成最终的黄色。颜色的深浅和样品中的人胶质细胞系来源的神经营养因子(GDNF)呈正相关。 使用酶标仪在450nm波长下测定吸光度(OD值),计算样品浓度。

人视网膜神经胶质瘤细胞相关的资讯

  • 太赫兹应用:无标记识别脑胶质瘤细胞
    近日,由上海交通大学朱卫仁教授与重庆西南医院神经外科冯华教授/陈图南副教授团队、爱德万测试(中国)管理有限公司三方合作在国际高水平期刊《Biosensors and Bioelectronics》上发表题为“Highly sensitive detection of malignant glioma cells using metamaterial-inspired THz biosensor based on electromagnetically induced transparency”的研究结果,首次展示了一种针对不同胶质瘤分子分型细胞进行无标记识别的太赫兹超材料检测方法,该研究也得到了天津大学姚建铨院士团队的指导和支持。胶质瘤是颅内最常见的、造成最多死残病例的中枢神经系统肿瘤,目前临床主张进行整合诊断,将胶质瘤分为多个特定的分子亚类,其中IDH是与肿瘤进展、治疗反应和预后密切相关的经典分子分型标记。快速早期无标记区分IDH1野生/突变两种胶质瘤对于术中和术后早期精准诊疗具有重要价值。研究团队提出了一种无标记的脑胶质瘤细胞“分子分型(IDH1野生/突变)”生物传感超材料,通过在生物传感器表面加载人原代胶质瘤细胞进行太赫兹波谱探测,其频率偏移和峰幅变化与不同类型细胞及其浓度呈现相关性;通过观察超材料传感器共振频率的变化,可以区分不同分子分型的胶质瘤细胞,这种识别是在没有引入抗体等生化标记方法的情况下,在多个不同细胞浓度下实现的。基于该项研究结果,太赫兹超材料生物传感器在识别胶质瘤细胞类型中显示出了巨大的潜力,基于肿瘤分子分型的太赫兹波谱识别策略也拓展了新的太赫兹波生物传感技术发展方向。太赫兹技术在生命科学领域有广阔的应用前景,第十届光谱网络会议(iCS2021)邀请了四位来自国内外高校的专家学者们,届时,专家将介绍太赫兹技术的更多应用,点击下方链接立即报名哦。5月25-28日 光谱网络会议相约十年(iCS2021)专家报告推荐之光谱在生命科学领域的应用1、《太赫兹生物医学与生物物理发展概况》(中国生物物理学会-太赫兹生物物理分会 何明霞副会长/秘书长)2、《纳米-生物界面作用的定量分析》(中国科学院高能物理研究所 王黎明研究员)3、《面向生物医学检测的LIBS/Raman联用装置与方法研发》(四川大学 林庆宇副教授)4、《新型冠状病毒核酸检测技术研究进展》(阿尔伯塔大学 庞博博士)立即报名(免费哦):https://www.instrument.com.cn/webinar/meetings/iCS2021/
  • 磁共振影像示踪细胞治疗脑胶质瘤研究获进展
    p  11月14日,中国科学院深圳先进技术研究院郑海荣研究团队在磁共振影像示踪细胞治疗脑胶质瘤领域取得新进展。相关论文“MR imaging tracking of inflammation-activatable engineered neutrophils for targeted therapy of surgically treated glioma”(《磁共振影像示踪的中性粒细胞药物输运体系靶向治疗术后脑胶质瘤》)在线发表在国际学术期刊《自然-通讯》上。/pp  脑胶质瘤是最常见的中枢神经系统恶性肿瘤,也是目前最为难治的肿瘤性疾病之一。目前临床上胶质瘤的治疗方法主要以手术切除为主,辅以包括放射治疗和药物治疗在内的综合治疗,但其总体预后仍不容乐观,5年生存率不足10%,中位生存期仅为12-15个月。为何胶质瘤患者在经过综合治疗后,生存率仍然极低?一方面是因为胶质瘤细胞在颅内呈浸润性生长,并沿着神经纤维爬行生长,瘤体无清楚边界,导致手术无法彻底清除。另一方面是因为颅内血脑屏障的存在,使得多数化疗药物无法进入脑肿瘤组织,可用于脑胶质瘤化疗的药物品种非常有限,且治疗效果不高。如何提高术后胶质瘤患者的生存期成为临床的重大需求。/pp  郑海荣研究团队发现利用免疫系统中重要的中性粒细胞,作为穿越血脑屏障的靶向细胞载体,同时结合具有磁共振成像(Magnetic resonance imaging, MRI)性能和载药能力为一体的磁性介孔氧化硅纳米颗粒,得到具有MR成像性能的载药中性粒细胞。当通过静脉注射到达术后脑胶质瘤炎性区域后,高度激活的载药中性粒细胞可形成中性粒细胞胞外诱捕网(Neutrophil extracellular traps,NETs),同时释放载药纳米颗粒并进入到浸润的肿瘤细胞,成功实现了对术后脑胶质瘤的诊疗可视化。/pp  该研究得到科技部“973”计划(2015CB755500)和国家自然科学基金(81527901, 81327801, 81801843)等的资助。/pp style="text-align: center "img title="微信图片_20181119091510.jpg" alt="微信图片_20181119091510.jpg" src="https://img1.17img.cn/17img/images/201811/uepic/452c857b-652d-4305-9a8e-787fc38ff6f9.jpg"//pp style="text-align: center "  载药中性粒细胞对术后胶质瘤小鼠诊疗示意图/pp /p
  • 转化医学系列网络讲座预告|仿生纳米药物用于人脑胶质瘤的治疗
    时间2019年12月26日 下午14:00-15:00题目仿生纳米药物用于人脑胶质瘤的治疗主讲人刘艳杰 博士(河南大学)讲座形式网络讲座,手机或PC即可参与(会议链接和如下报名链接相同)内容简介由于血脑屏障(blood brain barrier, BBB)的存在,使得人脑胶质瘤成为癌症治疗中最棘手的肿瘤之一。BBB,其为脑部的自我平衡防御机制,它在保证中枢神经系统免受外来物质侵扰的同时,也阻碍了治疗药物通过非入侵性给药进入脑内。因此,发掘研究能协助纳米药物突破BBB的药物或靶向分子是治疗脑部疾病的当务之急。基于以上背景,讲者所在实验室设计了细胞膜伪装的肿瘤微环境响应的仿生纳米药物用于脑胶质瘤的靶向治疗。该智能仿生纳米药物合理解决了目前纳米药物面临的体内循环时间短、难以跨越BBB、被肿瘤细胞摄取量低和药物在病灶处释放缓慢等诸多关键问题,最终可望成功实现人脑胶质瘤安全高效的治疗。即刻报名扫描下方二维码,报名吧!主讲人简介刘艳杰 博士生物医学工程专业在读博士,现在河南大学从事仿生纳米药物用于人脑胶质瘤的治疗的研究。在Advanced materials,Biomaterials等杂志上发表论文2篇,申请国内专利2项。

人视网膜神经胶质瘤细胞相关的仪器

  • Maestro Edge/Pro 高通量微电极阵列系统-对神经胶质瘤致癫痫潜在机制进行研究 含有代谢酶异柠檬酸脱氢酶 (IDH) 突变的胶质瘤脑肿瘤患者经常会出现难治性癫痫发作,但其致病机制尚不清楚。在这项研究中,研究人员使用神经胶质大鼠皮层细胞培养模型和来自 IDH 突变型胶质瘤患者的人类皮层组织来证明 D-2-羟基戊二酸 (D-2-HG)(一种由肿瘤亚型产生的代谢物)会改变代谢谱和上调哺乳动物周围皮层神经元中的雷帕霉素靶蛋白 (mTOR) 信号传导,从而促进神经元尖峰和癫痫发作活动。 为了在存在神经胶质瘤代谢物的情况下检查体外神经网络活动,研究人员使用了 Axion 的 Maestro Pro 多电极阵列 (MEA) 平台和包含神经胶质瘤培养物的定制 transwell共培养小室。 研究结果表明,癌代谢物 D-2-HG 通过激活 mTOR 通路促进周围神经元的癫痫发作活动——这一重要发现提高了对 IDH 突变神经胶质瘤患者癫痫发生的理解,并可能导致新的治疗方法。神经网络功能实时检测攻略◆ ◆ ◆ ◆PART I 原理介绍为什么要检测神经电活动?研究证明构建体外神经元疾病模型是研究神经元功能和神经系统复杂疾病的一个有效策略。细胞成像、基因表达分析或者蛋白印迹这些方法能够全面地反应神经疾病模型的复杂性吗?神经网络功能又是怎样的?科学家们很难得到一个完整的答案。而使用Maestro MEA技术,任何科学家都能够快速简单地高通量检测活细胞的网络电活动。 什么是高通量微电极阵列? Axion的MEA板底部紧密嵌合了呈网格状的电极阵列。科学家们可以在电极上贴附培养神经元等可兴奋性细胞,它们会逐渐成熟并形成网络,并最终生成网络功能。这样MEA板上每个电极就都可以捕捉到毫秒级的神经元自发放电,为您在时间和空间两个维度提供精准的实验数据。您还可以通过电刺激或者光刺激进一步拓展实验设计。适用样本原代神经元细胞,iPSC衍生神经元,脑片,iPSC衍生神经球/类器官/迷你大脑三个层面了解神经网络功能神经细胞(橙色)经培养覆盖于固定在MEA板底部的电极(灰色)上。Maestro MEA系统检测神经网络的功能,包括电活动、同步性和网络震荡。Activity 电活动 如何判断神经元有没有功能?动作电位是一个重要标志。动作电位发放频率高表明其放电频繁;发放频率低意味着神经元电生理功能可能已受损。Synchrony 同步性 如何评判神经元间突触的功能?突触的存在使得神经元之间的联系成为可能。一个神经元的动作电位藉此得以影响到另一个神经元发放的可能性。同步性检测能够反映出突触连接的强弱,及不同的神经元在毫秒级别时间范围内产生同步放电的可能。Oscillation 网络震荡 如何确定样本的网络功能?有功能的神经网络是由兴奋性和抑制性神经元共同构成的。它的一个重要特征就是神经震荡,即不断变化中的神经活动高潮-低谷周期。而一个MEA孔内检测到的所有神经元电发放在时间轴上的规律就是该样本的震荡数据。PART II Maestro系统介绍Maestro MEA实验流程Maestro使得MEA实验简单到超乎想象。仅需三步:A将神经元培养在Axion MEA板上。B将MEA板放入Maestro MEA系统,静待环境仓达到温度和气体浓度的平衡。C使用AxIS Navigator软件无创且实时地从三个层面(电活动、突触功能、网络震荡)定量分析神经元电活动。配套的其他分析软件,还能自动计算出多于25种类别的二级参数,供您进行数据深度挖掘。Maestro平台优势提供关键答案 与常规方法间接检测可兴奋性不同,Maestro MEA系统的测试直接反映神经元的动作电位。比较常见的间接技术如钙成像,无法捕获微小却重要的神经网络信号变化。而蛋白表达水平的检测结果与细胞疾病模型功能的相关性也很差。只有使用Maestro MEA系统实时追踪细胞的可兴奋性,您才能回答这个关键问题:样本是否在以您期待的方式放电?无标记分析 Maestro MEA系统无创地检测神经元群落的电信号,杜绝使用染料或报告子,避免其对细胞模型的干扰,您数据的准确性无需置疑。更使您得以实现对一个样本电活动的长期(数小时、数周甚至数月)追踪。原位检测 其它的高通量平台(例如自动化膜片钳或者流式细胞仪)通常会要求对样本做预处理,制备成单细胞悬液再上机检测。对于可兴奋性细胞这种以互相交联的功能性网络形式存在的样本来说,这是一种非常不理想的状态。此外,细胞收集的过程也需要大量的手动操作步骤。只有Maestro MEA系统能够在捕获神经元细胞可兴奋性的同时维持其形态学上的复杂性。简单易用 只有电生理专家才会使用Maestro MEA系统?不存在的!只要把细胞培养在MEA板上,然后把板放入Maestro MEA仪器检测仓内,即可记录神经元电生理数据。Axion提供的一系列软件会帮您完成剩下的数据分析步骤,甚至连可直接用于文献发表的图表都搞定了。您也可以!PART III 应用方向简介神经疾病细胞模型,药物神经毒性筛选,神经细胞功能检测,光遗传学,模式生物表型筛选,干细胞开发及质控,神经球、脑类器官研究帕金森神经肌肉接头病脆性X综合症智障癫痫化合物神经毒理检测星形胶质细胞对神经元功能的影响精神分裂孤独症/自闭症脑瘫偏头痛蛇毒腺类器官前额叶痴呆精神类药物滥用/成瘾神经元代谢干细胞治疗/修复注意缺陷多动障碍/多动症高通量微电极阵列+光遗传的强大组合Axion公司创新的高通量光遗传刺激系统Lumos,可对MEA板内样本进行光强(1-100%)和光照时长(低至100ms)的控制。您可以选择多至四种不同波长的LED光源来刺激单孔内的细胞,并行处理通量高至96个。您也可以对每个孔内混合培养细胞样本中的某一类细胞群体进行单独控制,建立高阶神经疾病模型。所以,通过在软、硬件上与Maestro系统无缝整合,Lumos可以助您精准、灵活、高效地实现神经细胞网络的调节及实时的功能检测。 Axion BioSystems ImagineExploreDiscover
    留言咨询
  • 小动物视网膜成像 400-860-5168转4543
    德国Rodent小动物视网膜微循环成像系统配置高性能的LED光源,并且配置了专门的动态、静态血管分析软件,能广泛的应用于小动物视网膜微循环等研究 。产品特点:    整套设备包含光源、彩色相机、彩色/单色成像模块,图像采集分析软件、小动物手术台。只需占用极小的实验空间,方便安装使用。在有限实验场地就能建立一个同时应用于学生实验和基础研究的眼科研究工作站。  *有别于一般眼底镜,专为动物(大、小鼠)设计的视网膜成像系统  *使用方法和荧光显微镜类似,可以观察明视野和荧光造影*兼具静态图像拍摄和数位动态影像录影功能应用领域:  *眼球病理研究 *神经科学 *基因工程 *细胞生物学 *干细胞/再生医学  一般病理性检查  糖尿病视网膜病变(Diabetic Retinopathy)  视网膜母细胞瘤(Retinoblastoma)  视网膜黄斑衰退症(AMD)  脉络膜新生血管(Choroidal Neovascularization)  视网膜色素变性(Retinitis Pigmentosa)
    留言咨询
  • HMsERG 动物视网膜电图系统是用于视觉电生理学研究的一款产品,适用于所有类型的哺乳动物、鸟类及爬行动物研究。OcuScience 产品线的关键特点是系统按照国际视觉电生理学会(ISCEV)标准内置了相关测试协议,并且客户也可根据个人需求自定义测试协议。HMsERG 内置微型Ganzfeld刺激器,能够充分为动物整个视网膜提供最佳照明,刺激器产生的光强最高可达30 cd.s/m2。HMsERG 为世界各地的许多实验室提供技术支持,帮助他们更好地了解眼睛并为医学带来重大进步。ERG 是对特定光刺激的视网膜电响应的定量测量,其可被用于诊断疾病、识别毒理学效应和眼科疾病分析评估治疗。HMsERG 产品组合包括对各种体型的哺乳动物和其他脊椎动物进行ERG 所需的必要附件,以及适用于不同研究和临床环境的电极,包括活性嵌银尼龙线电极、ERG-Jet 角膜接触镜电极以及参考/接地电极等。HMsERG LABHMsERG 系统的用途包括但不限于以下方面的研究: 细菌性眼内炎 糖尿病视网膜病变 眼内炎 青光眼 传染病学 MicroRNA 疗法 人工视网膜 药物功效和毒理学 VEP 记录 视网膜干细胞 视网膜变性 肌肉营养不良的视网膜效应 色素性视网膜炎 小鼠眼病的转基因模型 The HMsERGLab System is Used World-Wide toAid inOphthalmic Research:The HMsERGLAB System ELECTRORETINOGRAPHY DEVICES AND SUPPLIES VETERINARIANS & LARGE ANIMAL CLINICS RESEARCHERS & SMALL ANIMAL STUDIESHand-held Multi-species Electroretinography [HMsERG] Yes Yes Ex Vivo ERG Adapter No Yes Stainless Steel Subdermal Needle Electrodes Yes Yes Silver-embedded Thread Electrodes No Yes ERG-Jet Lens Yes YesMini Contact LensYesYesRodent Contact Lens with Siver-embedded Thread Electrodes Yes Yes Goniovisc (Methylcellulose) Yes Yes Dual Photo-Stimulator Option Yes Yes Neutral Density Conical Filter 3 for the HMsERG Yes Yes Rodent Examination Table No YesTemperature ControllerNoYesFaraday CageNoYes Rodent Face Mask No Yes 3 Red LED Headlamps for Dark Adaptive Lighting Yes Yes如需研究动物的视网膜影像,可选择:视网膜成像系统:视网膜影像系统是专为啮齿动物,特别是针对大小鼠设计的眼科成像系统。主要功能:视网膜眼底成像、视网膜电图、眼科 OCT、OCT 分割、眼科激光、CNV(激光电凝术后脉络膜心血管生成)、眼前节成像等。MICRON® IV 视网膜眼底成像系统采用模块化设计,体积小巧占用空间少,可根据实验需求进行功能扩展。其他系统大多数都需要搭载该系统才能得以实现其功能。可以说,MICRON® IV 视网膜眼底成像系统是对啮齿动物进行眼部结构和功能全方位研究的基础。出色的成像能力视网膜眼底成像系统具有 3 种成像功能:明场成像、血管造影成像和荧光成像有的三芯片 CCD 相机可提供 3um 的明场分辨率,并具有捕捉微弱荧光图像的灵敏度。除了荧光素和伊文氏蓝血管造影外,还可以对常见的报道分子(如 GFP、YFP、mCherry 和 CFP)进行成像。图像处理软件“Discover ”具有包括控制在内的多项新功能,确保在实验过程中能够捕捉到效果最佳的图像。新功能包括 图像处理 对比拉伸 软件适用性增强 线条轮廓国际认可度高Micron 技术在北美、亚洲和欧洲的 200 多个研究中心发挥着不可或缺的作用,并被国际 300 多种出版杂志引用。该系统已被广泛应用于包括基础眼科、毒理学、药效学和神经学等多项科学研究当中。主要特点: 有别於一般眼底镜,专为大/小鼠设计之视网膜影像撷取系统; 视网膜成像分辨率低于4μm,视野范围(FOV)可达60度(2mm); 具有3种成像方式,明场、血管造影和荧光 定制的三芯片 CCD 相机提高了捕捉更微弱荧光图像的灵敏度 近红外成像的新功能可捕获长波段荧光成像和血管造影成像 能够实现捕捉静止图像或视频的实时成像 使用方式和萤光显微镜类似,可观察明视野和萤光(Ex.CFP,GFP,mChrry等)影像; 兼具单张图像拍摄及数位影像录影功能; 非常适合用在萤光血管造影,甚至可看到微血管内血球的动态流动; 可即时切换萤光滤片及焦距调整; 设计灵活可扩展,可根据科研需求选配ERG、OCT、激光或裂隙灯等系统 对人机工程学设计进行改进,更加方便实验操作主要应用范围: 萤光血管造影 糖尿病视网膜病变 视网膜母细胞瘤 视网膜黄斑衰退症 早产儿视网膜病变 脉络膜新生血管 视网膜色素变性等请关注玉研仪器的更多相关产品。如对产品细节和价格感兴趣,敬请来电咨询!
    留言咨询

人视网膜神经胶质瘤细胞相关的耗材

  • 美国CELLTREAT细胞深井组织储存板
    代理美国CELLTREAT细胞深井组织储存板CELLTREAT细胞深井组织储存板特性和优点非常适合生长细菌培养或储存化合物聚丙烯结构提供低结合表面,以防止样品在洗脱过程中粘附在侧壁上,并且在化学上具有化学惰性,适用于组合化学应用。 CELLTREAT细胞深井组织储存板规格货号 孔形状 孔数量 规格描述说明最大工作孔容积 229571 V底部 96 25/个/箱V 底部的方形到圆形过渡可蕞大化工作体积。 1.1ml 229572 金字塔底部 96 25/个/箱金字塔底通过创建晃动效果(而不是在激动时旋转)来提供简单的样本检索和改进的混合 2ml 非常适合生长细菌培养或储存化合物,聚丙烯结构提供低结合表面,以防止样品在洗脱过程中粘附在侧壁上,并且在化学上具有化学惰性,适用于组合化学应用。
  • 富兰德 GB/T8019实际胶质测定仪胶质杯 玻璃容器
    富兰德 GB/T8019实际胶质测定仪胶质杯 玻璃容器适用范围车用汽油和航空燃料实际胶质测定仪是根据GB/T8019 ISO6246 ASTM D381标准规定设计制造的。适用于测定车用汽油、航空汽油、用于配制挥发性馏分及航空涡轮燃料在试验时的实际胶质以及车用汽油的未洗胶质含量。本产品采用分体结构,由主机箱和控制箱组成。主机箱为蒸发浴,控制箱控制蒸发浴温度、排气口流速及压力,分空气喷射控制和蒸气喷射控制两种。蒸气喷射控制供用户选配。 富兰德 GB/T8019实际胶质测定仪胶质杯 玻璃容器功能特点 1、 蒸发浴为3孔金属浴。 2、 自动浴温控制,自动流量检测。 3、 免去人工流量调节之麻烦,方便使用。 4、 蒸发时间可设置,能自动报警。 5、 图形液晶显示。 6、 可扩充数据通讯功能。 7、 蒸发浴温度,排气口空气流速、压力和试样蒸发时间均能图形液晶显示。 富兰德 GB/T8019实际胶质测定仪胶质杯 玻璃容器技术参数1、 空气喷射:2、 空气压力:≯35Kpa3、 空气流量:排气口流速1000±100ml/s4、 蒸发浴: 金属块浴,三个试验孔5、 蒸发浴温度:162.5±1.5℃(可以扩展到250℃)6、 试验孔温度:155±5℃7、 加热功率 : 1800W8、 蒸气喷射(选配):9、 蒸发压力:≮35Kpa10、蒸气流量:排气口流速1000±100ml/s11、蒸发浴温度:232-246℃ 试验孔温度:232±5℃
  • Kugelmeiers 3D 细胞培养板-细胞球体类器官培养
    Kugelmeiers 3D 细胞培养板一、Kugelmeiers公司介绍Kugelmeiers Ltd. 成立于 2015 年,是瑞士苏黎世大学的衍生公司。公司起源于苏黎世大学医院用于治疗糖尿病的人胰岛细胞移植临床项目。其业务是将对细胞生物学现实的新见解转化为适合 3D 细胞培养和细胞移植的产品。该公司在细胞移植、3D细胞培养和干细胞生物学方面的专业知识满足了日益增长的市场需求。Sphericalplate 5D细胞培养板可以在每个板上形成多达9000个细胞球状体,从而以可重复且对细胞友好的方式,实现了球状体的高通量开发二、 产品介绍- Sphericalplate 5D 细胞培养板Sphericalplate 5D 细胞培养板可以大规模生成均匀、尺寸可控和标准化的球状体。安全"是细胞培养平台 Sphericalplate 5D 的原则。它具有独特的功能以支持细胞球状体的均一性、活性和可放大性。我们的独特几何形状和表面使细胞聚集成球状体, 让您对细胞培养拥有控制能力。Sphericalplate 5D 型号分为:24孔3D细胞培养板,6孔3D细胞培养板1. Sphericalplate 5D 6孔3D细胞培养板Sphericalplates 5D® 用于3D 细胞培养的培养板,6孔培养板是无菌,一次性使用,为形成大小一致的球形细胞聚集体提供培养环境,每个孔有3364个微孔,6孔培养板共有20184 微孔。孔板的材质是COC, 每个孔的工作体积是2-4ml, 总体积是14mL。2. Sphericalplate 5D 24孔3D细胞培养板Sphericalplate 5D 24孔3D细胞培养板含有9000 微孔。Sphericalplate 5D细胞培养板的产品特点:&bull 是易于使用的细胞球状体形成平台&bull 可以实现标准化和大小一致的球形体&bull 易于升级,不会降低球状体的质量&bull 1个6孔Sphericalplate 5D 细胞培养板=20184个球状体Sphericalplate 5D细胞培养板的优势:&bull 形成大小一致均匀,标准化的球状体&bull 预涂层,无表面附着物&bull 可放大生产大量球形体,用于实现高通量成像/筛选/分析(例如,蛋白质组学/基因组学/代谢组学)&bull 适合对病人细胞进行个性化诊断或个性化研究细胞&bull 方便用于在同一板孔内的多个球形体上测试不同的化合物 &bull 与现有的标准成像和自动化技术/设备/系统兼容-尤其是球状体处于微孔内中心位置&bull 可进行长时间或短时间培养以生成足够的球状体&bull 可从癌症球体内收集分泌物组三、Sphericalplate 5D 细胞培养板的应用Sphericalplate 5D (SP5D) 是一种 3D 细胞培养板,用于形成高质量和高产量的均匀、大小可控的球状体。它还可以方便扩大规模并进一步扩展到转化研究或诊断。在开发SP5D时,目标是通过培养标准化球体来创造一个模拟生理条件的环境,该球体可以在没有外部干扰信号的情况下进行细胞间通信。同时,它提高了后续测试的可重复性,因为由于培养的细胞球体的尺寸差异较小,因此您始终以相同的初始条件开始实验。自动化性和可放大性是Sphericalplate 5D 的关键特征,这在未来的治疗应用中也至关重要。SP5D 采用获得专利的金字塔几何形状和微孔设计,具有明确的角度、圆润的底部和锐利的边框。这允许在孔底部形成具有预测尺寸且高度规则的球状体。这些设计特征的结合有利于生物保真度和细胞间通讯。此外,特定的几何形状使球体居中,并支持球体在孔内位置的可预测性。使用即用型 SP5D 特别人性化,您将很快熟悉新平台的操作:接种细胞后,培养不需要任何预处理或离心步骤。通过简单的移液,更换培养基也特别方便,微孔的高度被设计为可以保留细胞球状体。SP5D中成功培养的细胞包括:人类胚胎干细胞人乳腺癌细胞系(BT20、MCF-7)小鼠胚胎干细胞系(HM-1)人前列腺癌细胞系(LNCaP)人间充质基质细胞人肺癌细胞系 (A549)原代胰岛细胞(人、猪、啮齿动物)人骨肉瘤细胞系(Saos-2)β细胞系(EndoC-βH1、MIN-6)人肾上腺癌细胞系肝内胆管细胞类器官 (ICO)人卵巢癌细胞系(OVCAR-3、OAW-42、SK-OV-3)人羊膜上皮细胞 (hAEC)人肝癌细胞系(HepG2)原发性平滑肌细胞人肝细胞 (HepaRG)人脐静脉内皮细胞系(huVEC)人白种人胎肺细胞系(WI-38)小鼠3T3成纤维细胞系人胶质母细胞瘤细胞系Sphericalplate 5D应用领域包括:3D 细胞培养,癌症球状体研究,药物筛选,组织工程,再生医学,3D 生物打印,诊断,个性化医疗,3D 干细胞培养等

人视网膜神经胶质瘤细胞相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制