原位拉曼

仪器信息网原位拉曼专题为您整合原位拉曼相关的最新文章,在原位拉曼专题,您不仅可以免费浏览原位拉曼的资讯, 同时您还可以浏览原位拉曼的相关资料、解决方案,参与社区原位拉曼话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

原位拉曼相关的资讯

  • 原位拉曼光谱应用前景可期—德国耶拿原位拉曼光谱技术与应用研讨会在京召开
    2019年1月16日,德国耶拿分析仪器股份公司(简称德国耶拿)和中国科学院化学研究所携手承办“2019原位拉曼光谱技术与应用研讨会”。来自各科研院所、高校等单位的专家、学生近50位出席本次会议。 美国凯撒简介 美国凯撒光学系统公司(简称:凯撒公司)是原位拉曼技术领先的制造商。2014年,凯撒公司加入瑞士Endress + Hauser集团,成为德国耶拿公司的兄弟公司。2015年起德国耶拿公司负责凯撒公司在中国的拉曼业务。经过4年的推广,凯撒公司的拉曼产品在中国已经有不少客户,相关的研究及应用也取得了一系列的成果。德国耶拿概况  本次会议特别邀请了国内的著名专家学者,针对原位拉曼光谱的最新技术与前沿应用,以及目前普遍关注的热点应用做专题报告。德国耶拿北方区经理杨凌毅主持会议,并介绍了德国耶拿公司的一些情况。 德国耶拿北方区经理 杨凌毅 据介绍,德国耶拿拥有位于Jena,Eisfeld,Langeweisen,Berlin和Uberlingen等地的多个制造工厂,在全球90多个国家设有分支机构。公司的管理层坚信R&D和质量是企业生存的根本,每年总收入的15-20%投资于R&D,1/5的职工从事R&D。此外,杨凌毅还介绍了德国耶拿的产品发展历程及目前主推的产品,包括光谱类、环境类、元素分析类等多个类别的仪器。用户之声 作为凯撒拉曼在中国最早的用户,天津大学郝红勋教授基于该产品开展了一系列的研究。报告中,郝红勋从功能晶体产品讲起,介绍了高端晶体产品质量指标体系,并以详实的案例分享了过程拉曼在晶体成核、共晶研究、多晶型工艺开发、晶型定量分析、溶液浓度在线检测中的应用。 天津大学 郝红勋教授报告题目:过程拉曼技术在工业结晶研究中的应用    郝红勋谈到,受固体化学发展的限制,目前结晶科学与技术研究仍处于半理论半艺术的阶段,晶体成核和晶体生长过程的机理及其模型仍然处于不断探索中,而过程拉曼光谱技术可以同时实现结晶过程中溶液浓度和固体结构形式的同时在线观测,在结晶过程机理的研究中发挥重要的作用。 中科院合肥物质科学研究院固体物理研究所刘俊课题组也在一年前引进了凯撒的拉曼产品,并已经实际应用。报告中,刘俊从亚稳纳米颗粒的概述讲起,介绍了亚稳纳米颗粒制备技术、研究装置及原位光谱分析等方面的内容。 中科院合肥物质科学研究院固体物理研究所 刘俊研究员报告题目:亚稳纳米颗粒的原位光谱分析  其中,刘俊特别详细介绍了中科院装备研制项目:“亚稳纳米颗粒原位动态光谱分析系统研制”,包括液相激光制备系统、液相原位光吸收及荧光光谱系统、液相原位拉曼光谱系统、等离子体瞬态光谱采集系统等。此外,刘俊还进行了亚稳纳米颗粒的成核过程原位光谱分析、亚稳纳米颗粒相变的液相原位拉曼监测、亚稳Ag纳米颗粒的液相原位SERS初探、亚稳纳米颗粒非均相催化反应的原位拉曼分析等四个方面的研究案例分享。凯撒拉曼之优势汇集 拉曼信号弱,如何实现实时监测反应?如何有效实现过程分析、监测多个过程?如何保证仪器的长期稳定性?如何减少室温和反应温度的变化对测试结果的影响?如何提高拉曼光谱定量分析的准确性?如何设计原位探头实现不同反应类型的监测?报告中,王兰芬就原位实时过程拉曼光谱仪需要考虑的这些问题给出了详细的解释。 德国耶拿拉曼产品经理 王兰芬博士报告题目:原位实时过程拉曼光谱技术与最新应用热点   据介绍,1979年成立的凯撒公司在原位拉曼产品方面精心打造,坚持“RbD”设计理念,致力打造“Video”概念。凯撒公司目前已经拥有用于研究/分析/过程领域的多个拉曼产品类型,包括RAMANRXN1TM、RAMANRXN2TM、RAMANRXN3TM、RAMANRXN4TM等。其专利的多维体相全息光栅技术、获奖的轴向分光多色仪、多通道反应与过程同时监控技术、固定设计与恒温稳定设计、原位共焦采样技术等解决了仪器灵敏度、稳定性与快速分析反应、快速监测多个反应等问题。   其中,值得一提的是,凯撒公司在原位探头方面的设计和思考也吸引了很多用户的关注。据悉,凯撒公司不仅同时拥有原位固体液体采样探头、原位液体采样探头、原位流体化学液体采样探头、原位固体采样探头、原位气体采样探头、原位防爆液体采样探头以适应不同样品分析的产品,可以实现固体、固液浑浊溶液、气体等的监测,还可以根据用户反应釜的需求进行探头的定制。   此外,王兰芬在报告中还介绍了原位实时过程拉曼最新的应用热点,包括催化加氢反应趋势分析、均相催化过程实时监测,以及原位实时过程拉曼在制药、高分子、深海中的应用等。   报告及休息过程中,各位与会代表还就原位拉曼技术的进展、应用等进行了探讨。大家普遍认为,随着原位拉曼技术的发展,其未来的研究和应用会越来越深入,特别是在制药领域的应用会“大有所为”。
  • 原位拉曼光谱应用前景可期——2019原位拉曼光谱技术与应用研讨会在京召开
    p    strong 仪器信息网讯 /strong 2019年1月16日,德国耶拿分析仪器股份公司(简称德国耶拿)和中国科学院化学研究所携手承办“2019原位拉曼光谱技术与应用研讨会”,这也是继2016年原位拉曼交流会之后,两家单位再度携手举办技术交流会。来自各科研院所、高校等单位的专家、学生近50位出席本次会议。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/81d9c0dd-1cd2-40e7-acea-182bb1dd805c.jpg" style=" " title=" IMG_8078.JPG" / /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/d902ef39-bb8a-429c-b8d9-c3cf15e227d2.jpg" style=" " title=" IMG_8047.JPG" / /p p style=" text-align: center " strong 会议现场 /strong /p p   美国凯撒光学系统公司(简称:凯撒公司)是原位拉曼技术领先的制造商。2014年,凯撒公司加入瑞士Endress + Hauser集团,成为德国耶拿公司的兄弟公司。2015年起德国耶拿公司负责凯撒公司在中国的拉曼业务。经过4年的推广,凯撒公司的拉曼产品在中国已经有不少客户,相关的研究及应用也取得了一系列的成果。 /p p   本次会议特别邀请了国内的著名专家学者,针对原位拉曼光谱的最新技术与前沿应用,以及目前普遍关注的热点应用做专题报告。德国耶拿北方区经理杨凌毅主持会议,并介绍了德国耶拿公司的一些情况。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/2b8cb639-5ce5-472c-a29a-58292c35da57.jpg" title=" IMG_8089.JPG" alt=" IMG_8089.JPG" / /p p style=" text-align: center " strong 德国耶拿北方区经理 杨凌毅 /strong /p p   据介绍,德国耶拿拥有位于Jena,Eisfeld,Langeweisen,Berlin和Uberlingen等地的多个制造工厂,在全球90多个国家设有分支机构。公司的管理层坚信R& amp D和质量是企业生存的根本,每年总收入的15-20%投资于R& amp D,1/5的职工从事R& amp D。此外,杨凌毅还介绍了德国耶拿的产品发展历程及目前主推的产品,包括光谱类、环境类、元素分析类等多个类别的仪器。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/9a66fe87-df6d-4529-9d07-072a13148fd0.jpg" title=" IMG_8099.JPG" alt=" IMG_8099.JPG" / /p p style=" text-align: center " strong 天津大学 郝红勋教授 /strong /p p style=" text-align: center " strong 报告题目:过程拉曼技术在工业结晶研究中的应用 /strong /p p   作为凯撒拉曼在中国最早的用户,郝红勋基于该产品开展了一系列的研究。报告中,郝红勋从功能晶体产品讲起,介绍了高端晶体产品质量指标体系,并以详实的案例分享了过程拉曼在晶体成核、共晶研究、多晶型工艺开发、晶型定量分析、溶液浓度在线检测中的应用。 /p p   郝红勋谈到,受固体化学发展的限制,目前结晶科学与技术研究仍处于半理论半艺术的阶段,晶体成核和晶体生长过程的机理及其模型仍然处于不断探索中,而过程拉曼光谱技术可以同时实现结晶过程中溶液浓度和固体结构形式的同时在线观测,在结晶过程机理的研究中发挥重要的作用。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/1e95eef2-cf04-4ad8-be66-340f9f731b21.jpg" title=" IMG_8149.JPG" alt=" IMG_8149.JPG" / /p p style=" text-align: center " strong 中科院合肥物质科学研究院固体物理研究所 刘俊研究员 /strong /p p style=" text-align: center " strong 报告题目:亚稳纳米颗粒的原位光谱分析 /strong /p p   刘俊课题组也在一年前引进了凯撒的拉曼产品,并已经实际应用。报告中,刘俊从亚稳纳米颗粒的概述讲起,介绍了亚稳纳米颗粒制备技术、研究装置及原位光谱分析等方面的内容。 /p p   其中,刘俊特别详细介绍了中科院装备研制项目:“亚稳纳米颗粒原位动态光谱分析系统研制”,包括液相激光制备系统、液相原位光吸收及荧光光谱系统、液相原位拉曼光谱系统、等离子体瞬态光谱采集系统等。此外,刘俊还进行了亚稳纳米颗粒的成核过程原位光谱分析、亚稳纳米颗粒相变的液相原位拉曼监测、亚稳Ag纳米颗粒的液相原位SERS初探、亚稳纳米颗粒非均相催化反应的原位拉曼分析等四个方面的研究案例分享。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/1b920f5e-9521-4c49-b523-79e19b4920ac.jpg" title=" IMG_8123.JPG" alt=" IMG_8123.JPG" / /p p style=" text-align: center " strong 德国耶拿拉曼产品经理 王兰芬博士 /strong /p p style=" text-align: center " strong 报告题目:原位实时过程拉曼光谱技术与最新应用热点 /strong /p p   拉曼信号弱,如何实现实时监测反应?如何有效实现过程分析、监测多个过程?如何保证仪器的长期稳定性?如何减少室温和反应温度的变化对测试结果的影响?如何提高拉曼光谱定量分析的准确性?如何设计原位探头实现不同反应类型的监测?报告中,王兰芬就原位实时过程拉曼光谱仪需要考虑的这些问题给出了详细的解释。 /p p   据介绍,1979年成立的凯撒公司在原位拉曼产品方面精心打造,坚持“RbD”设计理念,致力打造“Video”概念。凯撒公司目前已经拥有用于研究/分析/过程领域的多个拉曼产品类型,包括RAMANRXN1 sup TM /sup 、RAMANRXN2 sup TM /sup 、RAMANRXN3 sup TM /sup 、RAMANRXN4 sup TM /sup 等。其专利的多维体相全息光栅技术、获奖的轴向分光多色仪、多通道反应与过程同时监控技术、固定设计与恒温稳定设计、原位共焦采样技术等解决了仪器灵敏度、稳定性与快速分析反应、快速监测多个反应等问题。 /p p   其中,值得一提的是,凯撒公司在原位探头方面的设计和思考也吸引了很多用户的关注。据悉,凯撒公司不仅同时拥有原位固体液体采样探头、原位液体采样探头、原位流体化学液体采样探头、原位固体采样探头、原位气体采样探头、原位防爆液体采样探头以适应不同样品分析的产品,可以实现固体、固液浑浊溶液、气体等的监测,还可以根据用户反应釜的需求进行探头的定制。 /p p   此外,王兰芬在报告中还介绍了原位实时过程拉曼最新的应用热点,包括催化加氢反应趋势分析、均相催化过程实时监测,以及原位实时过程拉曼在制药、高分子、深海中的应用等。 /p p   报告及休息过程中,各位与会代表还就原位拉曼技术的进展、应用等进行了探讨。大家普遍认为,随着原位拉曼技术的发展,其未来的研究和应用会越来越深入,特别是在制药领域的应用会“大有所为”。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/84f29dd8-17a4-45e8-9545-fc5bb73891c5.jpg" title=" 微信图片_20190116171717.jpg" alt=" 微信图片_20190116171717.jpg" width=" 450" height=" 449" border=" 0" vspace=" 0" style=" width: 450px height: 449px " / & nbsp & nbsp /p p style=" text-align: center " strong 讨论 /strong /p p   在本次会议结束时,德国耶拿还安排了抽奖活动,为参会代表准备了别具特色的奖品。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/b6d1fa75-7ede-4c8f-b9e3-9055a478035d.jpg" title=" 微信图片_20190116172613.jpg" alt=" 微信图片_20190116172613.jpg" width=" 450" height=" 599" border=" 0" vspace=" 0" style=" width: 450px height: 599px " / /p p style=" text-align: center " strong 抽奖现场 /strong /p
  • JACS:原位拉曼技术用于催化研究
    了解金属−氧化物界面表面氧的活化和反应本质非常重要,但由于活性氧物种原位表征的困难,仍然是一个重大挑战。基于此,厦门大学李剑锋等采用表面增强拉曼光谱(SERS)技术,原位探测了CO氧化过程中铂−铈界面上分子氧的活化和反应,并直接观测了CO氧化过程中不同活性氧种类及其演化过程。原位拉曼光谱和同位素交换实验的证据表明,在CO氧化过程中,Pt上的氧在界面Ce3+缺陷点处同时有效分离为化学吸附的O和晶格Ce−O,导致在铂-铈界面的活性比单独在Pt上高得多。进一步的原位时间分辨SERS研究和密度泛函理论模拟表明,通过吸附的CO和化学吸附的Pt−O物种从界面转移的反应,发现了一个更有效的分子途径。这项工作深化了对金属-氧化物界面上氧活化和CO氧化的基本认识,并为工作条件下氧的原位表征提供了一种灵敏的技术。TOC图原位拉曼探测金属表面氧活化和反应过程拉曼光谱可以提供物种的分子结构和信息,特别是那些位于低波数区域,传统方法难以检测的物种,因此,原位表征活性氧是一种很有前途的技术,而正常拉曼光谱的灵敏度较低,无法实现催化氧化过程中界面上吸附的微量氧的研究。相比之下,表面增强拉曼光谱(SERS)即使在单分子水平上也具有极高的灵敏度,显示出原位催化研究的巨大潜力。在SERS中,等离子体金属(原生金、银和铜)可以产生强且高度局部化的电磁场,以增强吸附或位于其表面附近的物种的拉曼信号,从而允许对反应过程和中间体进行原位监测。但是,强烈的SERS效应仅限于特定结构的金、银和铜纳米材料,这极大地限制了SERS在其他金属或氧化物表面催化反应原位研究中的应用。本文借用SERS技术对Pt-CeO2界面的CO氧化过程进行了原位研究,揭示了Pt-CeO2界面在氧活化过程中的关键作用及其分子反应机理。CeO2纳米域沉积在Au@Pt上,形成Au@Pt−CeO2核−壳纳米结构,因此在Pt−CeO2界面上吸附的痕量物种和中间体的拉曼信号得到了显著增强。利用这种借用SERS策略,研究了不同的活性氧物种及其在Pt−CeO2界面的CO氧化过程中的演化。原位漫反射红外光谱(DRIFTS)研究表明,与Pt/SiO2相比,Pt/CeO2上吸附CO转化为CO2的温度要低得多(图1)。然而,由于红外光谱在低波数区的局限性,氧物种和铂−C键的重要特征未观察到。同时,由于正常拉曼光谱的低灵敏度,在对其进行原位拉曼研究期间,未检测到表面物种(图2)。为了实现Pt−CeO2界面氧活化和反应的原位拉曼研究,设计了Au核@Pt壳− CeO2纳米结构(图3a)。在这种核壳纳米结构中,Pt壳层和− CeO2之间形成了丰富的Pt− CeO2界面,而等离子体Au核可以产生强电磁场来放大吸附在Pt− CeO2界面上的物种的拉曼信号。因此,可以同时监测催化剂结构和痕量中间体的演化过程,特别是低波数的中间体。图1 不同温度下CO氧化的原位漫反射红外光谱图2 CO氧化的原位普通拉曼光谱图3 原位SERS示意图为了揭示所制备Au@Pt−CeO2的表面结构,利用苯基异氰酸酯(PIC)作为探针分子对该样品进行了SERS表征。PIC的拉伸频率对表面结构非常敏感。如图4a所示,PIC吸附在Pt和Au上的拉曼光谱分别位于2140和2190 cm−1处。而在Au@Pt和Au@Pt−CeO2上只观察到PIC吸附在Pt上,表明Au被Pt完全包覆,而CeO2在Pt上形成不连续的区域。此外,PIC吸附在Au@Pt−CeO2上的拉伸带与Au@Pt上相比发生蓝移。这意味着Pt上的电子可能部分转移到CeO2上,从而降低了d-π*的反馈,增强了键,从而导致拉曼能带的蓝移。图4 Au@Pt−CeO2的表面结构在自制的拉曼电池中控制气氛和温度,在Au@Pt上进行原位SERS(图5),研究CO氧化条件下Pt表面物种的演化。如图6a所示,490和2090 cm−1处有两个拉曼峰。它们分别归因于在Pt上线性吸附CO的Pt-C和的拉伸模式,可以通过CO同位素交换实验中这些带谱的红移来证明(图6c)。在~395和~2030 cm−1处的小肩峰,分别归因于CO通过桥式吸附在Pt上的Pt-C拉伸模式和CO在配位不饱和Pt上线性吸附的拉伸模式。随着温度升高到110℃,这些条带几乎没有变化,这与纯CO下的结果非常相似(图7)。这说明在低温CO氧化过程中,Pt表面几乎完全被CO占据。图6b为Au@Pt反应气氛由CO转变为O2时的原位SERS谱图。当温度大于100℃时,CO吸附的拉曼谱带开始下降,并完全消失,而在150℃时,在~ 560 cm−1出现了一条新的宽谱带。在18O2同位素实验中,这个峰会红移到较低的值(图6d),因此可以归因于Pt−O物种。在CO/ O2循环切换过程中,这种Pt−O物种会与CO反应,并在150°C时再生(图6b)。这些结果表明,在低温CO氧化过程中,Pt表面几乎被CO完全占据。因此,氧只能在150℃时在纯Pt表面被活化成Pt−O物种,导致其在低温时CO氧化活性较差。不同CO/O2条件下CO氧化的催化结果也可以证明CO的毒性,当CO/O2从1/10增加到1/1时,氧化活性显著下降。图5 自制原位拉曼电解池示意图图6 CO在界面氧化的原位SERS图谱图7 不同温度下SERS谱图图8的a和b分别是Au@Pt−CeO2上CO氧化的原位SERS光谱和不同表面物种对应的拉曼强度随反应温度的变化。当激光功率从0.3到15 mW时,样品的SERS光谱几乎没有变化,说明激光的加热效应确实可以忽略不计(图9)。与Au@Pt不同,CO氧化在Au@Pt−CeO2表面上的SERS光谱随温度变化显著。在低温下,除了吸附在Pt表面(~ 2090 cm−1)的CO拉曼带外,在~ 2110 cm−1处还观察到一个额外的肩峰,这可以归因于吸附在Pt−CeO2界面的CO。随着温度的升高,CO吸附在界面位置的拉曼谱带先下降,然后是Pt表面CO的降低。同时,根据18O2同位素交换实验和块锑CeO2的拉曼光谱,在50℃时,在450 cm−1和550 cm−1出现了两个谱带,分别属于Ce−O和Pt−O(图2)。这些结果表明,与Pt不同的是,在Pt−CeO2界面CO氧化过程中,氧可以在很低的温度下有效地活化为Ce−O和Pt−O物种。图8 CO氧化原位SERS谱图图9 不同激光强度下SERS图谱为了阐明CO在Pt-CeO2界面上的氧化反应机理,采用时间分辨SERS技术对活性表面物种的形成和反应进行了原位研究。首先在系统中引入10 kPa的CO,并获得了在20℃下Au@Pt−CeO2上CO吸附的SERS光谱。然后加入50kPa的氧气,减去CO吸附的SERS光谱,得到不同反应时间的不同SERS光谱,揭示Pt−CeO2界面的动态变化。如图10a,c, Pt−O和Ce−O拉曼谱带在体系中一经引入氧气立即出现,随着反应时间的增加,Pt−O和Ce−O的拉曼谱带强度增大,而CO的吸附量逐渐减小。考虑到Pt单独的氧活化能力差和Pt-CeO2界面上的Ce3+缺陷丰富,预计分子氧首先吸附在缺陷位置,然后立即解离,通过补充氧空位,生成晶格Ce−O物种,同时形成化学吸附的Pt−O物种。另一个需要考虑重要问题是,Pt−O和Ce−O,哪一个在CO氧化中更活跃。为了解决这个问题,将样品暴露在20°C的氧气下,Pt−O和Ce−O首先形成。然后将气氛由O2转换为CO,触发Pt−O和Ce−O与CO的反应。图10显示了O2/CO转换后的SERS光谱随时间的变化。在O2/CO转换时,Pt−O拉曼谱带的强度随时间的延长而不断下降。而Ce−O在800 s之前基本保持不变,然后拉曼强度缓慢下降。这样的结果意味着化学吸附Pt−O物种比晶格Ce−O物种更具活性,优先与吸附CO的反应。因此,在铂表面化学吸附的O和附近吸附的CO之间找到了一条更有效的反应途径,这是对传统金属表面−氧化物界面氧化还原机制的有益补充,这表明吸附的CO将直接与可还原金属氧化物中的晶格氧反应。图10 时间分辨SERS谱图总之,作者通过Au@Pt−CeO2纳米结构的制备,利用SERS策略在Pt−CeO2界面上进行了氧活化和CO氧化的原位研究。Au@Pt−CeO2纳米结构中,等离子体金核可以显著放大吸附在Pt−CeO2界面上的微量表面物种的拉曼信号,从而可以同时对活性位点和中间体的结构演化进行原位研究。催化实验表明,Pt−CeO2界面的存在提高了CO的氧化活性。直接原位拉曼证据结合同位素取代实验表明,这种改善是由于界面Ce3+缺陷处的氧有效活化为化学吸附的Pt−O物种和晶格的Ce−O物种。在进一步的时间分辨原位SERS研究和DFT计算的基础上,发现化学吸附的Pt−O物种比晶格的Ce−O物种更活跃,这些结果为揭示氧活化和CO氧化的分子机理提供了新的见解和重要的光谱支持。参考文献:Diye Wei et al. In Situ Raman Observation of OxygenActivation and Reaction at Platinum−Ceria Interfaces during CO Oxidation. J.Am. Chem. Soc.2021, 143, 15635-15643.

原位拉曼相关的方案

原位拉曼相关的论坛

  • 原位拉曼 信噪比问题

    原位拉曼  信噪比问题

    我最近在做原位拉曼,原位池是陶瓷杯,放在样品腔内,上面一层一层玻璃,拉曼仪器是法国 HORIBA JOBIN YVONS.A.S公司的LABRAM ARAMIS 激光共焦显微拉曼光谱仪但是信噪比很差,基本没有峰。参数:532nm激光器,无衰减,Hole:500,光栅2400(600,1200,,1800,2400),扫描时间:1*20*20http://ng1.17img.cn/bbsfiles/images/2014/01/201401081909_487171_2296681_3.jpg请问如何加强信噪比??

原位拉曼相关的资料

原位拉曼相关的仪器

  • 产品简介通过MEMS芯片对样品施加力学、电场、热场控制,在原位样品台内构建力、电、热复合多场自动控制及反馈测量系统,结合EDS、EELS、SAED、HRTEM、STEM等多种不同模式,实现从纳米层面实时、动态监测样品在真空环境下随温度、电场、施加力变化产生的微观结构、相变、元素价态、微观应力以及表/界面处的结构和成分演化等关键信息。我们的优势力学性能1.高精度压电陶瓷驱动,纳米级别精度数字化精确定位。2.实现1000℃加热条件下压缩、拉伸、弯曲等微观力学性能测试。3.nN级力学测量噪音。4.具备连续的载荷-位移-时间数据实时自动收集功能。5.具备恒定载荷、恒定位移、循环加载控制功能,适用于材料的蠕变特性、应力松弛、疲劳性能研究。优异的热学性能1.高精密红外测温校正,微米级高分辨热场测量及校准,确保温度的准确性。2.超高频控温方式,排除导线和接触电阻的影响,测量温度和电学参数更精确。3.采用高稳定性贵金属加热丝(非陶瓷材料),既是热导材料又是热敏材料,其电阻与温度有良好的线性关系,加热区覆盖整个观测区域,升温降温速度快,热场稳定且均匀,稳定状态下温度波动≤±0.1℃。4.采用闭合回路高频动态控制和反馈环境温度的控温方式,高频反馈控制消除误差,控温精度±0.01 ℃。5.多级复合加热MEMS芯片设计,控制加热过程热扩散,极大抑制升温过程的热漂移,确保实验的高效观察。优异的电学性能1.芯片表面的保护性涂层保证电学测量的低噪音和精确性,电流测量精度可达皮安级。2.MEMS微加工特殊设计,同时加载电场、热场、力学,相互独立控制。智能化软件1.人机分离,软件远程控制纳米探针运动,自动测量载荷-位移数据。2.自定义程序升温曲线。可定义10步以上升温程序、恒温时间等,同时可手动控制目标温度及时间,在程序升温过程中发现需要变温及恒温,可即时调整实验方案,提升实验效率。3.内置绝对温标校准程序,每块芯片每次控温都能根据电阻值变化,重新进行曲线拟合和校正,确保测量温度精确性,保证高温实验的重现性及可靠性。技术参数类别项目参数基本参数杆体材质高强度钛合金控制方式高精度压电陶瓷倾转角α≥±20°,倾转分辨率<0.1°(实际范围取决于透射电镜和极靴型号)适用电镜Thermo Fisher/FEI, JEOL, Hitachi适用极靴ST, XT, T, BioT, HRP, HTP, CRP(HR)TEM/STEM支持(HR)EDS/EELS/SAED支持应用案例600°C高温下铜纳米柱力学压缩实验以形状尺寸微小或操作尺度极小为特征的微机电系统 (MEMS)越来越受到人们的高度重视 , 对于尺度在 100μm 量级以下的样品 , 会给常规的拉伸和压缩试验带来一系列的困难。纳米压缩实验 , 由于在材料表面局部体积内只产生很小的压力 , 正逐渐成为微 / 纳米尺度力学特性测量的主要工作方式。因此 , 开展微纳米尺度下材料变形行为的实验研究十分必要。为了研究单晶面心立方材料的微纳米尺度下变形行为 , 以纳米压缩实验为主要手段 , 分析了铜纳米柱初始塑性变形行为和晶体缺陷对单晶铜初始塑性变形的影响。结果表明铜柱在纳米压缩过程中表现出更大程度的弹性变形。同时对压缩周围材料发生凸起的原因和产生的影响进行了分析 , 认为铜纳米柱压缩时周围材料的凸起将导致纳米硬度和测量的弹性模量值偏大。为了研究表面形貌的不均匀性对铜纳米柱初始塑性变形行为的影响 , 通过加热的方法 , 在铜纳米柱表面制备得到纳米级的表面缺陷 , 并对表面缺陷的纳米压缩实验数据进行对比分析 , 结果表明表面缺陷的存在会极大影响铜纳米柱初始塑性变形。通过透射电子显微镜 ,铜纳米柱压缩点周围的位错形态进行了观察 , 除了观察到纳米压缩周围生成的位错 , 还发现有层错、不全位错及位错环的共存。表明铜纳米柱的初始塑性变形与位错的发生有密切的联系。
    留言咨询
  • RTS-LIBS 拉曼光谱联用系统LIBS 与拉曼光谱联用技术激光诱导击穿光谱(LIBS)是一种通过脉冲激光轰击样品获得样品轰击面区域原子发射光谱的分析方法,其具有快速分析,灵敏度高,能同时检测多种元素等特点,尤其可实现微量元素的快速、无接触的原位检测。拉曼光谱技术是一种非破坏性的光谱分析技术,通过构建目标分子的指纹图库,可以实现相应物质的快速识别与定性检测。LIBS 与拉曼光谱技术相结合,可以提供互补信息,拉曼光谱提供物质分子结构信息,LIBS 技术提供微量及痕量元素的原子光谱信息。二者结合将在遥感检测、文物鉴定、爆炸物检测分析等领域具有巨大的应用潜力。典型应用系统介绍RTS-LIBS 拉曼光谱系统是北京卓立汉光仪器有限公司全新推出的 LIBS 与拉曼联用系统,采用纳秒脉冲激光器作为 LIBS 激发光源,连续激光光源作为拉曼激发光源,C-T 式长焦距光谱仪 系统配置双探测器,常规深度制冷型 CCD 作为常规拉曼光谱探测器,纳秒级门控的像增强型 CCD(ICCD)作为 LIBS 和脉冲拉曼信号探测器。 该系统具备高度集成、性能稳定、易于操作等优势,可同时原位在线获取样品的分子光谱、原子光谱信息。典型参数应用案例参考文章 :Quantitative analysis of mercury in liquid samples using laser-induced breakdown spectroscopy combined with shear thickening fluid DOI: 10.1039/d1ja00431j
    留言咨询
  • 远程拉曼光谱技术拉曼光谱技术是用于研究物质结构的分子光谱技术,通过散射光的频移量来获得分子振动、转动情况,从而分析分子的结构、对称性、电子环境和分子结合情况,是定量和定性分析物质结构的一种强有力的技术手段。拉曼光谱分析方法拉曼光谱的强度、频移、线宽、特征峰数目以及退偏度与分子的振动能态、转动能态、对称性等紧密相关。拉曼光谱的优势近年发展的远程拉曼光谱探测技术,是根据拉曼散射效应远距离探测物质的技术,通过技术的发展及应用的拓展,目前已在行星、矿物勘测、远程爆炸物探测、化学物质泄漏和污染物测量等方面有很高的应用价值。国际目前常用的程拉曼探测系由以下部分组成:激发光源、光路收集模块、分光模块、探测模块、数据采集与分析模块。在激光器的选择上,高脉冲能量激光器是主流激光器,常见的是可见光波段的激光器, 也有少量研究者采用红外波段和紫外波段。目标样品拉曼信号的收集是远程拉曼光谱探测的关键技术环节,大口径望远镜有助于接收较弱的远程拉曼回波信号,户外远程探测时一般采用望远系统收集信号。常见技术有卡塞格林望远镜和拉曼光纤探头等。在搭配探测器时,跟据激光器的选型可分为CCD 和带有电子快门的ICCD,连续激光源搭配CCD 探测器能满足较短距离探测需求。高脉冲能量激光器搭配ICCD 探测器,通过对门宽的设置可以较好地排除背景光和衰减时间长的荧光干扰,具有很高的应用前景。远程拉曼测试系统方案配置与选型根据不同的客户需求,卓立汉光可以提供不同距离拉曼测试系统① 多种收集器可选,适应0mm-1000mm 甚至更远距离的探测② 连续激光器/ 脉冲激光器可选③ 多种分光光谱仪可选,光栅光谱仪可实现高分辨率,VPH 光谱仪实现高通光量④ 多种探测器可选,背照式深耗尽型光谱CCD 相机和ICCD 可选主要参数一览表:拉曼探头激发波长405, 514, 532, 633, 670, 671, 785, 808 nm.其他可选光谱范围100-4000 cm-1 ( 不同激光器范围不同 )焦距20 mm to 100 mm样品端光斑大小~100 um @ 100 um 芯径激发光纤工作距离20 ~100 mm数值孔径0.22 @40 mm 焦距探头尺寸2.25" L x 0.96" W x 0.58" H探头材质超硬氧化铝或者 316 不锈钢探头柄尺寸1.125” 直径 x 3.8” 长度探头柄材质316 不锈钢滤光片效率O.D 6操作温度0-85 ⁰ C最大操作压力15 psi光纤配置100/100 um 标准配置,其他可选接口类型FC 或者 SMA其他可定制望远镜激发波长532nm,785nm,其他可定制光谱范围200-4000 cm-1 ( 不同激光器范围不同 )焦距1000mm 标配,其他可选样品端光斑大小~100 um @ 100 um 芯径激发光纤激光器接口FC/APC光谱仪接口SMA激光器激光器脉冲激光器光纤激光器激发波长532nm532nm脉冲能量 / 功率290mJ100mW重复频率10HzCW线宽 0.005 cm-1< 0.00001nm光谱仪类型C-T 式影像校正光谱仪VPH 光谱仪焦距320mm 焦距85mm 焦距通光孔径F/4.2F/1.8光谱范围200-1100nm532-680nm光谱分辨率优于 2cm-1@1800 刻线光栅5cm-1@1800 刻线光栅探测器类型ICCDCCD有效像素1024*10242000 x 256像元尺寸13um*13um15 x 15 µ m有效探测面尺寸(18mm MCP)13.3mm*13.3mm最短光学门宽< 2ns无读出噪声5 e-4.5 e-门控2ns无响应范围280 – 810nm200-1100nm典型应用行星探测中国科学院万雄老师设计了一款激光诱导击穿光谱LIBS+ 拉曼系统在火星模拟环境下矿物样品的综合检测能力,采用卡塞格林望远镜结构,远程脉冲拉曼光谱激发,成功检测了8 种典型矿物质(孔雀石、蓝铜矿、雄黄、文石、方解石、硬石膏和石膏等),实验结果表明,该系统可以在火星条件下有效分析矿物种类和成分。放射性核污染物检测远程拉曼探测模块搭载在无人遥控车,搭配成空间外差拉曼光谱仪可以有效识别1m 处的放射性危险物品。矿物勘探远程拉曼光谱探测技术在矿物与有机质分析方面的独特能力,使得这一技术非常适用于行星表面探测等任务中。材料生长原位监测远程拉曼光谱技术可实现原位监测材料生长过程,如成分含量、结晶度、缺陷量、薄膜生长速率等参数。M. Gnyba 等人设计远程拉曼光谱技术用于原位监测CVD 制备金刚石膜生长过程,探测距离最高达197mm, 文中采用的工作距离为20cm。图 单晶金刚石拉曼光谱图 金刚石薄膜拉曼光谱远程拉曼光谱可用于材料生长过程中层数、堆叠、缺陷密度和掺杂等参数。M. N. Groot 等人采用显微远程拉曼系统分析液态金属催化CVD 制备大面积石墨烯材料的生长过程,实现了从连续多晶薄膜生长为毫米级无缺陷单晶。图 1370k 下405nm 激发的拉曼光谱图图 冷却至室温后 514nm 激发下的拉曼光谱图 引用文献:[1] 赵家炜, 马建乐, 郝锐, 等. 远程增强拉曼光谱技术及其应用[J]. 光散射学报, 2021.[2] 袁汝俊, 万雄, 王泓鹏. 基于远程 LIBS-Raman 光谱的火星矿物成分分析方法研究[J]. 光谱学与光谱分析, 2021, 41(4): 1265.[3] Foster M, Wharton M, Brooks W, et al. Remote sensing of chemical agents within nuclear facilities using Raman spectroscopy[J].Journal of Raman spectroscopy, 2020, 51(12): 2543-2551.[4] 胡广骁, 熊伟, 罗海燕, 等. 用于远程探测的空间外差拉曼光谱技术研究[J]. 光谱学与光谱分析, 2016, 36(12): 3951-3957.[5] Sharma S K, Angel S M, Ghosh M, et al. Remote pulsed laser Raman spectroscopy system for mineral analysis on planetary surfacesto 66 meters[J]. Applied Spectroscopy, 2002, 56(6): 699-705.[6] Gnyba M, Kozanecki M, Wroczyński P, et al. Long-working-distance Raman system for monitoring of uPA ECR CVD process of thin diamond/DLC layers growth[J]. Photonics Letters of Poland, 2009, 1(2): 76-78.[7] Jankowski M, Saedi M, La Porta F, et al. Real-time multiscale monitoring and tailoring of graphene growth on liquid copper[J]. ACS nano, 2021, 15(6): 9638-9648.
    留言咨询

原位拉曼相关的耗材

  • PIKE 原位漫反射样品杯
    PIKE DiffusIR原位漫反射附件的原装样品杯材质:多孔陶瓷直径:6mm OD, 4.7mm ID高度:4mm深度:2mm适用于:
  • SEM / TEM专用液体原位芯片
    TEM用液体原位芯片由于电镜需要真空环境的特点,正常情况样品只能做真空环境下静态电镜分析。运用新技术生产的液体芯片可将待测液体样品封闭起来,并通过氮化硅薄膜窗口做动态观测。基于氮化硅薄膜的液体原位芯片。它可以用作液体原位TEM观测。L-300液体芯片由上芯片和下芯片组合而成,芯片中间有10×50μm氮化硅薄膜观察窗口,下芯片左右两侧各有一个液体滴加口。上下两枚芯片由密封胶粘合在一起,中间有一个微型液体腔室。原位实验时首先在液体滴加口滴入待测液体,等待待测液体在浸润通过微型液体腔室并从另外一个液体滴加口渗出。再使用环氧树脂密封两个液体滴加窗口,待胶固化后即可进行原位液体观测。 ZB-NS0300 液体芯片使用说明 ZB-NS0300 液体芯片是用环氧树脂胶将上芯片和下芯片粘合在一起组合而成,中间形成微型液体腔室。芯片中间有 10um x 10um x 30nm 的氮化硅薄膜观察窗口,背面左右两侧各有一个液体滴加口。准备工作:待测液体、微量进样器、镊子、双面胶(固定芯片)、吸气装置(注射器针头带有橡胶圈)、胶(环氧树脂胶或指甲油)。待测液体封装流程: (示意图如第二页所示)1. 取出芯片,翻转芯片,使用双面胶将芯片固定在实验台上;2. 使用微量进样器向液体滴加口滴加待测液体;3. 将抽真空注射器插入另一液体滴加口;4. 向下按压橡胶使其尽量与芯片紧密贴合;5. 缓慢吸拉注射器, 观察左侧滴加口的液体是否减少,若没有减少,按住橡胶,继续缓慢吸拉注射器;6. 使用胶密封液体滴加口,胶干燥后即可进行原位液体观测。 ZB-NS0300原位TEM液体芯片剖面图 ZB-NS0300原位SEM液体芯片剖面图
  • PIKE DiffuseIR 原位漫反射041-10xx
    DiffusIR 是PIKE公司针对红外光谱原位漫反射所设计的一款研究级附件,具有最高的温度(1000℃) 和压力(1500psi) 性能,广泛用于材料的热力学性质、反应机理、催化剂的原位反应研究等。产品特点:高效的光学设计带来最高的灵敏度和检出限 千分尺调节焦点,保证每个样品的信号强度最大化样品舱简便易取,方便操作2个气路接口,用于真空或载气密封光路、可吹扫,消除水汽和二氧化碳的影响 优于竞争对手的最高温度极限:高温可达1000℃ 精度:+/- 0.5%升温速率:最大120℃/minute(高温版)可选配PC控制的温控,TempPRO软件,图形化界可最多设置100个温度点,每个温度点设置保持时间,每个温度区间可独立设置升温速率, 在指定时间或温度触发测试 推荐配置: 配置一:标准型温度范围:室温 ~ 500℃标准压力:1.3×10-4Pa ~ 14.7psi可选高压:1500psi配置二:高温型温度范围:室温 ~ 1000℃标准压力:1.3×10-4Pa ~ 14.7psi可选高压:1500pis配置三:低温杜瓦型 温度范围:-150℃ ~ 500℃压力范围:1.3×10-4Pa ~ 14.7psi

原位拉曼相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制